JPH0714445B2 - Spiral type degassing element and method of using the same - Google Patents

Spiral type degassing element and method of using the same

Info

Publication number
JPH0714445B2
JPH0714445B2 JP2048757A JP4875790A JPH0714445B2 JP H0714445 B2 JPH0714445 B2 JP H0714445B2 JP 2048757 A JP2048757 A JP 2048757A JP 4875790 A JP4875790 A JP 4875790A JP H0714445 B2 JPH0714445 B2 JP H0714445B2
Authority
JP
Japan
Prior art keywords
degassing
spiral
flow path
partition wall
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2048757A
Other languages
Japanese (ja)
Other versions
JPH03249907A (en
Inventor
弘之 山村
洋行 筏
征男 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2048757A priority Critical patent/JPH0714445B2/en
Priority to DE1991615532 priority patent/DE69115532T2/en
Priority to EP19910102847 priority patent/EP0448973B1/en
Priority to US07/660,443 priority patent/US5154832A/en
Priority to KR1019910003214A priority patent/KR0161292B1/en
Publication of JPH03249907A publication Critical patent/JPH03249907A/en
Publication of JPH0714445B2 publication Critical patent/JPH0714445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水中の溶存気体を除去するための疎水性ガス
透過膜を用いたスパイラル型脱気エレメントおよびその
使用方法に関する。
TECHNICAL FIELD The present invention relates to a spiral type degassing element using a hydrophobic gas permeable membrane for removing dissolved gas in water, and a method for using the same.

[従来の技術] 一般に水中には酸素、窒素、二酸化炭素などの気体が溶
存しており、平衡状態に達している場合などは時間がた
っても無くなることがないのが普通であるが、水処理に
おいて、これらの溶存気体が悪影響を及ぼす場合も少な
くはない。例えば、水の循環ラインにおいては水中の溶
存酸素が配管の接液内面の腐蝕を促進する場合があり、
また超純水の製造ラインにおいては溶存二酸化炭素が超
純水水質を低下させる原因になり、場合に応じて薬品添
加や真空方式などによる脱気処理が行なわれている。し
かし、従来法である薬品処理による脱気は、薬品コスト
の問題、残存成分の問題などがあり、真空脱気にしても
装置および運転コスト面での制約があり、広い意味での
実用化に適した方法とは言い難かった。
[Prior Art] In general, gases such as oxygen, nitrogen, and carbon dioxide are dissolved in water, and when the equilibrium state is reached, it usually does not disappear over time. In many cases, these dissolved gases adversely affect. For example, in a water circulation line, dissolved oxygen in water may promote corrosion of the inner surface of the pipe in contact with liquid,
Further, in the ultrapure water production line, dissolved carbon dioxide causes deterioration of the water quality of ultrapure water, and depending on the case, degassing treatment by chemical addition or vacuum system is performed. However, degassing by chemical treatment, which is a conventional method, has problems such as chemical cost and residual components, and even vacuum degassing has restrictions in terms of equipment and operating cost, making it practical for use in a broad sense. It was hard to say that it was a suitable method.

これらの方法の他に、最近ガス透過機能を有する疎水性
膜を用いて水中の溶存気体を除去するという脱気方法が
実用化されている。この方法は、シリコーンなどを素材
とする、ガス透過機能を有し、かつ水を通さない性質を
持った膜の表面または裏面に被処理液を流し、反対面を
減圧状態にすることにより、被処理液中の溶存気体のみ
を膜透過除去し、脱気するというものである。この方法
は、それまでの薬品添加法に見られた薬品残存物のよう
な問題も無く、真空脱気法等と比較しても装置が簡単と
なり運転コストも小さくなるという長所が認められてい
る。
In addition to these methods, a degassing method of removing a dissolved gas in water using a hydrophobic membrane having a gas permeable function has recently been put into practical use. In this method, the liquid to be treated is made to flow through the front or back surface of a film made of silicone or the like, which has a gas permeation function and has a property of impermeability of water, and the opposite surface is depressurized. Only the dissolved gas in the treatment liquid is removed by permeation through the membrane and then degassed. This method does not have the problem of chemical residue found in the conventional chemical addition method, and has the advantage that the apparatus is simpler and the operating cost is smaller than the vacuum degassing method. .

[発明が解決しようとする課題] 疎水性のガス透過膜を用いての脱気装置では、膜は通常
スパイラルモジュールという形式にユニット化され用い
られている。従来用いられている一般的なスパイラルモ
ジュールは、図6に示すように、表面に複数の孔を有す
る中空状の中心管1の周囲に封筒状の疎水性ガス透過膜
5、透過側流路材6、供給液流路材4を一組とするユニ
ットの単組または複組を巻き付けてなる構造をなしてお
り、封筒状の疎水性ガス透過膜5の外側に被処理原液7
が供給され、片端を盲にした中心管の開放端部1′を減
圧源に接続して封筒状の疎水性ガス透過膜の内部の透過
側領域を減圧し、疎水性ガス透過膜の表裏間に圧力差を
与えることにより、被処理原液中の溶存気体が膜の表面
から裏面に透過し、透過側流路内部から中心管方向へ移
動し、被処理原液中の溶存気体の除去が行なわれる。
[Problems to be Solved by the Invention] In a deaerator using a hydrophobic gas permeable membrane, the membrane is usually unitized into a spiral module and used. As shown in FIG. 6, a generally used general spiral module has an envelope-shaped hydrophobic gas permeable membrane 5 and a permeation side flow path material around a hollow central tube 1 having a plurality of holes on the surface. 6. The structure is formed by winding a single set or multiple sets of units including the supply liquid flow path member 4 as one set, and the untreated liquid 7 is provided outside the envelope-shaped hydrophobic gas permeable membrane 5.
Is supplied, the open end 1'of the central tube with one end blinded is connected to a decompression source to decompress the permeation side region inside the envelope-shaped hydrophobic gas permeable membrane, and the front and back sides of the hydrophobic gas permeable membrane are By applying a pressure difference to the solution, the dissolved gas in the stock solution to be processed permeates from the front surface to the back surface of the membrane, moves from the inside of the permeate side flow path toward the central tube, and the dissolved gas in the stock solution to be processed is removed. .

しかしながら、膜による脱気能力は、膜の固有のガス透
過能力もさることながら、膜表裏間のガス分圧の差に大
きく支配されるため、エレメント1本の脱気能力を向上
させるためには、膜の透過側の真空度を高めることによ
り透過側のガス分圧を小さくするか、膜表面すなわち脱
気膜エレメントへ供給する被処理原液の供給圧力を高め
ることが必要となっている。しかし、真空度、供給圧力
ともに、実用性を考慮すると限度があり、今一歩の脱気
性能の向上は困難となっている。
However, the degassing ability of the membrane is largely governed by the difference in gas partial pressure between the front and back of the membrane, as well as the inherent gas permeation ability of the membrane. Therefore, in order to improve the degassing ability of one element, It is necessary to reduce the partial pressure of gas on the permeate side by increasing the degree of vacuum on the permeate side of the membrane, or to increase the supply pressure of the stock solution to be treated supplied to the membrane surface, that is, the degassing membrane element. However, both the degree of vacuum and the supply pressure are limited in consideration of practicality, and it is difficult to improve degassing performance one step further.

[課題を解決するための手段] 本発明の課題は、表面に孔を有する中空状の中心管の周
囲に封筒状の疎水性ガス透過膜、透過側流路材、供給液
流路材を一組とするユニットの単組または複組を巻き付
けてなる、水中の溶存気体を除去するためのスパイラル
型脱気エレメントにおいて、中心管内部に仕切りを設
け、かつ、透過側流路の特定箇所に透過流体の流れ方向
を特定させるための仕切り壁を設け、さらに、該仕切り
壁のリーフエンド部分の一部を仕切りせずに開けられた
部分に、仕切り壁に対して横方向に溝を有することを特
徴とするスパイラル型脱気エレメントとすることにより
基本的に達成される。
[Means for Solving the Problem] An object of the present invention is to provide an envelope-shaped hydrophobic gas permeable membrane, a permeation-side channel material, and a supply liquid channel material around a hollow central tube having a hole on the surface. A spiral type degassing element for removing dissolved gas in water, which is formed by winding a single set or multiple sets of units, and has a partition inside the central tube and permeates to a specific part of the permeate side flow path. A partition wall is provided for specifying the flow direction of the fluid, and further, a part of the leaf end portion of the partition wall that is opened without partitioning has a groove in the lateral direction with respect to the partition wall. It is basically achieved by using the characteristic spiral type degassing element.

本発明のスパイラル型脱気エレメントの構造の基本的な
例は図1および図2に示すとおり、従来のスパイラルエ
レメントと異なり、中心管内部に仕切り8が設けられ、
かつ、封筒状疎水性ガス透過膜5の裏面すなわち透過側
流路材6側の透過側流路の特定箇所に透過流体の流れ方
向を特定させるための仕切り壁9が設けられている。従
来のスパイラルエレメントは、図2に示す仕切り8およ
び仕切り壁9がなく、透過側流路内の透過ガスは徐々に
中心管1の方向に移動するが、透過側流路には膜面を通
して以外の流体の流入は無く、均一に一定の真空度に減
圧され、脱気対象ガスの分圧も一定に保たれている。脱
気性能を向上させるにはこの透過側の脱気対象ガスの分
圧をできるだけ小さくすることが望まれるが、本発明で
は図2に示すとおり、中心管片端から、透過側流路内に
キャリアガスを流すことが可能であり、このキャリアガ
スにより膜裏面の脱気対象ガスを追い出し、該ガスの分
圧を限りなくゼロに近づけることができる結果、脱気性
能を大幅に向上させることが可能となる。すなわち、例
えば水中に含まれている酸素や炭酸ガスを脱気したい場
合は、本発明のエレメントを用いてキャリアガスとして
窒素を流すことにより膜の透過側の酸素および炭酸ガス
の分圧はほとんどゼロにすることができ、従来の脱気エ
レメントを用いた場合と比べて脱気能力は大きく向上す
る。なお、透過流路仕切り壁および中心管内部の仕切り
の無い従来のスパイラルエレメントにキャリアガスを流
しても、キャリアガスのほとんどは透過側流路の方には
流れずに中心管他端より排出されるだけであり、脱気性
能の向上はほとんど見られない。
A basic example of the structure of the spiral degassing element of the present invention is, as shown in FIGS. 1 and 2, unlike the conventional spiral element, a partition 8 is provided inside the central tube,
In addition, a partition wall 9 for specifying the flow direction of the permeate fluid is provided on the back surface of the envelope-shaped hydrophobic gas permeable membrane 5, that is, at a specific position of the permeate flow path on the permeate flow path member 6 side. The conventional spiral element does not have the partition 8 and the partition wall 9 shown in FIG. 2, and the permeated gas in the permeate-side channel gradually moves toward the central tube 1, but the permeate-side channel does not pass through the membrane surface. There is no inflow of fluid, the pressure is uniformly reduced to a constant degree of vacuum, and the partial pressure of the gas to be degassed is also kept constant. In order to improve the degassing performance, it is desirable to make the partial pressure of the gas to be degassed on the permeation side as small as possible. However, in the present invention, as shown in FIG. It is possible to flow gas, and this carrier gas can drive out the gas to be degassed on the back surface of the film, and the partial pressure of the gas can be made as close as possible to zero, resulting in a significant improvement in degassing performance. Becomes That is, for example, when it is desired to degas oxygen and carbon dioxide contained in water, the partial pressure of oxygen and carbon dioxide on the permeation side of the membrane is almost zero by flowing nitrogen as a carrier gas using the element of the present invention. Therefore, the deaeration capacity is greatly improved as compared with the case where the conventional deaeration element is used. Even if the carrier gas is flown through the conventional spiral element having no partition inside the permeation flow path partition and inside the central tube, most of the carrier gas does not flow toward the permeation side flow path and is discharged from the other end of the central tube. However, there is almost no improvement in degassing performance.

本発明のスパイラル型脱気エレメントに用いる疎水性ガ
ス透過膜としては特に限定しないが、平膜形状のガス分
離機能を有する高分子膜であればよく、好ましくはシリ
コーン系、ふっ素系、ポレオレフィン系などが良い。封
筒状を成す膜の外側に位置する供給液流路材としては特
に限定しないが、好ましくは圧力損失の小さいプラスチ
ックネット状スペーサーが好ましく、厚さは0.3〜2.0mm
程度、材質としてはポリエチレン、ナイロン、ポリプロ
ピレンなどが適している。封筒状膜の内部に位置する透
過側流路材としても特に種類形状を限定しないが、縦溝
を有するポリエステル織物、ポリプロピレン製ネット等
が好ましい。
The hydrophobic gas permeable membrane used in the spiral degassing element of the present invention is not particularly limited, but any polymer membrane having a gas separation function in a flat membrane shape may be used, and preferably silicone-based, fluorine-based, or polyolefin-based. And so on. The feed liquid flow path material located outside the envelope-shaped membrane is not particularly limited, but preferably a plastic net-like spacer having a small pressure loss, and a thickness of 0.3 to 2.0 mm.
Polyethylene, nylon, polypropylene, etc. are suitable as materials and grades. The permeation-side channel material positioned inside the envelope-like membrane is not particularly limited in kind, but polyester fabric having vertical grooves, polypropylene net, etc. are preferable.

本発明を構成する透過側流路の仕切り壁については、基
本的にエレメント製作が可能であり、透過側のガス流れ
をある程度遮断できるものであれば良く、材料、形状に
ついて特に限定はしないが、好ましくは、該当箇所に接
着剤を塗り硬化させることにより形成させた仕切り壁
や、シリコーンゴム、発泡プラスチックシート、ニトリ
ルゴムその他の弾性高分子材料からなるシート状物を配
置または接着した構造の仕切り壁が良い。また、仕切り
壁の長さ、幅、配置場所、数等については特定せず、図
3−(a),(b)に示すように、目的とする用途によ
り選定することができる。また、中心管内部に設ける仕
切りについても、キャリアガスの通過をある程度遮断で
きうる物であれば良く、材質としては硬質塩ビ、ABS,ナ
イロン、ゴム等、適宜選定することができ、接着されて
いるかどうかは問わない。
Regarding the partition wall of the permeate side flow path that constitutes the present invention, basically it is possible to manufacture an element, as long as it can block the gas flow on the permeate side to some extent, the material and the shape are not particularly limited, Preferably, a partition wall formed by applying an adhesive to the corresponding portion and curing it, or a partition wall having a structure in which a sheet material made of an elastic polymer material such as silicone rubber, foamed plastic sheet, nitrile rubber or the like is arranged or adhered Is good. Further, the length, width, arrangement location, number, etc. of the partition walls are not specified and can be selected according to the intended use as shown in FIGS. 3 (a) and 3 (b). Also, the partition provided inside the central tube may be any one that can block the passage of carrier gas to some extent, and the material can be appropriately selected from hard PVC, ABS, nylon, rubber, etc. It doesn't matter.

透過側流路の仕切り壁については、キャリアガスが膜裏
面全体に均一に流れるように、リーフエンド部分の一部
を仕切りせずに開けておく必要があり、また、キャリア
ガスが流れやすいように、図4に示すように横方向に溝
を有する流路材11などを部分的に張り付けることが、溝
を設ける手段の一例として挙げられる。
Regarding the partition wall of the permeate side channel, it is necessary to open a part of the leaf end part without partitioning so that the carrier gas flows uniformly over the entire back surface of the membrane, and also to facilitate the carrier gas flow. As shown in FIG. 4, partially adhering the flow path member 11 having a groove in the lateral direction or the like is one example of means for providing the groove.

本発明の脱気エレメントの運転においては、エレメント
1本の比較においても従来のスパイラル型脱気エレメン
トよりも大きな脱気能力が得られるが、複数本連結する
ことにより更に脱気能力は向上する。通常、エレメント
は1本から6本ごとに同一のエレメント容器に収納さ
れ、また、スペースの関係や更にエレメント数を増加さ
せたい場合などはエレメントを1本または複数本収納し
たエレメント内臓容器を複数本直列または並列に連結す
ることができる。本発明のエレメントを用いた場合は、
エレメント内臓容器を連結し、各容器に窒素を並列また
は直列に供給することができるが、直列に供給すること
が好ましい。窒素の供給は、各容器ごとに窒素ガスを複
数の供給源より並列に供給することが理想的であり、一
本目の容器に供給した窒素ガスの排出ガスを2本目の容
器に、2本目の排出窒素を3本目にというように直列に
供給する場合は、順次窒素の純度が低下し、脱気効率が
低下することが考えられる。しかし、本発明者らは、鋭
意検討した結果、多少の窒素純度低下に伴い脱気効率が
低下しても、窒素量を調整することでほぼ解決でき、か
つ、窒素の並列供給の場合に比べ、脱気運転コストを大
きく低減することができ、直列方式の窒素供給方式が好
ましいことを見出だした。窒素の供給順序は図5に示す
通り、被処理水供給の順序に基づき供給しても良く、ま
た、装置の形状等を考慮し、被処理水の供給順序と無関
係な順序で各容器に供給しても良い。窒素の流量は、目
標とする溶存ガス濃度により適宜決定することができる
が、好ましくは被処理水体積流量の5%から10%程度の
窒素流量(体積流量)が適当である。
In the operation of the degassing element of the present invention, even when comparing one element, a larger degassing capacity than that of the conventional spiral type degassing element can be obtained, but the degassing capacity is further improved by connecting a plurality of elements. Normally, every one to six elements are stored in the same element container, and in case of increasing the number of elements due to space relations, etc., a plurality of element-embedded containers accommodating one or more elements are stored. It can be connected in series or in parallel. When the element of the present invention is used,
Although it is possible to connect the elements-containing vessels and supply nitrogen to each vessel in parallel or in series, it is preferable to supply nitrogen in series. It is ideal to supply nitrogen gas in parallel from a plurality of supply sources to each container, and the exhaust gas of nitrogen gas supplied to the first container is supplied to the second container to the second container. When the discharged nitrogen is supplied in series as in the case of the third nitrogen, it is conceivable that the purity of nitrogen gradually decreases and the degassing efficiency decreases. However, as a result of diligent studies, the present inventors have found that even if the degassing efficiency decreases with a slight decrease in nitrogen purity, it can be almost solved by adjusting the nitrogen amount, and compared to the case of parallel supply of nitrogen. It has been found that the degassing operation cost can be greatly reduced, and the nitrogen supply system of the series system is preferable. As shown in FIG. 5, the order of supplying nitrogen may be based on the order of supplying the untreated water, or in consideration of the shape of the apparatus, the order of supplying the untreated water to each container is unrelated. You may. The flow rate of nitrogen can be appropriately determined depending on the target dissolved gas concentration, but a nitrogen flow rate (volume flow rate) of about 5% to 10% of the volumetric flow rate of water to be treated is preferable.

なお、エレメント容器内に複数本のエレメントを収納す
る場合、各エレメント内臓容器内において、各エレメン
トに窒素を並列または直列に供給することができるが、
上記と同様に直列に供給することが好ましい。
In addition, when accommodating a plurality of elements in the element container, in each element internal container, nitrogen can be supplied to each element in parallel or in series,
It is preferable to supply in series as in the above.

[実施例1] ポリエステルタフタ/ポリスルホンからなる支持材上に
シリコーン薄膜を形成させた疎水性ガス透過膜を、縦溝
を有するポリエステル織物からなる透過側流路材とポリ
プロピレン製ネットからなる供給液流路材とともに硬質
塩ビ製多孔質中心管の回りに巻囲し、透過側流路中央部
に図3−(a)に示す接着剤による仕切り壁のある膜面
積8m2、膜封筒数4組のスパイラル型脱気エレメントを
製作した。このエレメントの中心管内部の中央部に硬質
塩ビ製の盲栓を接着固定した後、これを専用の容器にい
れ、キャリアガスとして窒素を流しながら水道水の脱気
性能を測定した。水道水流量1000L/h、真空度85Torr、
窒素流量1000cc/分、温度25°Cの運転条件において、
当初8.0ppmであった被処理原液(水道水)の溶存酸素濃
度は、1.9ppmにまで低下した。
[Example 1] A hydrophobic gas permeable membrane in which a silicone thin film was formed on a support material made of polyester taffeta / polysulfone was used as a feed liquid flow made of a permeation side channel material made of polyester fabric having vertical grooves and a polypropylene net. Wrapped around a rigid PVC porous central tube together with the channel material, and a membrane area of 8 m 2 with a partition wall made of an adhesive shown in FIG. A spiral type degassing element was manufactured. A blind stopper made of hard vinyl chloride was adhered and fixed to the central portion inside the central tube of this element, and this was put in a dedicated container, and the deaeration performance of tap water was measured while flowing nitrogen as a carrier gas. Tap water flow rate 1000L / h, vacuum degree 85Torr,
Under the operating conditions of nitrogen flow rate 1000cc / min and temperature 25 ° C,
The dissolved oxygen concentration of the stock solution to be treated (tap water), which was initially 8.0 ppm, decreased to 1.9 ppm.

次に、この脱気エレメントに一度脱気した脱気処理水
(溶存酸素濃度1.9ppm)を通水し、上記と同じ運転条件
において脱気性能を測定したところ、溶存酸素濃度は、
0.5ppmまで低下した。
Next, when degassed treated water (dissolved oxygen concentration 1.9 ppm) that had been degassed once was passed through this degassing element, and the degassing performance was measured under the same operating conditions as above, the dissolved oxygen concentration was
It dropped to 0.5ppm.

[比較例1] 透過側流路中央部に接着剤による仕切り壁を設けていな
いほかは、実施例1と全く同様の部材、ガス透過膜を用
いてスパイラル型脱気エレメントを製作した。これを中
心管中央部に仕切りをすること無く、専用の容器に入れ
てキャリアガスを流さずに水道水の脱気性能を測定し
た。水道水流量1000L/h、真空度85Torr、温度25°Cの
運転条件において、当初8.0ppmであった被処理原液の溶
存酸素濃度は、2.7ppmにまで低下した。また、この運転
条件のままで、キャリアガスとして窒素を1000cc/分で
流したところ、被処理水の溶存酸素濃度は、2.6ppmにま
で低下した。
[Comparative Example 1] A spiral degassing element was manufactured by using the same members and gas permeable membrane as in Example 1 except that a partition wall made of an adhesive was not provided in the central portion of the permeate side flow passage. This was placed in a dedicated container without partitioning the central part of the central tube, and the degassing performance of tap water was measured without flowing a carrier gas. Under the operating conditions of a tap water flow rate of 1000 L / h, a vacuum degree of 85 Torr, and a temperature of 25 ° C., the dissolved oxygen concentration of the stock solution to be treated, which was initially 8.0 ppm, decreased to 2.7 ppm. In addition, when nitrogen was flowed at 1000 cc / min as a carrier gas under these operating conditions, the dissolved oxygen concentration of the water to be treated was reduced to 2.6 ppm.

次に、この脱気エレメントに実施例1の方法により一度
脱気した脱気処理水(溶存酸素濃度1.9ppm)を通水し、
上記と同じ運転条件(但し窒素は流さず)において脱気
性能を測定したところ、溶存酸素濃度は、1.5ppmまで低
下した。
Next, degassed water (dissolved oxygen concentration 1.9 ppm) once degassed by the method of Example 1 was passed through this degassing element,
When the degassing performance was measured under the same operating conditions as above (without flowing nitrogen), the dissolved oxygen concentration decreased to 1.5 ppm.

[実施例2] 実施例1で用いたものと同じスパイラル型脱気エレメン
ト(通過側流路仕切り壁および中心管内部中央部仕切り
を有するもの)4本を製作し、これらを各々エレメント
1本入りの容器計4本に収納し、これを図5−(b)に
示すように被処理原液(水道水)および窒素配管を各々
直列に接続した脱気装置を製作した。キャリアガスとし
て窒素を流しながら脱気性能を測定した。水道水流量15
00L/h、真空度85Torr、窒素流量1500cc/分、温度25°C
の運転条件において、当初8.0ppmであった被処理原液の
溶存酸素濃度は、0.2ppmにまで低下した。
[Example 2] Four spiral-type degassing elements (having a passage-side flow path partition wall and a central part inside the central tube) that are the same as those used in Example 1 were manufactured, and each of these contained one element. The container was housed in a total of four containers, and as shown in FIG. 5- (b), a degassing apparatus was produced in which a stock solution to be treated (tap water) and a nitrogen pipe were connected in series. The degassing performance was measured while flowing nitrogen as a carrier gas. Tap water flow rate 15
00L / h, vacuum degree 85Torr, nitrogen flow rate 1500cc / min, temperature 25 ° C
Under the above operating conditions, the dissolved oxygen concentration of the stock solution to be treated, which was initially 8.0 ppm, decreased to 0.2 ppm.

[効果] 本発明により、スパイラル型脱気膜エレメントの水中溶
存ガスの脱気性能の向上が達成される。特に水中の溶存
酸素の除去および炭酸ガスの除去に効果が大きい。
[Effect] According to the present invention, the improvement of the degassing performance of the dissolved gas in water of the spiral type degassing membrane element is achieved. It is particularly effective in removing dissolved oxygen and carbon dioxide in water.

【図面の簡単な説明】[Brief description of drawings]

図1は本発明のスパイラル型脱気エレメントを巻きほぐ
した状態の一部断面斜視図であり、図2は同じく本発明
のスパイラル型脱気エレメントの中心管および透過側流
路材部分のみを取り出した一部断面斜視図である。図3
−(a)および図3−(b)は、本発明のスパイラル型
脱気エレメントの透過側流路上の仕切り壁および中心管
内部の仕切りの配置例を示した一部断面斜視図である。
また、図4は本発明のスパイラル型脱気エレメントの透
過側流路材上の一部に他の流路材を張り合わせた例を示
した一部断面斜視図である。図5−(a),図5−
(b)は本発明のスパイラル型脱気エレメントを内臓し
たエレメント内臓容器を複数本連結させ、かつキャリア
ガスを直列に流した脱気装置例の被処理原液およびキャ
リアガスのフロー図である。図6は従来のスパイラル型
脱気エレメントを巻きほぐした状態の一部断面斜視図で
ある。 図中、 1は、表面に孔を有する中空状の中心管 1′は、中心管開放端部 2は、接着剤封止部分 3は、膜透過溶存ガス 4は、供給液流路材 5は、疎水性ガス透過膜 6は、透過側流路材 7,7′は、供給原液(被処理原液) 8は、中心管内部の仕切り 9は、透過側流路仕切り壁 10は、キャリアガス入り口 10′は、キャリアガス出口 11は、第2の透過側流路材 12は、スパイラル型脱気エレメント内臓容器 13は、被処理原液ライン 14は、キャリアガス通気ライン 15は、被処理原液入り口 16は、被処理原液出口(脱気水出口) 17は、キャリアガス入り口 18は、キャリアガス出口 19は、透過側流路材の溝方向 である。
FIG. 1 is a partial cross-sectional perspective view of the spiral degassing element of the present invention in an unwound state, and FIG. 2 similarly shows only the central tube and the permeation-side channel material portion of the spiral degassing element of the present invention. It is a partial cross-sectional perspective view. Figure 3
-(A) and FIG. 3- (b) are partial cross-sectional perspective views showing an arrangement example of a partition wall on the permeation side flow path of the spiral degassing element of the present invention and a partition inside the central tube.
FIG. 4 is a partial cross-sectional perspective view showing an example in which another channel material is attached to a part of the permeation-side channel material of the spiral degassing element of the present invention. Fig. 5- (a), Fig. 5-
(B) is a flow chart of a stock solution to be treated and a carrier gas in an example of a deaerator in which a plurality of element-embedded vessels each containing a spiral deaerator of the present invention are connected and a carrier gas is flown in series. FIG. 6 is a partially sectional perspective view of a state in which a conventional spiral type degassing element is unwound. In the figure, 1 is a hollow central tube 1'having a hole on the surface, 1 is an open end of the central tube, 2 is an adhesive sealing portion, 3 is a membrane-permeable dissolved gas, and 4 is a supply liquid channel material. , Hydrophobic gas permeable membrane 6, permeate side channel material 7, 7 ′, stock solution for supply (stock solution to be treated) 8, partition inside central tube 9, permeate side channel partition wall 10, carrier gas inlet 10 'is a carrier gas outlet 11, a second permeation side flow path member 12, a spiral degassing element built-in container 13, a treated stock solution line 14, a carrier gas aeration line 15 and a treated stock solution inlet 16 Is the untreated liquid outlet (degassed water outlet) 17, the carrier gas inlet 18 and the carrier gas outlet 19 are in the groove direction of the permeation side flow path member.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】表面に孔を有する中空状の中心管の周囲に
封筒状の疎水性ガス透過膜、透過側流路材、供給液流路
材を一組とするユニットの単組または複組を巻き付けて
なる、水中の溶存気体を除去するためのスパイラル型脱
気エレメントにおいて、中心管内部に仕切りを設け、か
つ、透過側流路の特定箇所に透過流体の流れ方向を特定
させるための仕切り壁を設け、さらに、該仕切り壁のリ
ーフエンド部分の一部を仕切りせずに開けられた部分
に、仕切り壁に対して横方向に溝を有する流路材を部分
的に張り付けることを特徴とするスパイラル型脱気エレ
メント。
1. A single set or a double set of units in which an envelope-shaped hydrophobic gas permeable membrane, a permeation side flow path member, and a supply liquid flow path material are provided as a set around a hollow central tube having holes on the surface. In the spiral type degassing element for removing dissolved gas in water, which is wound around, a partition is provided inside the center tube and a partition for specifying the flow direction of the permeate fluid at a specific location of the permeate side flow path. A wall is provided, and a flow path material having a groove in a lateral direction with respect to the partition wall is partially attached to a part of the partition wall which is opened without partitioning a part of a leaf end part of the partition wall. Spiral type degassing element.
【請求項2】透過側流路の仕切り壁が、弾性体高分子材
料からなることを特徴とする請求項1に記載のスパイラ
ル型脱気エレメント。
2. The spiral type degassing element according to claim 1, wherein the partition wall of the permeate side flow path is made of an elastic polymer material.
【請求項3】透過側流路の仕切り壁が、接着剤を硬化さ
せることにより形成されることを特徴とする請求項1に
記載のスパイラル型脱気エレメント。
3. The spiral degassing element according to claim 1, wherein the partition wall of the permeate side flow passage is formed by curing an adhesive.
【請求項4】膜表面に被処理水を供給し、中心管片端か
ら膜裏面を経由し中心管他端にキャリアガスを流すこと
を特徴とする請求項1項に記載のスパイラル型脱気エレ
メントの使用方法。
4. The spiral degassing element according to claim 1, wherein water to be treated is supplied to the front surface of the membrane, and a carrier gas is flown from one end of the central tube to the other end of the central tube through the back surface of the membrane. How to use.
【請求項5】スパイラル型脱気エレメントを単数本また
は複数本同一のエレメント容器内に収納されたエレメン
ト内臓容器が複数本より構成されてなる脱気装置におい
て、1か所のキャリアガス供給源から各エレメント内臓
容器にキャリアガスを直列に供給することを特徴とする
請求項1項に記載のスパイラル型脱気エレメントの使用
方法。
5. A degassing apparatus comprising a plurality of spiral-type degassing elements and a plurality of element-embedded containers which are housed in the same element container. The degassing device comprises one carrier gas supply source. The method of using the spiral degassing element according to claim 1, wherein a carrier gas is supplied in series to each element-containing container.
【請求項6】該溝を設ける手段として、溝を有する流路
材を部分的に張り付けることを特徴とする請求項1に記
載のスパイラル型脱気エレメント。
6. The spiral type degassing element according to claim 1, wherein a channel material having a groove is partially attached as a means for providing the groove.
JP2048757A 1990-02-27 1990-02-27 Spiral type degassing element and method of using the same Expired - Fee Related JPH0714445B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2048757A JPH0714445B2 (en) 1990-02-27 1990-02-27 Spiral type degassing element and method of using the same
DE1991615532 DE69115532T2 (en) 1990-02-27 1991-02-26 Gas permeable spiral wound membrane module, device and method for its use
EP19910102847 EP0448973B1 (en) 1990-02-27 1991-02-26 Spiral wound gas permeable membrane module and apparatus and method for using the same
US07/660,443 US5154832A (en) 1990-02-27 1991-02-26 Spiral wound gas permeable membrane module and apparatus and method for using the same
KR1019910003214A KR0161292B1 (en) 1990-02-27 1991-02-27 Spiral wound gas permeable membrane module and apparatus and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048757A JPH0714445B2 (en) 1990-02-27 1990-02-27 Spiral type degassing element and method of using the same

Publications (2)

Publication Number Publication Date
JPH03249907A JPH03249907A (en) 1991-11-07
JPH0714445B2 true JPH0714445B2 (en) 1995-02-22

Family

ID=12812154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048757A Expired - Fee Related JPH0714445B2 (en) 1990-02-27 1990-02-27 Spiral type degassing element and method of using the same

Country Status (1)

Country Link
JP (1) JPH0714445B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112925A (en) * 2007-11-05 2009-05-28 Japan Organo Co Ltd Spiral type deionized water production device
KR101867870B1 (en) * 2016-03-29 2018-06-18 주식회사 엠씨엠 Manufacturing method of spiral wound type filter cartridge

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097690B2 (en) * 2003-10-10 2006-08-29 Scimed Life Systems, Inc. Apparatus and method for removing gasses from a liquid
KR101830250B1 (en) * 2011-07-07 2018-02-20 도레이 카부시키가이샤 Separation membrane, separation membrane element, and method for producing separation membrane
TW201325704A (en) * 2011-09-29 2013-07-01 Toray Industries Separation membrane and separation membrane element
KR20140082651A (en) * 2011-09-29 2014-07-02 도레이 카부시키가이샤 Separation membrane, separation membrane element, and production method for separation membrane
JP5490281B2 (en) * 2012-06-20 2014-05-14 富士フイルム株式会社 Acid gas separation module and acid gas separation system
CN107998893B (en) * 2016-11-28 2023-07-04 佛山市美的清湖净水设备有限公司 Membrane element pipe fitting and tool thereof, spiral roll type water-saving membrane element and water purifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175209U (en) * 1985-04-17 1986-10-31
JPH0340341Y2 (en) * 1985-07-25 1991-08-26
JPH01115410A (en) * 1987-10-27 1989-05-08 Agency Of Ind Science & Technol Osmosis device between solutions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112925A (en) * 2007-11-05 2009-05-28 Japan Organo Co Ltd Spiral type deionized water production device
KR101867870B1 (en) * 2016-03-29 2018-06-18 주식회사 엠씨엠 Manufacturing method of spiral wound type filter cartridge

Also Published As

Publication number Publication date
JPH03249907A (en) 1991-11-07

Similar Documents

Publication Publication Date Title
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
US6702944B2 (en) Multi-stage filtration and softening module and reduced scaling operation
US4750918A (en) Selective-permeation gas-separation process and apparatus
US7279215B2 (en) Membrane modules and integrated membrane cassettes
US20060081524A1 (en) Membrane contactor and method of making the same
JP3098600B2 (en) Spiral type separation membrane module
JPH0714445B2 (en) Spiral type degassing element and method of using the same
US20040129637A1 (en) Multi-stage filtration and softening module and reduced scaling operation
EP3227005A1 (en) Membrane cartridge with integrated functions
JP2009213984A (en) Separation membrane module for filtration, and filtration apparatus using the same
EP1305106A1 (en) Multi-stage filtration and softening module and reduced scaling operation
EP0354797A2 (en) Degassing device
JP2000000437A (en) Spiral reverse-osmosis membrane element and separator using the element
JPH04176303A (en) Method for removing gas dissolved in liquid
JPH05208120A (en) Spiral separation membrane element
JPH0768103A (en) Membrane deaerating method
JPH04156903A (en) Degasification membrane device
JPH09150041A (en) Externally perfusion-type gas/liquid contact module
WO2021193785A1 (en) Separation membrane element and separation membrane module
JP2000079329A (en) Filter membrane module
JPH11137974A (en) Spiral membrane element
JPS62204812A (en) Separation and concentration device for activated sludge
JP2001321766A (en) Method of manufacturing filtration membrane element and permeate
JPH11156161A (en) Operation method of hollow fiber membrane module
JP2014195775A (en) Hollow fiber membrane module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees