JPH07151677A - Densitometer - Google Patents

Densitometer

Info

Publication number
JPH07151677A
JPH07151677A JP30193493A JP30193493A JPH07151677A JP H07151677 A JPH07151677 A JP H07151677A JP 30193493 A JP30193493 A JP 30193493A JP 30193493 A JP30193493 A JP 30193493A JP H07151677 A JPH07151677 A JP H07151677A
Authority
JP
Japan
Prior art keywords
sample
concentration
light
test set
densitometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30193493A
Other languages
Japanese (ja)
Inventor
Toshiko Fujii
稔子 藤井
Yuji Miyahara
裕二 宮原
Yoshio Watanabe
▲吉▼雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30193493A priority Critical patent/JPH07151677A/en
Publication of JPH07151677A publication Critical patent/JPH07151677A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize highly accurate measurement of an abnormal value sample by providing a function for deciding the adaptability of a sample to a test set and a function for correcting the measured concentration of the sample. CONSTITUTION:The glucose concentration is measured by a definitive method for (n) blood samples thus preparing a target variable series of nX1. Another (n) specimens are measured by a spectrometer thus preparing a description variable series of nXm based on the absorbance of (m) wave number exhibiting absorption specific to glucose. Calibration and prediction of concentration are effected by a test set through aralysis using partial least square(PLS) method. Adaptability of a sample to the test set is decided by deciding the scattering of sample absorbance from the statistic value of description variables of the test set. For a sample inadaptable to the test set, error from the test set is calculated and then a correction value is calculated. The correction value is added to a predicted concentration to obtain a corrected PLS concentration which is outputted as a measured concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スペクトルを用いた複
数成分の定量分析法に関するもので特に赤外分光法を用
いた血液生化学検査装置に用いられる定量方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantitative analysis method for a plurality of components using a spectrum, and more particularly to a quantification method used in a blood biochemical test apparatus using infrared spectroscopy.

【0002】[0002]

【従来の技術】赤外吸収スペクトルを用いた血液生化学
成分の定量分析に関しては、アナリティカル ケミスト
リ(1989年)第2016ページから第2023ペー
ジに述べられている。ここでは、患者より採血した成分
濃度既知の血液をテストセットとし、成分濃度を目的変
数,測定したスペクトルを説明変数として部分最小二乗
法(Partial Least Square:PLS法)によって潜在変
数を導きだし、潜在変数と目的変数を最小二乗すること
によって回帰式を算出し、未知濃度試料の定量を試みて
いる。統計からはずれた飛散値を持つ試料は、アウトラ
イア デテクション(outlier detection)によってこれ
らの一連のテストセットから除外される。従って飛散
値,臨床検査分野で言うところの異常値をもつ検体は、
PLSモデルに適合せず、測定しても誤差が大きくな
る。またPLS,outlier detection の方法について
は、ケモメトリックス(1992年,相島 鐡郎,丸善
株式会社)第116〜118ページ,第89〜102ペ
ージにおいて述べられている。
2. Description of the Related Art Quantitative analysis of blood biochemical components using infrared absorption spectrum is described in Analytical Chemistry (1989), pages 2016 to 2023. Here, the latent variable is derived by the partial least squares method (PLS method) with the blood concentration of the known component concentration collected from the patient as the test set, the component concentration as the objective variable, and the measured spectrum as the explanatory variable. We are trying to quantify unknown concentration samples by calculating regression equations by least-squares variables and objective variables. Samples with out-of-statistical scatter values are excluded from these series of test sets by outlier detection. Therefore, samples with scattered values, or abnormal values in the clinical laboratory field,
It does not fit the PLS model, and the error is large even when measured. Further, the method of PLS and outlier detection is described in Chemometrics (1992, Tetsuro Aijima, Maruzen Co., Ltd.), pages 116 to 118, and pages 89 to 102.

【0003】[0003]

【発明が解決しようとする課題】従来用いられていたス
ペクトルにおける多変量解析を用いた定量分析の場合、
前述したように予測精度を向上させるため、校正に用い
ようとするテストセットの平均より外れた値を持つスペ
クトルはoutlier としてテストセットから除外したうえ
で校正を行い、またサンプルもテストセットより外れた
値を持つものは正しい濃度予測が行えないという問題が
あった。特に多成分が混在する物質を測定対象とする場
合、定量精度を保つにはテストセットをそれら一連の成
分全てを含有する混合物質から構成し、しかもその濃度
分布が連続的な群を形成している必要があるため、既成
の物質をテストセットとして用いることが多い。従って
予想される異常値まで連続的にカバーするようなテスト
セットを作成するのは困難である。特に血液の生化学分
析の場合、異常値を検出しこれを正しく測定することが
重要なのでこれら一連の定量法を血液分析にそのまま適
用するのには問題があった。
In the case of quantitative analysis using multivariate analysis in the spectrum that has been conventionally used,
As mentioned above, in order to improve the prediction accuracy, spectra with values outside the average of the test set to be used for calibration are excluded from the test set as outliers and then calibrated. There is a problem in that a value having a value cannot accurately predict the concentration. In particular, when measuring substances containing multiple components, in order to maintain quantification accuracy, the test set should be composed of mixed substances containing all of these components, and the concentration distribution should form a continuous group. As a result, it is often necessary to use ready-made substances as test sets. Therefore, it is difficult to create a test set that continuously covers expected outliers. Especially in the case of biochemical analysis of blood, it is important to detect abnormal values and measure them correctly, and therefore it is problematic to directly apply these series of quantitative methods to blood analysis.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するため
に、テストセットとサンプルの適合性の判定機能と、サ
ンプルの測定濃度の補正機構を設けた。
In order to solve the above problems, a function for determining the compatibility between the test set and the sample and a mechanism for correcting the measured concentration of the sample are provided.

【0005】[0005]

【作用】上記手段は以下のように作用する。テストセッ
トとサンプルの適合性の判定機能は、サンプルがテスト
セットの形成する群から飛散していないかを調べる機能
である。サンプルの飛散が認められない場合、このサン
プルはテストセットに適合し、その測定濃度にはテスト
セット由来の系統誤差が無く、補正の必要なしとみな
し、そのまま測定濃度が出力される。
The above means operates as follows. The function of determining the compatibility between the test set and the sample is a function of checking whether or not the sample is scattered from the group formed by the test set. If no scattering of the sample is observed, this sample conforms to the test set, and the measured concentration is regarded as having no systematic error derived from the test set and does not require correction, and the measured concentration is output as it is.

【0006】サンプルがテストセットから飛散している
場合、飛散の方向性によってサンプル測定値には系統的
な誤差が生じる。従ってサンプルの測定濃度をより精度
の高いものとするために、系統誤差を補償するための補
正機構を設けた。テストセットに不適合とみなされたサ
ンプルは、補正機構に送られ、誤差を補正されより精度
の高い測定値として出力される。
When the sample is scattered from the test set, the directionality of the scattering causes a systematic error in the sample measurement value. Therefore, in order to make the measured concentration of the sample more accurate, a correction mechanism for compensating for the systematic error is provided. Samples deemed to be non-compliant with the test set are sent to a correction mechanism where the error is corrected and output as a more accurate measurement.

【0007】[0007]

【実施例】以下、実施例に基づいて本発明を詳細に説明
する。図1は本発明の実施例の血中グルコース分析装置
の装置構成である。本装置は、分光器1と分光器で測定
した信号を数値処理し、更に処理結果から試料濃度の予
測を行うためのデータ処理部2から構成される。分光器
1内の光源3から出射した赤外光4は減衰全反射プリズ
ムを使用した試料セル5に入射する。試料セル5の上に
は血液6が導入されており、血液6によって光4は特定
の波長のみ吸収され、セル5より出射する。セル5より
出射した光4は干渉計7によって位相差を生じ、検知器
8によって検知され、AD変換器9を介してデジタル信
号10に変換される。干渉計7によって位相差を生じて
いた信号10は、データ処理部2に送られ、フーリエ変
換によって各波長毎の強度が算出される。
EXAMPLES The present invention will be described in detail below based on examples. FIG. 1 is a device configuration of a blood glucose analyzer according to an embodiment of the present invention. This apparatus comprises a spectroscope 1 and a data processing unit 2 for numerically processing the signals measured by the spectroscope and for predicting the sample concentration from the processing result. Infrared light 4 emitted from a light source 3 in the spectroscope 1 enters a sample cell 5 using an attenuating total reflection prism. Blood 6 is introduced onto the sample cell 5, and the light 6 absorbs the light 4 only at a specific wavelength and is emitted from the cell 5. The light 4 emitted from the cell 5 causes a phase difference by the interferometer 7, is detected by the detector 8, and is converted into the digital signal 10 via the AD converter 9. The signal 10 having the phase difference generated by the interferometer 7 is sent to the data processing unit 2 and the intensity for each wavelength is calculated by Fourier transform.

【0008】図2は、本発明の実施例の血中グルコース
の定量分析方法の概略を示したものである。本分析法は
テストセット11の作成12,テストセット11を用い
た校正13及びサンプル14の濃度予測15,テストセ
ット11とサンプル14の適合性の判定16,テストセ
ットとサンプルが不適合な場合の補正17,測定濃度の
出力18の6段階に大きく分けることができる。以下、
各段階について詳細に説明する。
FIG. 2 shows the outline of the method for quantitatively analyzing blood glucose according to the embodiment of the present invention. This analysis method includes the creation 12 of the test set 11, the calibration 13 using the test set 11, the concentration prediction 15 of the sample 14, the determination 16 of the compatibility between the test set 11 and the sample 14, and the correction when the test set and the sample are not compatible. It can be roughly divided into six stages of 17 and output of measured concentration 18. Less than,
Each stage will be described in detail.

【0009】図3はテストセットの作成12のフローで
ある。ここでは、n人の患者19から無作為に採取した
n個の血液20のグルコース濃度を基準法21によって
測定し(以下基準法によって測定したグルコース濃度を
便宜的に基準値と呼ぶ)、n×1の目的変数数列y22
を作成する。さらに図1に示した分光器1でn個の検体
20を測定し、グルコースに特異的な吸収を持つ118
1〜950cm-1の波数範囲のm個の波数の吸光度によっ
てn×mの説明変数数列X23を作成する。テストセッ
トによる校正13および濃度予測15では、PLS法を
用いた分析を行う。PLSモデリングは、説明変数数列
Xと目的変数数列yを数1,数2のように潜在変数数列
T,P,qで表す。
FIG. 3 is a flow of the test set creation 12. Here, the glucose concentration of n pieces of blood 20 randomly collected from n patients 19 is measured by a reference method 21 (hereinafter, the glucose concentration measured by the reference method is referred to as a reference value for convenience), and n × The target variable sequence y22 of 1
To create. Further, n samples 20 are measured by the spectroscope 1 shown in FIG.
An n × m explanatory variable sequence X23 is created by the absorbance of m wave numbers in the wave number range of 1 to 950 cm −1 . In the calibration 13 and the concentration prediction 15 by the test set, the analysis using the PLS method is performed. In the PLS modeling, the explanatory variable sequence X and the objective variable sequence y are represented by latent variable sequence T, P, q as shown in Formulas 1 and 2.

【0010】[0010]

【数1】 X=TP′+E …(数1)## EQU1 ## X = TP '+ E (Equation 1)

【0011】[0011]

【数2】 y=Tq′+f …(数2) ここで数列Tはn×a、数列Pはm×a、数列qはa×
1の配列を持ち、数列Eとfは変数X,yの残差で配列
はそれぞれn×m,n×1で、aはPLSモデルの因子
数である。潜在変数数列T,P,qは、Xとyから求め
られるm次の重みベクトルwから算出される。yのPL
S回帰式y^は、潜在変数Tを用いて数3のように表さ
れる。TはXの線形結合であるので数3は、数4のよう
に説明変数Xの線形結合として表され、係数bはa個の
重みベクトルwから数5で算出できる。
## EQU00002 ## y = Tq '+ f (Equation 2) where the sequence T is n.times.a, the sequence P is m.times.a, and the sequence q is a.times.
It has an array of 1, the sequences E and f are residuals of variables X and y, the arrays are n × m and n × 1, respectively, and a is the number of factors of the PLS model. The latent variable sequence T, P, q is calculated from the m-th order weight vector w obtained from X and y. PL of y
The S regression equation y ^ is expressed as in Equation 3 using the latent variable T. Since T is a linear combination of X, the expression 3 is expressed as a linear combination of the explanatory variables X as in the expression 4, and the coefficient b can be calculated from the a weight vectors w by the expression 5.

【0012】[0012]

【数3】 y^=Tq+E …(数3)## EQU3 ## y ^ = Tq + E (Equation 3)

【0013】[0013]

【数4】 y^=Tq+E=Xb+E …(数4)Y ^ = Tq + E = Xb + E (Equation 4)

【0014】[0014]

【数5】 b=W(P′W)-1q …(数5) 以上のようにしてテストセットをもとにPLS回帰式
(数4)を算出し、サンプルの濃度予測に用いる。濃度
予測14では、校正12で求めたPLS回帰式(数4)
の係数bと残差Eを用いて未知濃度のサンプル13の濃
度予測を行う。サンプル13は分光器1によって測定さ
れm×1の吸光度数列x^として表される。この吸光度
数列x^と数4よりサンプル中のグルコース濃度y^
(以下基準値と区別するためPLS濃度とよぶ)は数6
で表される。
## EQU00005 ## b = W (P'W) .sup.- 1 q (Equation 5) As described above, the PLS regression equation (Equation 4) is calculated based on the test set and used for the concentration prediction of the sample. In the concentration prediction 14, the PLS regression equation (Equation 4) obtained in the calibration 12
The concentration of the unknown concentration sample 13 is predicted using the coefficient b and the residual E. The sample 13 is measured by the spectroscope 1 and expressed as an m × 1 absorbance sequence x̂. From this absorbance sequence x ^ and equation 4, the glucose concentration in the sample y ^
(Hereinafter referred to as PLS concentration to distinguish it from the reference value)
It is represented by.

【0015】[0015]

【数6】 y^=x^b+E …(数6) 一方、サンプルのテストセットとの適合性の判定16で
は、テストセットの説明変数の統計値からサンプル吸光
度の飛散が無いかを判定する。サンプルがテストセット
から飛散している場合、数6によって算出されたサンプ
ルのPLS濃度y^は、系統誤差を含んでおり、y^の
補正が必要になる。判定16では、SIMCA(soft i
ndependent modeling of class analogy)と呼ばれる手
法を用いて、サンプルが異常値検体であるか否かを判定
する。
Y ^ = x ^ b + E (Equation 6) On the other hand, in the determination 16 of the compatibility of the sample with the test set, it is determined from the statistical value of the explanatory variable of the test set whether or not the sample absorbance is scattered. When the sample is scattered from the test set, the PLS concentration y ^ of the sample calculated by the equation 6 contains a systematic error, and y ^ needs to be corrected. In judgment 16, SIMCA (soft i
A method called “independent modeling of class analogy” is used to determine whether the sample is an outlier sample.

【0016】SIMCAでは、まず最初にテストセット
の説明変数数列Xを主成分分析し、数7で表す。
In SIMCA, first, the explanatory variable sequence X of the test set is subjected to a principal component analysis, and is expressed by Equation 7.

【0017】[0017]

【数7】 X=x-+VU+E …(数7) ここでm×1の数列x- は、説明変数数列Xの平均値で
あり、m×dの数列Vは、説明変数数列Xから算出した
主成分への負荷量であり、d×nの数列Uはd個の主成
分に対する主成分得点,n×mの数列Eは、残差であ
る。SIMCAはこの残差Eの変動によって判定範囲を
設定し、異常値の判別を行う。残差Eの変動s0 は数8
によって表される。
X = x + VU + E (Equation 7) Here, the m × 1 sequence x is the average value of the explanatory variable sequence X, and the m × d sequence V is calculated from the explanatory variable sequence X. The load amount on the principal component, the d × n sequence U is the principal component score for d principal components, and the n × m sequence E is the residual. SIMCA sets a determination range based on the variation of the residual E, and determines an abnormal value. The variation s 0 of the residual E is expressed by
Represented by

【0018】[0018]

【数8】 [Equation 8]

【0019】次にサンプル13の判定を行う。テストセ
ットの平均値とサンプルx^の差を目的変数,数7の主
成分への負荷量数列Vを説明変数として重回帰分析によ
り数9の誤差が最小になるように主成分得点の推定値U
^を数10のように算出する。
Next, the sample 13 is judged. Estimated value of the principal component score by the multiple regression analysis with the difference between the average value of the test set and the sample x ^ as the objective variable and the load sequence V to the principal component of the equation 7 as the explanatory variable U
^ Is calculated as in Equation 10.

【0020】[0020]

【数9】 x^−x-=VU^+E …(数9)[Equation 9] x ^ -x - = VU ^ + E ... ( number 9)

【0021】[0021]

【数10】 U^=(V′V)-1V′(x^−x-) …(数10) 数9,数10によってサンプル13の誤差Eを算出した
後、誤差Eの分散sを数11によって算出する。
Equation 10] U ^ = (V'V) -1 V '(x ^ -x -) ... ( Equation 10) Equation 9, after calculating the error E of the sample 13 by the number 10, a dispersion s of the error E It is calculated by Equation 11.

【0022】[0022]

【数11】 [Equation 11]

【0023】数8によって求めたs0 と数11によって
求めたsの比(数12)をF値として、F分布に従いサ
ンプル13がテストセットに適合するか否かの判定を行
う。
With the F value being the ratio of s 0 obtained by the equation 8 and s obtained by the equation 11, it is determined whether the sample 13 conforms to the test set according to the F distribution.

【0024】[0024]

【数12】 F=s2/s0 2 …(数12) 適合した場合は、数6で求めたサンプル13のPLS濃
度y^はそのまま補正をせずに出力する。不適合な場合
は、補正17でy^に補正を加える。図4は補正のフロ
ーを示したものである。補正は、補正式の算出24とy
^の補正25の二段階に大きく分けることができる。補
正式の算出24では、t個の異常値検体26について、
校正で用いた説明変数数列Xとの吸光度誤差27(E
s),それぞれの異常値検体26の数6によるPLS濃
度y^と基準値との濃度誤差28(Ec)を算出し、E
sとEcの系統的な関係を多変量解析により解析するこ
とで補正式29を算出する。
[Equation 12] F = s 2 / s 0 2 (Equation 12) When conforming, the PLS concentration y ^ of the sample 13 obtained in Equation 6 is output as it is without correction. If they do not match, correction 17 corrects y. FIG. 4 shows a flow of correction. The correction is made by calculating the correction formula 24 and y.
The correction 25 can be roughly divided into two stages. In the correction formula calculation 24, for t abnormal value samples 26,
Absorbance error 27 (E with the explanatory variable sequence X used in calibration
s), the concentration error 28 (Ec) between the PLS concentration y ^ and the reference value according to the equation 6 of each abnormal value sample 26 is calculated, and E
The correction equation 29 is calculated by analyzing the systematic relationship between s and Ec by multivariate analysis.

【0025】以下詳しくその手順を述べる。まずt個の
異常値検体26を基準法と分光器によって測定し、t×
1の基準値数列Yrとt×mの吸光度数列Xs が作成で
きる。吸光度数列Xs はそのままt個のサンプルとして
数6によりPLS濃度を予測し、t個の予測濃度数列Y
c を作成する。さらに数13のように二つの濃度数列の
差をとることによってt×1のPLSモデルの濃度誤差
Ecを算出する。
The procedure will be described in detail below. First, t outlier samples 26 are measured by the standard method and the spectroscope, and t ×
A reference value sequence Yr of 1 and an absorbance sequence Xs of t × m can be created. The absorbance sequence Xs is used as it is as t samples to predict the PLS concentration by the equation 6, and the t expected concentration sequence Y is calculated.
Create c. Further, the density error Ec of the PLS model of t × 1 is calculated by taking the difference between the two density sequences as shown in Expression 13.

【0026】[0026]

【数13】 Ec=Yr−Yc …(数13) t×mのPLSモデルの吸光度誤差Es の算出は、前述
した校正12で求めた潜在変数Pを使って吸光度数列X
sとテストセットとの平均値x-との差を数14のように
記述することにより求められる。
[Equation 13] Ec = Yr−Yc (Equation 13) The absorbance error Es of the t × m PLS model is calculated by using the latent variable P obtained in the calibration 12 described above and the absorbance sequence X.
The difference between s and the average value x of the test set can be obtained by describing as in Expression 14.

【0027】[0027]

【数14】 Xs−x-=T^P+Es …(数14) 潜在変数Tの推定値T^はEs を最小にするように下式
によって求められる。
Equation 14] Xs-x - = T ^ P + Es ... ( number 14) an estimate of the latent variables T T ^ is determined by the following equation to minimize Es.

【0028】[0028]

【数15】 T^=(P′P)-1P′(Xs−x-) …(数15) 数14,数15よりEs を求めた後、濃度誤差Ec を目
的変数,吸光度誤差Es を説明変数として再びPLS法
によって両変数の関係を表すPLS回帰式Ec^数16
を算出する。
[Number 15] T ^ = (P'P) -1 P '(Xs-x -) ... ( number 15) number 14, after obtaining the Es than the number 15, objective variable density error Ec, the absorbance error Es As an explanatory variable, the PLS regression equation Ec ^ number 16 which represents the relationship between both variables by the PLS method again
To calculate.

【0029】[0029]

【数16】 Ec^=zEs+E …(数16) したがって図4の補正式29は数17のようになる。[Equation 16] Ec ^ = zEs + E (Equation 16) Therefore, the correction equation 29 in FIG.

【0030】[0030]

【数17】 y*=y^+Es^ …(数17) 一方判定数16でテストセットとは不適合だと判定され
たサンプルは、補正25において数14によりテストセ
ットからの誤差Xs^ を算出し、数16によって補正値
Ec^ を算出する。さらに数17によって濃度予測15
で求めたy^にこれを加えて補正したPLS濃度y* を
求め、これを測定濃度として出力する。
[Mathematical formula-see original document] y * = y ^ + Es ^ (Equation 17) On the other hand, for the sample determined to be incompatible with the test set by the determination equation 16, the error Xs ^ from the test set is calculated by equation 14 in the correction 25. , The correction value Ec ^ is calculated by the equation 16. Furthermore, the concentration prediction 15 is made by the equation 17
The corrected PLS concentration y * is obtained by adding this to the y ^ obtained in step 1 and is output as the measured concentration.

【0031】図5,図6は本発明の効果を表わしたグラ
フである。図5は補正機構を用いず実施例の血中グルコ
ース分析装置で、血液中のグルコース濃度を測定した結
果である。横軸に基準法による測定値,縦軸に実施例の
装置の測定値をプロットし二つのグルコース濃度の相関
を評価した。その結果、実施例で用いたテストセットの
範囲外のグルコース濃度を持つサンプル、即ち、約20
0mg/dl以上と50mg/dl以下の基準値を持つ
サンプルは、基準値とPLS濃度との差が大きく相関が
悪かった。図6は、補正機構を用いて同様の評価を行っ
た結果のグラフである。この結果によれば、テストセッ
トより飛散したサンプルも基準値と近い濃度に補正され
ており、相関も良好であった。
5 and 6 are graphs showing the effect of the present invention. FIG. 5 shows the results of measuring the glucose concentration in blood by the blood glucose analyzer of the example without using the correction mechanism. The abscissa plots the measured value by the standard method and the ordinate plots the measured value of the device of the example, and the correlation between the two glucose concentrations was evaluated. As a result, samples with glucose concentrations outside the range of the test set used in the examples, ie, about 20
In the samples having the reference values of 0 mg / dl or more and 50 mg / dl or less, the difference between the reference value and the PLS concentration was large and the correlation was poor. FIG. 6 is a graph of the result of performing the same evaluation using the correction mechanism. According to this result, the samples scattered from the test set were corrected to have a density close to the reference value, and the correlation was good.

【0032】[0032]

【発明の効果】本発明によれば、異常値を連続的にカバ
ーするテストセットを作成する必要なしに異常値試料を
高精度に測定することができる。
According to the present invention, it is possible to measure an outlier sample with high accuracy without the need to create a test set that continuously covers outliers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の装置のブロック図。FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention.

【図2】実施例に使用した定量法のフローチャート。FIG. 2 is a flowchart of the quantification method used in the examples.

【図3】テストセットの作成法のフローチャート。FIG. 3 is a flowchart of a method for creating a test set.

【図4】補正方法の概略を示すフローチャート。FIG. 4 is a flowchart showing an outline of a correction method.

【図5】本発明の効果を表わす特性図。FIG. 5 is a characteristic diagram showing the effect of the present invention.

【図6】本発明の効果を表わす特性図。FIG. 6 is a characteristic diagram showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1…分光器、2…データ処理部、3…光源、4…赤外
光、5…試料セル、6…血液、7…干渉計、8…検知
器、9…AD変換器、10…デジタル信号。
1 ... Spectrometer, 2 ... Data processing part, 3 ... Light source, 4 ... Infrared light, 5 ... Sample cell, 6 ... Blood, 7 ... Interferometer, 8 ... Detector, 9 ... AD converter, 10 ... Digital signal .

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】光を照射する光源と、前記光源の光を試料
に照射するための受光部を持つ試料セルと前記試料セル
を透過もしくは反射,散乱した光を少なくともm個の波
長に分光する分光手段と光を検出する検知器と前記検知
器により測定した信号を数値処理するデータ処理部から
なり、一試料に対する測定結果がm個の波長に対する光
強度としてm個の数値で出力される分光計において、n
個の濃度既知の試料を標準物質として測定を行い、n×
mの光強度からなる説明変数数列と測定対象成分の濃度
からなるn個の目的変数数列の回帰分析によって校正を
行い検量式を算出し、前記検量式と未知濃度試料の光強
度からを試料の成分濃度を測定する定量方法で、未知試
料が校正に使用する標準物質群に属するか否かを判定す
る判別機能を持ち、標準物質群に属さない未知試料の光
強度数列と標準物質群の説明変数数列とのずれをm個か
らなる光強度誤差数列によって表し、前記光強度誤差数
列によって未知試料濃度の補正を行う機構を持つことを
特徴とする濃度計。
1. A light source for irradiating light, a sample cell having a light receiving portion for irradiating the sample with the light of the light source, and light transmitted, reflected or scattered by the sample cell is separated into at least m wavelengths. A spectroscope which comprises a spectroscopic means, a detector for detecting light, and a data processing unit for numerically processing the signal measured by the detector, and the measurement result for one sample is output as m intensities as light intensities for m wavelengths. In total, n
Measurement is performed using a sample of known concentration as a standard substance, and n ×
Calibration is performed by regression analysis of the explanatory variable sequence consisting of m light intensities and the n objective variable sequence consisting of the concentration of the component to be measured to calculate a calibration formula, and the calibration formula and the light intensity of the unknown concentration sample are used to calculate the sample It is a quantitative method that measures the concentration of components, has a discrimination function to determine whether an unknown sample belongs to the standard substance group used for calibration, and explains the light intensity sequence and standard substance group of unknown samples that do not belong to the standard substance group. A densitometer having a mechanism for representing a deviation from a variable number sequence by a light intensity error number sequence consisting of m pieces, and correcting an unknown sample concentration by the light intensity error number sequence.
【請求項2】請求項1において、前記補正機構は、前記
n個の標準物質群から飛散した値を持つt個の異常値物
質の光強度誤差と、前記校正で算出された検量式により
求められたt個の異常値物質の濃度と実際の濃度との誤
差とを回帰して求められた回帰式を補正に使用する濃度
計。
2. The correction mechanism according to claim 1, wherein the correction mechanism obtains the light intensity error of t abnormal value substances having values scattered from the n standard substance groups and the calibration formula calculated by the calibration. A densitometer that uses a regression formula obtained by regressing the error between the concentration of the t abnormal value substances and the actual concentration for correction.
【請求項3】請求項1または2において、前記回帰分析
法は、重回帰分析,主成分分析,部分最小二乗法を用い
る濃度計。
3. The densitometer according to claim 1, wherein the regression analysis method uses multiple regression analysis, principal component analysis, and partial least squares method.
【請求項4】請求項1において、前記光源は2.5μm
〜25μm の波長の光を発する濃度計。
4. The light source according to claim 1, wherein the light source is 2.5 μm.
A densitometer that emits light with a wavelength of -25 μm.
【請求項5】請求項1において、前記分光手段は回折格
子,プリズム,干渉計である濃度計。
5. The densitometer according to claim 1, wherein the spectroscopic means is a diffraction grating, a prism, or an interferometer.
【請求項6】請求項1において、前記試料セルは、減衰
全反射プリズムを用いる濃度計。
6. The densitometer according to claim 1, wherein the sample cell uses an attenuated total reflection prism.
【請求項7】請求項1において、前記誤差数列は、主成
分分析,部分最小二乗法,重回帰分析を用いて算出する
濃度計。
7. The densitometer according to claim 1, wherein the error sequence is calculated using principal component analysis, partial least squares method, and multiple regression analysis.
【請求項8】請求項1に記載の前記濃度計を用いた血液
生化学分析装置。
8. A blood biochemical analyzer using the concentration meter according to claim 1.
JP30193493A 1993-12-01 1993-12-01 Densitometer Pending JPH07151677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30193493A JPH07151677A (en) 1993-12-01 1993-12-01 Densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30193493A JPH07151677A (en) 1993-12-01 1993-12-01 Densitometer

Publications (1)

Publication Number Publication Date
JPH07151677A true JPH07151677A (en) 1995-06-16

Family

ID=17902872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30193493A Pending JPH07151677A (en) 1993-12-01 1993-12-01 Densitometer

Country Status (1)

Country Link
JP (1) JPH07151677A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506594A (en) * 1995-09-12 2000-05-30 パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ Measurement of sodium sulfide and sulfidity in green liquor and smelt solution
WO2001075420A1 (en) * 2000-03-31 2001-10-11 Japan As Represented By President Of Kobe University Method and apparatus for detecting mastitis by using visible light and/or near infrared light
JP2002236095A (en) * 2001-02-08 2002-08-23 Yokogawa Electric Corp Method and apparatus for spectroscopic analysis
KR100397612B1 (en) * 2001-05-09 2003-09-13 삼성전자주식회사 Method for determining concentration of material component through multivariate spectral analysis
JP2003534530A (en) * 2000-01-21 2003-11-18 インストルメンテーション メトリクス インク Tissue classification and characterization by features associated with adipose tissue
JP3574851B2 (en) * 2000-03-31 2004-10-06 神戸大学長 Method and apparatus for diagnosing mastitis using visible light and / or near infrared light
JP2007068857A (en) * 2005-08-09 2007-03-22 Kao Corp Infrared absorption spectrum measuring equipment
JP2007116995A (en) * 2005-10-28 2007-05-17 Univ Nagoya Method for measuring concentration of nucleic acid and its components, concentration-measuring device and synthetic device having the same
KR20110091309A (en) * 2010-02-05 2011-08-11 삼성전자주식회사 Method and apparatus for measuring light absorbance
KR101306340B1 (en) * 2009-01-08 2013-09-06 삼성전자주식회사 Method for measuring concentration of component in biochemical sample and for presuming reliability of test result
JP2017062221A (en) * 2015-01-30 2017-03-30 Toto株式会社 Biological information measurement system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506594A (en) * 1995-09-12 2000-05-30 パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ Measurement of sodium sulfide and sulfidity in green liquor and smelt solution
JP2003534530A (en) * 2000-01-21 2003-11-18 インストルメンテーション メトリクス インク Tissue classification and characterization by features associated with adipose tissue
JP3574851B2 (en) * 2000-03-31 2004-10-06 神戸大学長 Method and apparatus for diagnosing mastitis using visible light and / or near infrared light
WO2001075420A1 (en) * 2000-03-31 2001-10-11 Japan As Represented By President Of Kobe University Method and apparatus for detecting mastitis by using visible light and/or near infrared light
JP3472836B2 (en) * 2000-03-31 2003-12-02 神戸大学長 Method and apparatus for diagnosing mastitis using visible light and / or near infrared light
AU769396B2 (en) * 2000-03-31 2004-01-22 Lic Automation Limited Method and apparatus for detecting mastitis by using visible light and/or near infrared light
US6793624B2 (en) 2000-03-31 2004-09-21 Japan, As Represented By President Of Kobe University Method and apparatus for detecting mastitis by using visible light rays and/or near infrared light
JP2002236095A (en) * 2001-02-08 2002-08-23 Yokogawa Electric Corp Method and apparatus for spectroscopic analysis
KR100397612B1 (en) * 2001-05-09 2003-09-13 삼성전자주식회사 Method for determining concentration of material component through multivariate spectral analysis
JP2007068857A (en) * 2005-08-09 2007-03-22 Kao Corp Infrared absorption spectrum measuring equipment
JP2007116995A (en) * 2005-10-28 2007-05-17 Univ Nagoya Method for measuring concentration of nucleic acid and its components, concentration-measuring device and synthetic device having the same
KR101306340B1 (en) * 2009-01-08 2013-09-06 삼성전자주식회사 Method for measuring concentration of component in biochemical sample and for presuming reliability of test result
KR20110091309A (en) * 2010-02-05 2011-08-11 삼성전자주식회사 Method and apparatus for measuring light absorbance
JP2017062221A (en) * 2015-01-30 2017-03-30 Toto株式会社 Biological information measurement system

Similar Documents

Publication Publication Date Title
CA2092713C (en) Spectral data measurement and correction
US6560546B1 (en) Remote analysis system
EP0954744B1 (en) Calibration method for spectrographic analyzing instruments
US20080034025A1 (en) Method for Development of Independent Multivariate Calibration Models
US7663738B2 (en) Method for automatically detecting factors that disturb analysis by a photometer
EP2128599A1 (en) Analysing spectral data for the selection of a calibration model
Westerhaus et al. Quantitative analysis
WO2008002192A1 (en) Method for producing multidimensional calibrating patterns
JPH07151677A (en) Densitometer
CN109799224A (en) Quickly detect the method and application of protein concentration in Chinese medicine extract
JP2007285922A (en) Clinical blood examination method using near infrared ray
CA2208216C (en) Non linear multivariate infrared analysis method
US20230102813A1 (en) Open-loop/closed-loop process control on the basis of a spectroscopic determination of undetermined substance concentrations
JP2002506991A (en) Automatic calibration method
US6671629B2 (en) Method and device for measuring characteristics of a sample
WO2001036943A1 (en) Method for estimating measurement of absorbance and apparatus for estimating measurement of absorbance
JPH0290041A (en) Method and apparatus for spectrochemical analysis
JPH0727703A (en) Quantitative analysis of multiple component substance
US11965823B2 (en) Method of correcting for an amplitude change in a spectrometer
CN117191728B (en) Method for measuring multi-component concentration based on ultraviolet-visible absorption spectrum and application
JP6666702B2 (en) Measuring method and measuring device
Sanchez-Paternina Near infrared spectroscopic transmission measurements for pharmaceutical powder mixtures and theory of sampling (TOS) applied in pharmaceutical industry quality control (Qc) practices
CA2471583A1 (en) Sample identification, chemical composition analysis and testing of physical state of the sample using spectra obtained at different sample temperatures
JP2000028523A (en) Food component analytical device
Buzoianu Some aspects of the evaluation of measurement uncertainty using reference materials