JPH07147223A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPH07147223A
JPH07147223A JP5296303A JP29630393A JPH07147223A JP H07147223 A JPH07147223 A JP H07147223A JP 5296303 A JP5296303 A JP 5296303A JP 29630393 A JP29630393 A JP 29630393A JP H07147223 A JPH07147223 A JP H07147223A
Authority
JP
Japan
Prior art keywords
filter
amplitude
pattern
light source
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5296303A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukuda
宏 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5296303A priority Critical patent/JPH07147223A/en
Publication of JPH07147223A publication Critical patent/JPH07147223A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To realize the focal depth of a large transfer pattern, and excellent resolution, by arranging a multiple amplitude imagery filter or a filter having synthetic amplitude transmittance of said filter and a high frequency emphasis filter, on the pupil surface of a projection lens, and constituting an effective light source in an illumination optical system having almost ring belt type intensity distribution. CONSTITUTION:Ring belt illumination 7 is applied to a secondary light source surface. A multiple amplitude imagery filter 8 or a filter 9 having synthetic amplitude transmittance of the filter 8 and a high frequency emphasis filter or an approximate phase filter 10 of them is applied to the pupil surface. When the multiple imagery filter is applied to slant illumination, the amplitude distribution of an image formed by the slant illumination is generated in a plurality of part in the optical axis direction. The image formed on each imagery surface has a comparatively large focus, but the focal length is further extended by multiple amplitude imagery. When the high frequency emphasis filter is used, the image contrast to a fine pattern of high spatial frequency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種固体素子の微細パ
ターン形成に用いられるパターン形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern forming method used for forming a fine pattern on various solid-state devices.

【0002】[0002]

【従来の技術】LSI等の固体素子の集積度及び動作速
度を向上するため、回路パターンの微細化が進んでい
る。現在これらのパターン形成には、量産性と解像性能
に優れた縮小投影露光法が広く用いられている。
2. Description of the Related Art In order to improve the degree of integration and operation speed of solid-state elements such as LSI, circuit patterns are becoming finer. At present, a reduction projection exposure method, which is excellent in mass productivity and resolution performance, is widely used for forming these patterns.

【0003】図2は、縮小投影露光装置の模式図を示
す。2次光源面1上の有効光源を発した光は照明光学系
2を介してマスク3を照射する。マスク3上のパターン
は投影レンズ4を介して基板5上へ投影される。この方
法の解像限界は露光波長に比例し投影レンズの開口数
(NA)に反比例するため、高NA化と短波長化により
解像限界の向上が行われてきた。しかし、64メガビッ
トDRAM以降、回路寸法が光の波長より小さくなって
しまうため、従来の高NA化と短波長化による解像度の
向上が困難となってきた。
FIG. 2 is a schematic diagram of a reduction projection exposure apparatus. The light emitted from the effective light source on the secondary light source surface 1 illuminates the mask 3 via the illumination optical system 2. The pattern on the mask 3 is projected onto the substrate 5 via the projection lens 4. Since the resolution limit of this method is proportional to the exposure wavelength and inversely proportional to the numerical aperture (NA) of the projection lens, the resolution limit has been improved by increasing the NA and shortening the wavelength. However, after the 64-Mbit DRAM, the circuit size becomes smaller than the wavelength of light, and it has become difficult to improve the resolution by increasing the NA and shortening the wavelength in the related art.

【0004】又、この方法の焦点深度は露光波長に比例
し、NAの二乗に反比例するため、解像限界の向上を進
めるに伴い焦点深度が著しく減少しつつある。一方、L
SIの高集積化に伴い、素子構造の立体化および多層配
線化が進んでいる。このため、マスクパタンの被投影面
であるLSI基板表面には大きな凹凸が生じてしまい、
その表面が上記焦点深度をはみ出してしまう。この結
果、LSIチップ全面に微細パタンを形成するのが困難
になってきた。
Further, since the depth of focus of this method is proportional to the exposure wavelength and inversely proportional to the square of NA, the depth of focus is remarkably decreasing as the resolution limit is improved. On the other hand, L
Along with the high integration of SI, the three-dimensional structure of elements and the multi-layer wiring are being advanced. Therefore, large unevenness is generated on the surface of the LSI substrate, which is the projected surface of the mask pattern,
The surface exceeds the depth of focus. As a result, it has become difficult to form a fine pattern on the entire surface of the LSI chip.

【0005】そこで、投影露光法の解像度と焦点深度を
向上させるための様々な手法が提案されている。発明者
等は、特開平4−348017 号公報において、投影レンズ4
の瞳6に、その振幅透過率分布t(r)が、およそ t(r)=cos(2πβr2−θ/2) (但し、rは瞳半径方向座標、β,θは適当な定数) で表される空間フィルタ(以下、多重振幅結像フィル
タ、又はSuper−FLEX フィルタと記す)を設ける方法
(Super −FLEX法)を提案した。この方法を用いる
と、同一マスクの像を光軸方向の二個所に同時に形成
し、かつ各々の位相関係を制御しつつ両者の振幅を合成
することができる。これにより、焦点深度と解像度が向
上する。さらに、出願において、フィルタを周期的パタ
ーンに適用すると、像コントラストが低下することか
ら、フィルタに瞳外縁部の透過率を大きくした高周波強
調フィルタを重ねる方法を提案した。これは、瞳面は物
体面のフーリエ変換面であり、原則的に外側(周辺部)
ほど高次の回折光(マスクパターンの高空間周波数成
分)が通過するため、瞳外縁部の透過率を大きくするこ
とにより高次の回折光を強調して像コントラストを向上
しようというものである。
Therefore, various methods for improving the resolution and the depth of focus of the projection exposure method have been proposed. The inventors of the present invention have disclosed in Japanese Unexamined Patent Publication No. 4-348017 that the projection lens 4
The amplitude transmittance distribution t (r) of the pupil 6 is approximately t (r) = cos (2πβr 2 −θ / 2) (where r is the radial coordinate of the pupil and β and θ are appropriate constants). A method (Super-FLEX method) of providing a spatial filter (hereinafter, referred to as a multi-amplitude imaging filter or a Super-FLEX filter) is proposed. By using this method, images of the same mask can be simultaneously formed at two locations in the optical axis direction, and the amplitudes of the two can be combined while controlling the phase relationship of each. This improves depth of focus and resolution. Furthermore, in the application, when a filter is applied to a periodic pattern, the image contrast is lowered, and therefore, a method of superposing a high frequency enhancement filter having a large transmittance on the outer edge of the pupil was proposed. This is because the pupil plane is the Fourier transform plane of the object plane, and in principle the outside (peripheral part)
Since higher-order diffracted light (high spatial frequency component of the mask pattern) passes through, the higher-order diffracted light is emphasized by increasing the transmittance of the outer edge portion of the pupil to improve the image contrast.

【0006】一方、有効光源の形状を円環(輪帯)状等
とすることにより、解像度と焦点深度が向上する。この
方法は、輪帯照明法として顕微鏡等の分野で古くから知
られている。しかし、この場合にも像コントラストが低
下してしまうため十分な解像度向上効果が得られなかっ
た。そこで、発明者等は、輪帯照明法等の斜入射照明法
に対しても、同様の高周波強調フィルタを併用すること
を提案した。斜入射照明と高周波強調フィルタの組合せ
については、例えば、ジャパニーズ ジャーナル オブ
アプライド フィジクス、第31巻,第1部,第41
26頁〜第4130頁(1992年)(Japanese Journal of
Applied Physics, Vol. 31, Part.1,pp.4126−4130(19
92))に論じられている。
On the other hand, the resolution and the depth of focus are improved by making the shape of the effective light source into a ring (ring) shape. This method has long been known as an annular illumination method in the field of microscopes and the like. However, in this case as well, the image contrast is lowered, so that a sufficient resolution improving effect cannot be obtained. Therefore, the inventors have proposed to use the same high-frequency emphasis filter also for the oblique incidence illumination method such as the annular illumination method. For the combination of the oblique incidence illumination and the high frequency enhancement filter, see, for example, Japanese Journal of Applied Physics, Volume 31, Part 1, 41.
Pages 26-4130 (1992) (Japanese Journal of
Applied Physics, Vol. 31, Part. 1, pp. 4126-4130 (19
92)).

【0007】[0007]

【発明が解決しようとする課題】上記各種像改良法の中
で、瞳フィルタリング(Super−FLEX)法は、LSI
のコンタクトホール等の微細な孤立パターンに特に適し
ており、その解像度を20%向上すると共に焦点深度を
三倍以上に増大する。しかし、周期パターンに対して
は、焦点深度は1.5 倍程度増大するものの解像度は1
0%低下し、十分な効果が得られるとは言えなかった。
一方、輪帯照明法と高周波強調フィルタの組合せでは、
解像度は20%程度各々向上するものの、焦点深度の増
大はやはり1.5 倍程度にとどまる。
Among the various image improving methods described above, the pupil filtering (Super-FLEX) method is an LSI method.
It is particularly suitable for a fine isolated pattern such as a contact hole, and its resolution is improved by 20% and the depth of focus is tripled or more. However, with respect to the periodic pattern, the depth of focus is increased by about 1.5 times, but the resolution is 1
It decreased by 0%, and it cannot be said that a sufficient effect can be obtained.
On the other hand, in the combination of the ring illumination method and the high frequency emphasis filter,
Although the resolution is improved by about 20%, the increase in the depth of focus is still only about 1.5 times.

【0008】このため、露光装置の波長をArFエキシ
マレーザの193nmまで短波長化し、又、NAを0.
6〜0.7程度に増大することにより解像度を向上させ
た場合、いずれの方法でも焦点深度が不足してしまうと
いう問題があった。そこで、さらに一層焦点深度を増大
できる方法が望まれている。
For this reason, the wavelength of the exposure apparatus is shortened to 193 nm of the ArF excimer laser, and the NA is set to 0.
When the resolution is improved by increasing it to about 6 to 0.7, there is a problem that the depth of focus becomes insufficient by any of the methods. Therefore, a method capable of further increasing the depth of focus is desired.

【0009】更に、高周波強調フィルタには、光を部分
透過させるために吸収フィルタもしくは部分反射ミラー
を用いる必要があるため、フィルタで発生する熱や迷光
を除去しなければならないという新たな問題があった。
Further, since the high-frequency emphasis filter needs to use an absorption filter or a partial reflection mirror to partially transmit light, there is a new problem that heat and stray light generated by the filter must be removed. It was

【0010】本発明の目的は、複雑なLSIの回路パタ
ーンに対しても、マスクパターンに忠実な転写パターン
が、従来の二倍以上という大きな焦点深度と優れた解像
度をもって得られるパターン形成方法及び投影露光装置
を提供することにある。
An object of the present invention is to provide a pattern forming method and projection method capable of obtaining a transfer pattern faithful to a mask pattern even with a complicated LSI circuit pattern, with a large depth of focus, which is more than twice that of the conventional one, and excellent resolution. An object is to provide an exposure apparatus.

【0011】本発明の別の目的は、瞳フィルタを用いて
も熱や迷光による悪影響を受けずに、周期パターンに対
する解像力を向上することのできるパターン形成方法及
び投影露光装置を提供することにある。
Another object of the present invention is to provide a pattern forming method and a projection exposure apparatus which can improve the resolution of a periodic pattern without being adversely affected by heat or stray light even if a pupil filter is used. .

【0012】[0012]

【課題を解決するための手段】上記第一の目的は、光源
を発した光を照明光学系を介してマスクに照射し、マス
ク上のパターンを投影レンズを介して基板上へ投影露光
する際、上記投影レンズの瞳面に多重振幅結像フィル
タ、又はこれと高周波強調フィルタの合成振幅透過率を
有するフィルタを設けると共に、照明光学系内の有効光
源をほぼ輪帯状の強度分布を有するものとすることによ
り達成される。
The first object is to irradiate a mask with light emitted from a light source through an illumination optical system and project and expose a pattern on the mask onto a substrate through a projection lens. A multi-amplitude imaging filter, or a filter having a composite amplitude transmittance of this and a high-frequency emphasis filter, is provided on the pupil plane of the projection lens, and the effective light source in the illumination optical system has a substantially annular intensity distribution. It is achieved by

【0013】又、上記第二の目的は、多重焦点フィル
タ、又は合成振幅透過率を有するフィルタを、これらの
近似位相フィルタにより代替することにより達成され
る。
The second object is achieved by substituting a multi-focus filter or a filter having a composite amplitude transmittance with these approximate phase filters.

【0014】[0014]

【作用】発明者の検討の結果、前記多重振幅結像(Supe
r −FLEX)フィルタと輪帯照明法,高周波強調フィ
ルタは各々独立に作用することが明らかとなった。そこ
で、本発明は、これらを併用することにより、各々の長
所を得ようとするものである。
As a result of the study by the inventor, the multi-amplitude imaging (Supe
It has been clarified that the r-FLEX) filter, the annular illumination method, and the high-frequency emphasis filter work independently. Therefore, the present invention intends to obtain the advantages of each by using them together.

【0015】即ち、本発明は従来法より更に大きな焦点
深度を得るために、図1に示すように、二次光源面に輪
帯照明7を適用するとともに、瞳面に多重振幅結像フィ
ルタ8、又はこれと高周波強調フィルタの合成振幅透過
率を有するフィルタ9、又はこれらの近似位相フィルタ
10を適用するものである。
That is, according to the present invention, in order to obtain a larger depth of focus than the conventional method, as shown in FIG. 1, the annular illumination 7 is applied to the secondary light source surface and the multiple amplitude imaging filter 8 is applied to the pupil surface. , Or a filter 9 having a combined amplitude transmittance of a high-frequency emphasis filter and this, or an approximate phase filter 10 thereof.

【0016】一般に斜め照明により形成される像はデフ
ォーカス収差を受けにくいため、比較的大きな焦点深度
を持つ。次に、斜め照明に多重振幅結像フィルタを適用
すると、斜め照明により形成される像の振幅分布が光軸
方向の複数箇所に生じる。述べたように各結像面に形成
される像は比較的大きな焦点深度を持つが、これが、多
重振幅結像することにより焦点深度は更に拡大する。こ
の結果、非常に大きな焦点深度が得られる。さらに、高
周波強調フィルタを用いると、空間周波数の大きな微細
パターンに対する像コントラストが向上する。
In general, an image formed by oblique illumination has a relatively large depth of focus because it is difficult to receive defocus aberration. Next, when the multi-amplitude imaging filter is applied to the oblique illumination, the amplitude distribution of the image formed by the oblique illumination occurs at a plurality of points in the optical axis direction. As described above, the image formed on each image plane has a relatively large depth of focus, but the depth of focus is further expanded by performing multi-amplitude image formation. This results in a very large depth of focus. Further, the use of the high frequency enhancement filter improves the image contrast for a fine pattern having a large spatial frequency.

【0017】次に、多重振幅結像フィルタと輪帯照明
法,高周波強調フィルタが各々独立に作用することを若
干の数式を用いて説明する。
Next, the fact that the multi-amplitude imaging filter, the annular illumination method, and the high-frequency emphasis filter work independently of each other will be described using some mathematical expressions.

【0018】二次光源面上の任意の点sから発し、任意
の瞳関数pを持つ光学系により形成される投影像の振幅
分布Uは像面内位置xとデフォーカスzの関数として次
の様に書ける。
The amplitude distribution U of the projection image emitted from an arbitrary point s on the secondary light source surface and formed by an optical system having an arbitrary pupil function p is as a function of the position x in the image plane and the defocus z. You can write

【0019】[0019]

【数1】 U(x,z,s)=exp(iφ)∫a(f−s)・p(|f|,z)・exp(2πix・f)df …(数1) 但し、a(f)はマスクパタンのフーリエスペクトル、p
(r,z)は瞳関数、fはλ/NAで規格化した空間周波
数、rは最大開口半径で規格化した瞳面の半径方向座標
である。デフォーカスzは光軸上の実際のデフォーカス
量Dと、D=2・z・λ/NA2の関係にある。exp(iφ)
は光の位相を表す項で、φ=2πD/λ=4πz/NA
2、と表される。
[Equation 1] U (x, z, s) = exp (iφ) ∫a (f−s) · p (| f |, z) · exp (2πix · f) df (Equation 1) where a ( f) is the Fourier spectrum of the mask pattern, p
(r, z) is the pupil function, f is the spatial frequency standardized by λ / NA, and r is the radial direction coordinate of the pupil plane standardized by the maximum aperture radius. The defocus z has a relationship of D = 2 · z · λ / NA 2 with the actual defocus amount D on the optical axis. exp (iφ)
Is a term representing the phase of light, and φ = 2πD / λ = 4πz / NA
2 , expressed as

【0020】次に、U(x,z,s)に対して、その結像面
を光軸方向に+β移動させて位相を+Δφずらした像
と、逆に−β移動させて位相を−Δφずらした像を合成
する多重振幅結像による像の振幅分布U′(x,z,s)を
考えると、
Next, with respect to U (x, z, s), the image plane is moved by + β in the optical axis direction to shift the phase by + Δφ, and conversely, it is moved by -β to shift the phase by -Δφ. Considering the amplitude distribution U ′ (x, z, s) of the image by the multiple amplitude imaging that synthesizes the shifted images,

【0021】[0021]

【数2】 U′(x,z,s)=U(x,z−β,s)exp(iΔφ)+U(x,z+β,s)exp(−iΔφ) …(数2) さて、(数1)を(数2)に代入するとU ′ (x, z, s) = U (x, z−β, s) exp (iΔφ) + U (x, z + β, s) exp (−iΔφ) (Equation 2) Substituting 1) into (Equation 2)

【0022】[0022]

【数3】 U′(x,z,s)=exp(iφ)∫a(f−s)・p′(|f|,z)・exp(2πix・f)df p′(|f|,z)=cos(2πβr2−θ/2)・p′(|f|,z) …(数3) となる。但し、θ=2Δφ−8πβ/NA2 であり、こ
れは二つの像の位相差から結像面間距離の移動に伴う位
相変化を差し引いた正味の位相差に相当する。
U ′ (x, z, s) = exp (iφ) ∫a (f−s) · p ′ (| f |, z) · exp (2πix · f) df p ′ (| f |, z) = cos (2πβr 2 −θ / 2) · p ′ (| f |, z) (Equation 3). However, θ = 2Δφ-8πβ / NA 2 , which corresponds to a net phase difference obtained by subtracting the phase change due to the movement of the distance between the image planes from the phase difference between the two images.

【0023】以上より、光源上の任意の点sから発し、
任意の瞳関数pを持つ光学系により形成される投影像に
対する多重結像振幅像が、元の瞳関数(瞳透過率分布)
にcos(2πβr2−θ/2)をかけることにより得られ
る。このことは、斜め照明,高周波強調フィルタ,多重
振幅結像フィルタを併用すると、それぞれは独立に作用
することを意味する。
From the above, the light is emitted from an arbitrary point s on the light source,
The multiple imaging amplitude image for the projection image formed by the optical system having the arbitrary pupil function p is the original pupil function (pupil transmittance distribution).
By cos (2πβr 2 −θ / 2). This means that when the oblique illumination, the high-frequency emphasis filter, and the multi-amplitude imaging filter are used together, each works independently.

【0024】照明分布をσ(s)とすると、光強度分布
は、 I(x,z)=∫σ(s)|U′(x,z,s)|2ds で与えられる。
When the illumination distribution is σ (s), the light intensity distribution is given by I (x, z) = ∫σ (s) | U '(x, z, s) | 2 ds.

【0025】本発明の効果は、多重振幅結像フィルタ及
び高周波強調フィルタの振幅透過率,輪帯半径等のパラ
メータに依存し、これらを最適化することが望ましい。
発明者の検討の結果、条件を最適化した場合、従来の二
倍以上の焦点深度が得られることが分かった。
The effects of the present invention depend on parameters such as the amplitude transmittance of the multi-amplitude imaging filter and the high frequency enhancement filter and the ring radius, and it is desirable to optimize these.
As a result of the inventor's study, it was found that when the conditions were optimized, a depth of focus more than twice that of the conventional case could be obtained.

【0026】図3及び図4に多重振幅結像フィルタ及び
輪帯照明の条件を最適化した場合の、格子状(L/S)
パターン焦点深度のパターン寸法依存性の例を示す。図
3,図4は、各々σ=0.4〜0.6の輪帯照明にβ=
0.325 ,θ=0度、及びβ=0.55 、θ=140
度の多重振幅結像フィルタを用いたときの結果である。
3 and 4, a lattice-like (L / S) pattern obtained by optimizing the conditions of the multi-amplitude imaging filter and the annular illumination.
An example of the pattern dimension dependency of the pattern focal depth will be shown. 3 and 4 show β = for annular illumination of σ = 0.4 to 0.6, respectively.
0.325, θ = 0 degree, and β = 0.55, θ = 140
The result is obtained by using a multi-amplitude imaging filter of degree.

【0027】各図中(a)は瞳半径方向振幅透過率分
布、(b)は焦点深度のパターン寸法依存性(但し、パ
ターン寸法及びデフォーカスは、各々λ/NA,λ/N
2 で規格化してある)である。比較のため従来法(通
常照明,フィルタなし)による結果も併せて示した。ど
ちらの場合も、0.6・λ/NA 程度の寸法のL/Sパ
ターンに対して、従来法(図中点線)の2倍以上の極め
て深い焦点深度が得られることがわかる。
In each drawing, (a) is the amplitude transmittance distribution in the radial direction of the pupil, and (b) is the pattern size dependency of the depth of focus (however, the pattern size and defocus are λ / NA and λ / N, respectively).
A 2 standardized). For comparison, the results of the conventional method (normal illumination, no filter) are also shown. In either case, it can be seen that an extremely deep focal depth which is more than twice that of the conventional method (dotted line in the figure) can be obtained for the L / S pattern having a dimension of about 0.6 · λ / NA.

【0028】次に、多重振幅結像フィルタに更に高周波
強調フィルタを重ねた場合について検討した結果、図5
(a)実線で示した振幅透過率分布を有するフィルタに
より、図5(b)に示す様な良好な結果が得られた。図
5(a)実線のフィルタは、図3の多重振幅結像フィル
タに、瞳上で輪帯照明共役領域の外径の内側の振幅透過
率を50%に減少させた高周波強調フィルタを重ねた合
成フィルタである。これにより、解像度が約10%程度
向上した。
Next, as a result of studying a case where a high-frequency emphasis filter is further stacked on the multi-amplitude imaging filter, FIG.
(A) With the filter having the amplitude transmittance distribution shown by the solid line, good results as shown in FIG. 5 (b) were obtained. The filter indicated by the solid line in FIG. 5 (a) is a multi-amplitude imaging filter of FIG. 3 overlaid with a high-frequency emphasis filter in which the amplitude transmittance inside the outer diameter of the annular illumination conjugate region on the pupil is reduced to 50%. It is a synthesis filter. As a result, the resolution is improved by about 10%.

【0029】図5(a)実線で示した合成フィルタの振
幅透過率分布は、更に図6(a)の様な完全な位相フィ
ルタにより近似することができる。図6(a)のフィル
タは、瞳半径の89%以上の領域を位相反転させたもの
で、これを用いた場合の像コントラストのパターン寸法
/デフォーカス依存性を図6(b)に示す。近似フィル
タによっても、ほぼ同様の効果が得られることがわか
る。(b)のフィルタは完全な位相フィルタなので、フ
ィルタで発生する熱や迷光を除去する必要がなく、熱や
迷光による悪影響を受けることがない。
The amplitude transmittance distribution of the synthesis filter shown by the solid line in FIG. 5 (a) can be further approximated by a perfect phase filter as shown in FIG. 6 (a). The filter of FIG. 6A is obtained by inverting the phase of a region of 89% or more of the pupil radius, and FIG. 6B shows the pattern dimension / defocus dependency of the image contrast when this is used. It can be seen that almost the same effect can be obtained also by the approximation filter. Since the filter of (b) is a perfect phase filter, it is not necessary to remove heat and stray light generated by the filter, and it is not adversely affected by heat and stray light.

【0030】[0030]

【実施例】開口数0.5 のi線縮小投影露光装置の二次
光源面に輪帯絞りを挿入し、σ=0.4〜0.6の輪帯光
源によりマスクを照明した。又、投影レンズの瞳位置に
瞳フィルタを挿入した。瞳フィルタは、両面がオプチカ
ルフラットの状態に研磨された石英基板の上に半径80
mmの開口部を有する遮光板(図示せず)を設け、その内
側の内径71mm,外径80mmの輪帯状領域に位相シフタ
膜を蒸着し、さらにその両面に反射防止膜(図示せず)
を施したものである。
EXAMPLE A ring stop was inserted in the secondary light source surface of an i-line reduction projection exposure apparatus having a numerical aperture of 0.5, and a mask was illuminated by a ring light source with σ = 0.4 to 0.6. In addition, a pupil filter was inserted at the pupil position of the projection lens. The pupil filter has a radius of 80 on a quartz substrate polished on both sides to be optically flat.
A light-shielding plate (not shown) having an opening of mm is provided, a phase shifter film is vapor-deposited on the inner zone of the ring-shaped region having an inner diameter of 71 mm and an outer diameter of 80 mm, and an antireflection film (not shown) on both surfaces thereof.
Is applied.

【0031】次に、縮小投影露光装置を用いて、Si基
板上に塗布したノボラック系ポジ型レジスト膜(膜厚1
μm)に、様々な配置及び寸法のL/Sパターンを含む
マスクを様々なデフォーカス条件で転写した。
Next, using a reduction projection exposure apparatus, a novolac-based positive resist film (film thickness 1 was applied on a Si substrate.
μm), masks containing L / S patterns of various arrangements and dimensions were transferred under various defocus conditions.

【0032】本実施例により、露光領域の全面で0.4
μmL/S パターンを約3μmのデフォーカス範囲に
わたって±10%の寸法精度で形成することができた。
レジストパターンの断面形状も良好であった。又、様々
な配置及び寸法のパターンを設計通りにレジストパター
ンに転写することができた。
According to this embodiment, the entire exposed area is 0.4.
The μmL / S pattern could be formed with a dimensional accuracy of ± 10% over a defocus range of about 3 μm.
The cross-sectional shape of the resist pattern was also good. Further, it was possible to transfer the patterns having various arrangements and sizes to the resist pattern as designed.

【0033】なお、露光装置の波長,開口数,瞳フィル
タ寸法,使用するレジストプロセス,マスクパタン寸法
等、本実施例に示したものに限定しない。
The wavelength, the numerical aperture, the pupil filter size, the resist process used, the mask pattern size, etc. of the exposure apparatus are not limited to those shown in this embodiment.

【0034】[0034]

【発明の効果】本発明によれば、光源を発した光を照明
光学系を介してマスクに照射し、マスク上のパターンを
投影レンズを介して基板上へ投影露光する露光方法にお
いて、投影レンズの瞳面に多重振幅結像フィルタ、又は
これと高周波強調フィルタの合成振幅透過率を有するフ
ィルタ、又はこれらの近似位相フィルタを設けるととも
に、照明光学系内の有効光源をほぼ輪帯状の強度分布を
有するものとする。これにより、マスクパターンに忠実
な転写パターンを、大きな焦点深度と優れた解像度をも
って得ることができる。これにより、光リソグラフィを
用いて、0.15〜0.3μm の回路パターン寸法を有
するLSIを形成することができる。
According to the present invention, in the exposure method, the light emitted from the light source is applied to the mask through the illumination optical system, and the pattern on the mask is projected and exposed onto the substrate through the projection lens. A multi-amplitude imaging filter, or a filter having a combined amplitude transmittance of this and a high-frequency emphasis filter, or an approximate phase filter of these is provided on the pupil plane of, and an effective light source in the illumination optical system is provided with a substantially annular intensity distribution. Shall have. As a result, a transfer pattern faithful to the mask pattern can be obtained with a large depth of focus and excellent resolution. This makes it possible to form an LSI having a circuit pattern size of 0.15 to 0.3 μm by using optical lithography.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示す説明図。FIG. 1 is an explanatory diagram showing a configuration of the present invention.

【図2】従来法の構成を示す説明図。FIG. 2 is an explanatory diagram showing a configuration of a conventional method.

【図3】本発明の特性を示す特性図。FIG. 3 is a characteristic diagram showing characteristics of the present invention.

【図4】本発明の特性を示す特性図。FIG. 4 is a characteristic diagram showing characteristics of the present invention.

【図5】本発明の特性を示す特性図。FIG. 5 is a characteristic diagram showing characteristics of the present invention.

【図6】本発明の特性を示す特性図。FIG. 6 is a characteristic diagram showing characteristics of the present invention.

【符号の説明】[Explanation of symbols]

1…有効光源、2…照明光学系、3…マスク、4…投影
レンズ、5…基板、6…瞳、7…輪帯照明、8…多重振
幅結像フィルタ、9…多重振幅結像フィルタと高周波強
調フィルタの合成振幅透過率を有するフィルタ、10…
近似位相フィルタ。
DESCRIPTION OF SYMBOLS 1 ... Effective light source, 2 ... Illumination optical system, 3 ... Mask, 4 ... Projection lens, 5 ... Substrate, 6 ... Pupil, 7 ... Ring illumination, 8 ... Multi-amplitude imaging filter, 9 ... Multi-amplitude imaging filter A filter having a composite amplitude transmittance of a high-frequency emphasis filter, 10 ...
Approximate phase filter.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光源を発した光を照明光学系を介してマス
クに照射し、上記マスク上のパターンを投影レンズを介
して基板上へ投影露光することにより、上記基板上にパ
ターンを形成する方法において、上記投影レンズの瞳面
に多重振幅結像フィルタ、又は多重振幅結像フィルタと
高周波強調フィルタの合成振幅透過率を有するフィルタ
を設け、上記照明光学系内の有効光源をほぼ輪帯状の強
度分布を有するものとすることを特徴とするパターン形
成方法。
1. A pattern is formed on a substrate by irradiating a mask with light emitted from a light source through an illumination optical system and projecting and exposing the pattern on the mask onto a substrate through a projection lens. In the method, a multi-amplitude imaging filter, or a filter having a composite amplitude transmittance of a multi-amplitude imaging filter and a high-frequency emphasis filter is provided on the pupil plane of the projection lens, and the effective light source in the illumination optical system has a substantially annular shape. A pattern forming method having an intensity distribution.
【請求項2】請求項1において、上記多重振幅結像フィ
ルタ、又は上記合成振幅透過率を有するフィルタを、光
軸を中心とする輪帯状の領域とその他の領域を透過する
光の位相をほぼ反転させる位相フィルタにより近似した
パターン形成方法。
2. The multi-amplitude imaging filter or the filter having the composite amplitude transmittance according to claim 1, wherein the phase of light transmitted through an annular region centered on the optical axis and other regions is substantially the same. A pattern forming method approximated by an inversion phase filter.
【請求項3】請求項2において、上記瞳面上で透過光の
位相を反転させる領域は、瞳半径の85%から95%よ
り外側の領域であるパターン形成方法。
3. The pattern forming method according to claim 2, wherein the region where the phase of the transmitted light is inverted on the pupil plane is a region outside 85% to 95% of the pupil radius.
【請求項4】請求項1において、上記有効光源の照度分
布は、その総光量の95%以上が、二次光源面上で瞳と
共役な領域の半径を1としたとき内径0.35から0.4
5、外径0.55から0.65の輪帯領域内にあるパター
ン形成方法。
4. The illuminance distribution of the effective light source according to claim 1, wherein 95% or more of the total amount of light is from an inner diameter of 0.35 when the radius of the region conjugate with the pupil on the secondary light source surface is 1. 0.4
5. A method of forming a pattern within an annular zone having an outer diameter of 0.55 to 0.65.
JP5296303A 1993-11-26 1993-11-26 Pattern forming method Pending JPH07147223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5296303A JPH07147223A (en) 1993-11-26 1993-11-26 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5296303A JPH07147223A (en) 1993-11-26 1993-11-26 Pattern forming method

Publications (1)

Publication Number Publication Date
JPH07147223A true JPH07147223A (en) 1995-06-06

Family

ID=17831811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5296303A Pending JPH07147223A (en) 1993-11-26 1993-11-26 Pattern forming method

Country Status (1)

Country Link
JP (1) JPH07147223A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291653A (en) * 2000-04-06 2001-10-19 Promos Technologies Inc Method and device for improving exposure resolving power of exposure stepper
JP2009212540A (en) * 2003-04-09 2009-09-17 Nikon Corp Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2015007725A (en) * 2013-06-26 2015-01-15 株式会社フォトニックラティス Optical imaging device
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291653A (en) * 2000-04-06 2001-10-19 Promos Technologies Inc Method and device for improving exposure resolving power of exposure stepper
JP2018106179A (en) * 2003-04-09 2018-07-05 株式会社ニコン Exposure method and device, illumination optical device, and device production method
JP2012164993A (en) * 2003-04-09 2012-08-30 Nikon Corp Exposure method and device, illumination optical device, and device manufacturing method
JP2009212540A (en) * 2003-04-09 2009-09-17 Nikon Corp Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2014116611A (en) * 2003-04-09 2014-06-26 Nikon Corp Exposure method, device, illumination optical device, and device manufacturing method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
JP2015092604A (en) * 2003-04-09 2015-05-14 株式会社ニコン Exposure method and device, illumination optical device, and device manufacturing method
JP2011097076A (en) * 2003-04-09 2011-05-12 Nikon Corp Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method
JP2017097372A (en) * 2003-04-09 2017-06-01 株式会社ニコン Exposure method and apparatus, illumination optical apparatus, and device manufacturing method
JP2016103025A (en) * 2003-04-09 2016-06-02 株式会社ニコン Exposure method and apparatus, illumination optical apparatus, and device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2015007725A (en) * 2013-06-26 2015-01-15 株式会社フォトニックラティス Optical imaging device

Similar Documents

Publication Publication Date Title
KR100213605B1 (en) Method of forming a pattern and projection exposure apparatus
KR0171947B1 (en) Exposure apparatus and for forming a fine pattern and method thereof
KR100395892B1 (en) Optical proximity correction
KR950003823B1 (en) Exposure apparatus and method
JPH08316124A (en) Method and apparatus for projection exposing
JPH08316125A (en) Method and apparatus for projection exposing
JP2996127B2 (en) Pattern formation method
JP2852169B2 (en) Projection exposure method and apparatus
JPH0757993A (en) Projection aligner
US5650632A (en) Focal plane phase-shifting lithography
JPH07147223A (en) Pattern forming method
US6020950A (en) Exposure method and projection exposure apparatus
JP2006245270A (en) Exposure device and method
JP5571289B2 (en) Exposure mask and pattern forming method
US5982476A (en) Process of forming pattern and exposure apparatus
JP2000021722A (en) Exposure method and aligner
JP3296296B2 (en) Exposure method and exposure apparatus
JP3290862B2 (en) Photomask, exposure method using the photomask, and method for manufacturing the photomask
JP3458549B2 (en) Pattern forming method and semiconductor device manufacturing method and apparatus using the method
JPH07211617A (en) Pattern formation, mask and projection aligner
JP2000021718A (en) Exposure method and exposure device
JPH01258419A (en) Pattern formation
JP2000040656A (en) Exposure method and aligner
JP3647271B2 (en) Exposure method and exposure apparatus
JPH0774080A (en) Pattern formation method