JPH07142245A - High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material - Google Patents

High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material

Info

Publication number
JPH07142245A
JPH07142245A JP5288175A JP28817593A JPH07142245A JP H07142245 A JPH07142245 A JP H07142245A JP 5288175 A JP5288175 A JP 5288175A JP 28817593 A JP28817593 A JP 28817593A JP H07142245 A JPH07142245 A JP H07142245A
Authority
JP
Japan
Prior art keywords
temperature superconducting
coil
high temperature
conductor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5288175A
Other languages
Japanese (ja)
Inventor
Kenji Shimohata
賢司 下畑
Shoichi Yokoyama
彰一 横山
Shiro Nakamura
史朗 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5288175A priority Critical patent/JPH07142245A/en
Publication of JPH07142245A publication Critical patent/JPH07142245A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a high-temperature superconducting magnet which can produce a strong magnetic field, its designing method, its operating method and the manufacturing method of a high-temperature superconducting tape material whose critical current is high. CONSTITUTION:The cross-sectional area of a high-temperature superconducting part for conductors 121, 122, 123 is changed for each of individual coil units 111, 112 113, critical currents of the individual coil units 11 to 113 are constituted so as to nearly coincide, and a high-temperature superconducting magnet which produces a strong magnetic field is obtained. In addition, since the edge of a high-temperature superconducting coil which is constituted by winding the conductors 121 to 123 using a high-temperature superconducting material is provided with a ferromagnetic-substance flange, it is possible to obtain the high-temperature superconducting magnet in which a drop in the density of a critical current due to the magnetic field of the conductors 121 to 123 is small and which produces a strong magnetic field. In addition, since heat-conducting members provided with heaters are inserted between the coil units, it is possible to prevent the superconducting coil from being damaged by a fire due to the concentration of energy in a part of the superconducting coil when a superconducting breakdown is caused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高温超電導マグネッ
ト装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature superconducting magnet device.

【0002】[0002]

【従来の技術】図36は特開平4ー188706号公報
に記載された従来の超電導コイルの構成図である。図に
おいて、101は高温超電導テープ材で作製した導体が
巻かれた第1のパンケーキコイル、102は第1のパン
ケーキコイル101と逆向きに巻かれた第2のパンケー
キコイル、103は第1のパンケーキコイル101と第
2のパンケーキコイル102を巻始め部で接続したダブ
ルパンケーキコイル、104は接続用金属部材、105
は電流リード、106はフランジである。
2. Description of the Related Art FIG. 36 is a block diagram of a conventional superconducting coil disclosed in Japanese Patent Laid-Open No. 188706/1992. In the figure, 101 is a first pancake coil in which a conductor made of a high-temperature superconducting tape material is wound, 102 is a second pancake coil wound in the opposite direction to the first pancake coil 101, and 103 is a second pancake coil. A double pancake coil in which the first pancake coil 101 and the second pancake coil 102 are connected at the winding start portion, 104 is a connecting metal member, and 105
Is a current lead and 106 is a flange.

【0003】また、図37は刊行物(1992年度秋期
低温工学・超電導学会予稿p.17)に記載された従来
の高温超電導テープ材の断面図である。図において、5
32は安定化材としての銀シースで厚さは0.05〜
0.1mm、533は高温超電導体で厚さは0.05〜
0.1mmである。高温超電導体としては例えば、(B
1-xPbx)Sr2Ca2Cu3yが用いられる。534
は銀シース532と高温超電導体533の界面である。
このような高温超電導テープ材は、例えば高温超電導体
533の粉末を銀パイプに充填し、線引き、圧延を行い
作製されている。なお、導体は高温超電導テープ材単独
で、あるいは複数枚重ねて構成される。
Further, FIG. 37 is a sectional view of a conventional high temperature superconducting tape material described in a publication (Autumn 1992 Autumn Low Temperature Engineering / Superconducting Society Preliminary Report p. 17). In the figure, 5
32 is a silver sheath as a stabilizing material and has a thickness of 0.05 to
0.1 mm and 533 are high temperature superconductors with a thickness of 0.05 to
It is 0.1 mm. Examples of high-temperature superconductors include (B
i 1-x Pb x ) Sr 2 Ca 2 Cu 3 O y is used. 534
Is the interface between the silver sheath 532 and the high temperature superconductor 533.
Such a high-temperature superconducting tape material is produced, for example, by filling a powder of the high-temperature superconductor 533 into a silver pipe, drawing and rolling. The conductor may be composed of a single high-temperature superconducting tape material or a plurality of stacked layers.

【0004】[0004]

【発明が解決しようとする課題】上記のように構成され
た従来の高温超電導超電導コイルは、高温超電導コイル
の電流密度が一定であるため、導体の負荷率が最も高い
端部のパンケーキコイルがクエンチし、コイルの発生す
る磁界が低いという問題点があった。
In the conventional high temperature superconducting superconducting coil configured as described above, since the current density of the high temperature superconducting coil is constant, the pancake coil at the end where the load factor of the conductor is the highest is There was a problem that the magnetic field generated by the coil was low after quenching.

【0005】また、クエンチした場合、クエンチの伝搬
速度が遅いため、発熱が高温超電導コイルの一部に集中
し、導体が焼損するという問題点があった。
Further, in the case of quenching, since the propagation speed of quenching is slow, there is a problem that heat generation is concentrated in a part of the high temperature superconducting coil and the conductor is burnt out.

【0006】また、高温超電導テープ材は歪みにより臨
界電流が低下するため高温超電導コイルを強固に固定で
きないという問題点があった。
Further, the high temperature superconducting tape material has a problem that the high temperature superconducting coil cannot be firmly fixed because the critical current decreases due to strain.

【0007】また、高温超電導テープ材で作製した導体
はツイストを施していないため、高温超電導コイルを励
磁した際、導体に誘導電流が流れ高温超電導テープ材間
に電流分布が生じ、高温超電導コイルがクエンチしやす
いという問題点があった。また、高温超電導テープ材間
の電流分布のため永久電流が減衰するという問題があっ
た。
Further, since the conductor made of the high-temperature superconducting tape material is not twisted, when the high-temperature superconducting coil is excited, an induced current flows through the conductor to generate a current distribution between the high-temperature superconducting tape materials, and There was a problem that it was easy to quench. Further, there is a problem that the permanent current is attenuated due to the current distribution between the high temperature superconducting tape materials.

【0008】また、従来の高温超電導テープ材は、銀シ
ースと高温超電導体の境界が平滑でなく臨界電流が低い
という問題点があった。
Further, the conventional high temperature superconducting tape material has a problem that the boundary between the silver sheath and the high temperature superconductor is not smooth and the critical current is low.

【0009】本発明は上記のような問題点を解消するた
めになされたもので、高い発生磁界が得られる高温超電
導マグネット、その設計方法および運転方法、並びに臨
界電流の高い高温超電導テープ材の製造方法を提供せん
とするものである。
The present invention has been made to solve the above problems, and a high-temperature superconducting magnet which can obtain a high magnetic field, a designing method and an operating method thereof, and a high-temperature superconducting tape material having a high critical current are manufactured. It is intended to provide a method.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明に係
る高温超電導マグネットは、高温超電導材を用いた導体
を巻回して構成される複数のコイルユニットを積層した
高温超電導コイルを備えるものにおいて、上記各コイル
ユニット毎に上記導体の高温超電導部の断面積を変え、
各コイルユニットの臨界電流を略一致させるように構成
したものである。
According to a first aspect of the present invention, there is provided a high temperature superconducting magnet comprising a high temperature superconducting coil in which a plurality of coil units formed by winding a conductor using a high temperature superconducting material are laminated. , Changing the cross-sectional area of the high temperature superconducting portion of the conductor for each of the coil units,
The configuration is such that the critical currents of the coil units are made to substantially match.

【0011】請求項2記載の発明に係る高温超電導マグ
ネットの設計方法は、上記請求項1記載の導体の高温超
電導部の断面積を、磁界の強さおよび向きを変えた場合
の上記導体の臨界電流密度と高温超電導コイルの磁界分
布より、コイルユニット毎に臨界電流密度が最も低い場
所の臨界電流密度を求め、その逆数に比例して求めるも
のである。
According to a second aspect of the present invention, there is provided a method for designing a high-temperature superconducting magnet, wherein the cross-sectional area of the high-temperature superconducting portion of the conductor according to the first aspect has a critical value of the conductor when the magnetic field strength and direction are changed. From the current density and the magnetic field distribution of the high temperature superconducting coil, the critical current density at the place where the critical current density is the lowest is found for each coil unit, and is calculated in proportion to the reciprocal thereof.

【0012】請求項3記載の発明に係る高温超電導マグ
ネットは、高温超電導材としてテープ材を用い、このテ
ープ材の積層数または幅を変えることにより、コイルユ
ニット毎の導体の断面積を変えるものである。
In the high temperature superconducting magnet according to the third aspect of the present invention, a tape material is used as the high temperature superconducting material, and the cross-sectional area of the conductor for each coil unit is changed by changing the number of layers or the width of the tape material. is there.

【0013】請求項4記載の発明に係る高温超電導マグ
ネットは、高温超電導材を用いた導体を巻回して構成さ
れる高温超電導コイルの端面に、強磁性体のフランジを
備えたものである。
A high temperature superconducting magnet according to a fourth aspect of the present invention is such that a high temperature superconducting coil formed by winding a conductor made of a high temperature superconducting material is provided with a flange of a ferromagnetic material on an end face thereof.

【0014】請求項5記載の発明に係る高温超電導マグ
ネットは、高温超電導材を用いた導体を巻回して構成さ
れる複数のコイルユニットを積層した高温超電導コイル
を備えるものにおいて、上記コイルユニット間にヒータ
を設けた熱伝導部材を挿入したものである。
A high-temperature superconducting magnet according to a fifth aspect of the present invention comprises a high-temperature superconducting coil in which a plurality of coil units formed by winding a conductor using a high-temperature superconducting material are laminated, and between the coil units. A heat conducting member provided with a heater is inserted.

【0015】請求項6記載の発明に係る高温超電導マグ
ネットは、高温超電導材を用いた導体を巻回して構成さ
れる高温超電導コイルを備えるものにおいて、上記高温
超電導材を用いた導体間の電気絶縁にセラミックス繊維
を使用し、上記導体の長手方向とセラミックス繊維の繊
維方向を略直向させたものである。
A high temperature superconducting magnet according to a sixth aspect of the present invention comprises a high temperature superconducting coil formed by winding a conductor using a high temperature superconducting material, wherein electrical insulation between the conductors using the high temperature superconducting material is provided. Ceramics fibers are used for the above, and the longitudinal direction of the conductor and the fiber directions of the ceramics fibers are made substantially straight.

【0016】請求項7記載の発明に係る高温超電導マグ
ネットは、高温超電導材を用いた導体を巻回して構成さ
れる高温超電導コイルを備えるものにおいて、上記高温
超電導コイルを室温程度以下の温度で硬化する含浸材で
含浸したものである。
A high temperature superconducting magnet according to a seventh aspect of the present invention comprises a high temperature superconducting coil formed by winding a conductor using a high temperature superconducting material, wherein the high temperature superconducting coil is hardened at a temperature of about room temperature or lower. It is impregnated with the impregnating material.

【0017】請求項8記載の発明に係る高温超電導マグ
ネットは、高温超電導材を用いた導体を絶縁物を介して
巻回して構成される高温超電導コイルを備えるものにお
いて、上記導体と絶縁物との間に応力緩衝材を挿入した
ものである。
A high-temperature superconducting magnet according to an eighth aspect of the present invention comprises a high-temperature superconducting coil configured by winding a conductor using a high-temperature superconducting material with an insulator interposed between the conductor and the insulator. A stress buffer material is inserted between them.

【0018】請求項9記載の発明に係る高温超電導マグ
ネットの運転方法は、複数枚の高温超電導テープ材を絶
縁物を介して重ね合わせた導体を巻回して構成される高
温超電導コイルを備えるものにおいて、上記コイル運転
電流が略臨界電流である温度で上記コイルを励磁するも
のである。
According to a ninth aspect of the present invention, there is provided a method for operating a high temperature superconducting magnet, which comprises a high temperature superconducting coil formed by winding a conductor obtained by stacking a plurality of high temperature superconducting tape materials with an insulator interposed therebetween. The coil is excited at a temperature at which the coil operating current is a substantially critical current.

【0019】請求項10記載の発明に係る高温超電導マ
グネットは、高温超電導コイルは励磁時昇温用のヒータ
を備え、かつこの励磁時昇温用のヒータは上記高温超電
導コイルが超電導破壊した際の強制クエンチ用のヒータ
と兼ねているものである。
In a high temperature superconducting magnet according to a tenth aspect of the present invention, the high temperature superconducting coil is provided with a heater for raising the temperature during excitation, and the heater for raising the temperature during excitation is provided when the high temperature superconducting coil is superconductingly destroyed. It also serves as a heater for forced quench.

【0020】請求項11記載の発明に係る高温超電導マ
グネットは、高温超電導コイルと永久電流スイッチとが
熱的に接続されており、上記高温超電導コイルと永久電
流スイッチのどちらか一方または両者の接続部にヒータ
を備えているものである。
In a high temperature superconducting magnet according to an eleventh aspect of the present invention, the high temperature superconducting coil and the permanent current switch are thermally connected, and one or both of the high temperature superconducting coil and the persistent current switch is connected. Is equipped with a heater.

【0021】請求項12記載の発明に係る高温超電導マ
グネットは、複数枚の高温超電導テープ材を絶縁物を介
して重ね合わせた導体を巻回して構成されるコイルユニ
ットを複数個積層した高温超電導コイルを備え、上記各
コイルユニット間での上記高温超電導テープ材の接続に
おいては、少なくとも2組のテープ材は、一方のコイル
ユニットの内側からn番目に卷かれた高温超電導テープ
材と、他方のコイルユニットの内側からm番目(ただし
n、mは異なる整数)に卷かれた高温超電導テープ材と
を接続することにより、上記高温超電導テープ材の作る
ループを貫く磁束の和が略ゼロになるように構成したも
のである。
A high-temperature superconducting magnet according to a twelfth aspect of the present invention is a high-temperature superconducting coil in which a plurality of coil units each formed by winding a conductor obtained by stacking a plurality of high-temperature superconducting tape materials with an insulator interposed therebetween are laminated. In the connection of the high-temperature superconducting tape material between the coil units, at least two sets of tape materials are a high-temperature superconducting tape material wound n-th from the inside of one coil unit and the other coil. By connecting the m-th (where n and m are different integers) high-temperature superconducting tape material wound from the inside of the unit, the sum of the magnetic fluxes passing through the loop formed by the high-temperature superconducting tape material becomes approximately zero. It is composed.

【0022】請求項13記載の発明に係る高温超電導マ
グネットは、高温超電導材を用いた導体を巻回して構成
される複数のコイルユニットを積層した高温超電導コイ
ルを備えるものにおいて、上記各コイルユニット間での
導体の接続部近傍に冷却用の熱伝導部材を設置したもの
である。
A high-temperature superconducting magnet according to a thirteenth aspect of the present invention comprises a high-temperature superconducting coil in which a plurality of coil units formed by winding a conductor using a high-temperature superconducting material are laminated, and between the coil units. The heat conducting member for cooling is installed in the vicinity of the connecting portion of the conductor.

【0023】請求項14記載の発明に係る高温超電導マ
グネットは、高温超電導コイルとコイル支持部材との接
続部に冷却用の熱伝導部材を設置したものである。
In the high temperature superconducting magnet according to the fourteenth aspect of the present invention, a heat conducting member for cooling is installed at a connecting portion between the high temperature superconducting coil and the coil supporting member.

【0024】請求項15記載の発明に係る高温超電導マ
グネットは、高温超電導コイルと高温超電導材を使用し
た永久電流スイッチを備えた高温超電導マグネットにお
いて、上記永久電流スイッチは上記超電導コイルの運転
温度より高く上記高温超電導材の臨界温度より低い中温
空間に配置されているものである。
A high temperature superconducting magnet according to a fifteenth aspect of the present invention is a high temperature superconducting magnet comprising a high temperature superconducting coil and a permanent current switch using a high temperature superconducting material, wherein the permanent current switch is higher than an operating temperature of the superconducting coil. It is arranged in a medium temperature space lower than the critical temperature of the high temperature superconducting material.

【0025】請求項16記載の発明に係る高温超電導マ
グネットは、永久電流スイッチの高温超電導材の結晶の
c軸方向に略平行に磁界を印加し、上記永久電流スイッ
チを動作させるように構成したものである。
A high-temperature superconducting magnet according to a sixteenth aspect of the present invention is configured such that a magnetic field is applied substantially parallel to the c-axis direction of the crystal of the high-temperature superconducting material of the persistent current switch to operate the persistent current switch. Is.

【0026】請求項17記載の発明に係る高温超電導マ
グネットは、上記請求項16に記載の永久電流スイッチ
の高温超電導材の結晶のc軸方向に略平行に磁界を印加
する手段はコイルであるものである。
According to a seventeenth aspect of the present invention, in the high temperature superconducting magnet according to the sixteenth aspect, the means for applying a magnetic field substantially parallel to the c-axis direction of the crystal of the high temperature superconducting material of the permanent current switch is a coil. Is.

【0027】請求項18記載の発明に係る高温超電導マ
グネットは、高温超電導体の膜材を用いた永久電流スイ
ッチを備えるものである。
The high-temperature superconducting magnet according to the eighteenth aspect of the present invention comprises a permanent current switch using a film material of the high-temperature superconductor.

【0028】請求項19記載の発明に係る高温超電導テ
ープ材の製造方法は、金属テープ上に高温超電導体層を
形成し、この高温超電導体層を形成した金属テープ上に
もう1枚の金属テープを重ねて加圧することにより上記
2枚の金属テープと高温超電導体層を一体化するもので
ある。
In the method for producing a high temperature superconducting tape material according to the nineteenth aspect of the present invention, a high temperature superconducting layer is formed on a metal tape, and another metal tape is formed on the metal tape having the high temperature superconducting layer formed thereon. The above two metal tapes and the high temperature superconductor layer are integrated by stacking and pressing.

【0029】請求項20記載の発明に係る高温超電導テ
ープ材の製造方法は、請求項19記載の製造方法におい
て、金属テープは溝を有し、高温超電導体層は上記溝に
形成されるものである。
According to a twentieth aspect of the present invention, in the method for producing a high temperature superconducting tape material according to the nineteenth aspect, the metal tape has a groove and the high temperature superconductor layer is formed in the groove. is there.

【0030】[0030]

【作用】請求項1記載の発明においては、各コイルユニ
ット毎に導体の高温超電導部の断面積を変え、各コイル
ユニットの臨界電流を略一致させるように構成したの
で、発生磁界が高い高温超電導マグネットが得られる。
According to the first aspect of the present invention, since the cross-sectional area of the high temperature superconducting portion of the conductor is changed for each coil unit so that the critical currents of the coil units are substantially equal to each other, the high temperature superconducting magnetic field having a high magnetic field is generated. You can get a magnet.

【0031】請求項2記載の発明においては、上記請求
項1記載の導体の高温超電導部の断面積を、磁界の強さ
および向きを変えた場合の上記導体の臨界電流密度と高
温超電導コイルの磁界分布より、コイルユニット毎に臨
界電流密度が最も低い場所の臨界電流密度を求め、その
逆数に比例して求めるので、各コイルユニットの臨界電
流をうまく一致させることができる。
According to a second aspect of the present invention, the cross-sectional area of the high temperature superconducting portion of the conductor according to the first aspect is the critical current density of the conductor and the high temperature superconducting coil of the high temperature superconducting coil when the strength and direction of the magnetic field are changed. From the magnetic field distribution, the critical current density at the location where the critical current density is the lowest is found for each coil unit, and is found in proportion to its reciprocal, so that the critical currents of the coil units can be matched well.

【0032】請求項3記載の発明においては、高温超電
導材としてテープ材を用い、このテープ材の積層数また
は幅を変えることにより、コイルユニット毎の導体の断
面積を変えるので、発生磁界が高い高温超電導マグネッ
トが得られる。
According to the third aspect of the present invention, a tape material is used as the high temperature superconducting material, and the cross-sectional area of the conductor is changed for each coil unit by changing the number of layers or the width of the tape material. A high temperature superconducting magnet can be obtained.

【0033】請求項4記載の発明においては、高温超電
導材を用いた導体を巻回して構成される高温超電導コイ
ルの端面に、強磁性体のフランジを備えたので、導体の
磁界による臨界電流密度の低下が小さく、発生磁界が高
い高温超電導マグネットが得られる。
In the invention of claim 4, since the high temperature superconducting coil formed by winding the conductor using the high temperature superconducting material is provided with the flange of the ferromagnetic material on the end face, the critical current density due to the magnetic field of the conductor is provided. It is possible to obtain a high temperature superconducting magnet with a small decrease in the magnetic field and a high generated magnetic field.

【0034】請求項5記載の発明においては、コイルユ
ニット間にヒータを設けた熱伝導部材を挿入したので、
超電導破壊が生じた場合にヒータにより熱電導部材を加
熱して高温超電導コイル全体を超電導破壊させることに
より、超電導コイル全体でエネルギを吸収し、超電導コ
イルの一部にエネルギが集中して超電導コイルが焼損す
るのを防止する。
According to the fifth aspect of the invention, since the heat conducting member provided with the heater is inserted between the coil units,
When the superconducting breakdown occurs, the heat conducting member is heated by the heater to cause the entire high temperature superconducting coil to undergo superconducting destruction, so that the entire superconducting coil absorbs energy, and the energy is concentrated on a part of the superconducting coil, so that the superconducting coil is Prevent burning.

【0035】請求項6記載の発明においては、高温超電
導材を用いた導体間の電気絶縁にセラミックス繊維を使
用し、上記導体の長手方向とセラミックス繊維の繊維方
向を略直向させたので、導体とセラミックス繊維の繊維
方向に垂直な熱膨張率はほぼ一致するため、導体の臨界
電流の低下を防止でき、発生磁界が高い高温超電導マグ
ネットが得られる。
According to the sixth aspect of the present invention, the ceramic fiber is used for electrical insulation between the conductors using the high temperature superconducting material, and the longitudinal direction of the conductor and the fiber direction of the ceramic fiber are substantially oriented. And the coefficient of thermal expansion of the ceramic fibers perpendicular to the fiber direction are substantially the same, so that the critical current of the conductor can be prevented from lowering and a high-temperature superconducting magnet with a high generated magnetic field can be obtained.

【0036】請求項7記載の発明においては、高温超電
導コイルを室温程度以下の温度で硬化する含浸材で含浸
したので、温度を上げて硬化させる含浸材を使用した場
合と比べて硬化温度と高温超電導コイルの運転温度との
温度差を少なくでき、冷却後の歪みが少なくなり、導体
の臨界電流の低下を小さくできるため、発生磁界が高い
高温超電導マグネットが得られる。
In the invention of claim 7, since the high temperature superconducting coil is impregnated with an impregnating material which is hardened at a temperature of about room temperature or lower, the hardening temperature and the temperature are higher than those when an impregnating material which is hardened by raising the temperature is used. A temperature difference from the operating temperature of the superconducting coil can be reduced, distortion after cooling is reduced, and reduction in the critical current of the conductor can be reduced, so that a high-temperature superconducting magnet with a high generated magnetic field can be obtained.

【0037】請求項8記載の発明においては、高温超電
導材を用いた導体を絶縁物を介して巻回して構成される
高温超電導コイルを備えるものにおいて、上記導体と絶
縁物との間に応力緩衝材を挿入したので、高温超電導コ
イルを冷却した際、導体と絶縁材の熱膨張率の差による
導体の歪みを応力緩衝材が吸収し、導体は歪みが緩和さ
れるため、歪みによる導体の臨界電流の低下を防止で
き、発生磁界が高い高温超電導マグネットが得られる。
According to an eighth aspect of the present invention, in a high temperature superconducting coil which is formed by winding a conductor using a high temperature superconducting material with an insulator interposed therebetween, a stress buffer is provided between the conductor and the insulator. Since the material is inserted, when the high temperature superconducting coil is cooled, the strain of the conductor is absorbed by the stress cushioning material due to the difference in the coefficient of thermal expansion between the conductor and the insulating material, and the strain is relaxed. It is possible to obtain a high-temperature superconducting magnet that can prevent a decrease in current and generate a high magnetic field.

【0038】請求項9記載の発明においては、複数枚の
高温超電導テープ材を絶縁物を介して重ね合わせた導体
を巻回して構成される高温超電導コイルを備え、コイル
運転電流が略臨界電流である温度で上記コイルを励磁す
るので、高温超電導コイルの励磁完了時には、各高温超
電導テープ材を流れる電流はほぼ同じ電流値となる。こ
の状態で、高温超電導コイルの温度を、運転温度まで低
下させると各テープ材ともに外乱が発生しても超電導破
壊を起こしにくい。さらに、各テープ材に流れる電流値
が異なる場合は大きい方から小さい方へ電流が移動し、
移動する電流は常電導部を通過するため全電流は僅かづ
つ減少するが、同じ大きさの電流が流れた場合には電流
の移動がないため全電流は減少しない。
According to a ninth aspect of the present invention, there is provided a high temperature superconducting coil formed by winding a conductor obtained by stacking a plurality of high temperature superconducting tape materials with an insulator interposed therebetween, and the coil operating current is a substantially critical current. Since the coil is excited at a certain temperature, when the high temperature superconducting coil is completely excited, the current flowing through each high temperature superconducting tape material has almost the same current value. In this state, if the temperature of the high-temperature superconducting coil is lowered to the operating temperature, superconducting breakdown is unlikely to occur even if disturbance occurs in each tape material. Furthermore, when the current value flowing in each tape material is different, the current moves from the larger one to the smaller one,
Since the moving current passes through the normal conducting part, the total current decreases slightly, but when the same amount of current flows, the current does not move and the total current does not decrease.

【0039】請求項10記載の発明においては、励磁時
昇温用のヒータは高温超電導コイルが超電導破壊した際
の強制クエンチ用のヒータと兼ねているので、ヒータ数
を少なくできる。
According to the tenth aspect of the present invention, the heater for raising the temperature during excitation also serves as a heater for forcible quenching when the high temperature superconducting coil is destroyed by superconductivity, so that the number of heaters can be reduced.

【0040】請求項11記載の発明においては、高温超
電導コイルと永久電流スイッチとが熱的に接続されてお
り、上記高温超電導コイルと永久電流スイッチのどちら
か一方または両者の接続部にヒータを備えているので、
高温超電導コイルを励磁する際、永久電流スイッチと高
温超電導コイルを同時に昇温できる。
In the eleventh aspect of the present invention, the high-temperature superconducting coil and the persistent current switch are thermally connected, and a heater is provided at a connecting portion of either or both of the high-temperature superconducting coil and the persistent current switch. Because
When exciting the high temperature superconducting coil, the temperature of the persistent current switch and the high temperature superconducting coil can be raised simultaneously.

【0041】請求項12記載の発明においては、複数枚
の高温超電導テープ材を絶縁物を介して重ね合わせた導
体を巻回して構成されるコイルユニットを複数個積層し
た高温超電導コイルを備え、上記各コイルユニット間で
の上記高温超電導テープ材の接続においては、少なくと
も2組のテープ材は、一方のコイルユニットの内側から
n番目に卷かれた高温超電導テープ材と、他方のコイル
ユニットの内側からm番目(ただしn、mは異なる整
数)に卷かれた高温超電導テープ材とを接続することに
より、上記高温超電導テープ材の作るループを貫く磁束
の和が略ゼロになるように構成したので、高温超電導コ
イルの励磁時に、磁界変化にともなう誘導電流が高温超
電導テープ材に生じず、重ね合わされた各高温超電導テ
ープ材には同じ大きさの電流が流れるため、高温超電導
コイルは超電導破壊しにくい。さらに、誘導電流が生じ
ないため、励磁速度を早くできる。
According to a twelfth aspect of the present invention, there is provided a high temperature superconducting coil in which a plurality of coil units each formed by winding a conductor obtained by stacking a plurality of high temperature superconducting tape materials with an insulator interposed therebetween are stacked. In the connection of the above-mentioned high temperature superconducting tape material between the coil units, at least two sets of tape materials include a high temperature superconducting tape material wound n-th from the inside of one coil unit and from the inside of the other coil unit. By connecting the m-th (where n and m are different integers) high-temperature superconducting tape material wound up, the sum of magnetic fluxes passing through the loop made by the high-temperature superconducting tape material is configured to be substantially zero. When the high-temperature superconducting coil is excited, the induced current due to the change in the magnetic field does not occur in the high-temperature superconducting tape materials, and the same size is applied to each of the superposed high-temperature superconducting tape materials. Since the current flows of high-temperature superconducting coil is hard to superconducting destroyed. Furthermore, since no induced current is generated, the excitation speed can be increased.

【0042】請求項13記載の発明においては、各コイ
ルユニット間での導体の接続部近傍に冷却用の熱伝導部
材を設置したので、高温超電導コイル励磁時に接続抵抗
や接続部材の抵抗により接続部に発生する熱を速やかに
除去でき、高温超電導コイルの温度上昇を防ぐことがで
き、超電導破壊を防止できる。
According to the thirteenth aspect of the present invention, since the heat conduction member for cooling is installed in the vicinity of the connection portion of the conductor between the coil units, the connection portion or the resistance of the connection member during excitation of the high temperature superconducting coil causes connection portion. The heat generated in the high temperature superconducting coil can be quickly removed, the temperature rise of the high temperature superconducting coil can be prevented, and the superconducting breakdown can be prevented.

【0043】請求項14記載の発明においては、高温超
電導コイルとコイル支持部材との接続部に冷却用の熱伝
導部材を設置したので、通常、室温または略液体窒素温
度であるコイル容器から、コイル支持部材を介して熱が
高温超電導コイルに伝わるのを防止して高温超電導コイ
ルの温度上昇を防ぐことができ、クエンチしにくい高温
超電導マグネットが得られる。
In the fourteenth aspect of the present invention, since the heat conducting member for cooling is installed at the connecting portion between the high temperature superconducting coil and the coil supporting member, the coil container is usually at room temperature or substantially liquid nitrogen temperature, It is possible to prevent heat from being transferred to the high-temperature superconducting coil via the support member and prevent a temperature rise of the high-temperature superconducting coil, and to obtain a high-temperature superconducting magnet which is hard to quench.

【0044】請求項15記載の発明においては、永久電
流スイッチは超電導コイルの運転温度より高く上記高温
超電導材の臨界温度より低い中温空間に配置されている
ので、永久電流スイッチを作動のに、永久電流スイッチ
の温度を上記中温と臨界温度の間で変化させればよく、
スイッチ速度が早くなるとともに永久電流スイッチを作
動させるのに必要なヒータの熱量を低減できる。
In the invention of claim 15, the permanent current switch is arranged in an intermediate temperature space which is higher than the operating temperature of the superconducting coil and lower than the critical temperature of the high-temperature superconducting material. It suffices to change the temperature of the current switch between the above intermediate temperature and the critical temperature,
As the switch speed increases, the heat quantity of the heater required to operate the permanent current switch can be reduced.

【0045】請求項16記載の発明においては、永久電
流スイッチの高温超電導材の結晶のc軸方向に略平行に
磁界を印加し、上記永久電流スイッチを動作させるよう
に構成したので、磁界がc軸に平行な場合、磁界による
臨界電流密度の低下はより顕著となり、磁界が弱くても
永久電流スイッチを動作させることができる。
In the sixteenth aspect of the present invention, since the magnetic field is applied substantially parallel to the c-axis direction of the crystal of the high temperature superconducting material of the permanent current switch to operate the permanent current switch, the magnetic field is c When it is parallel to the axis, the decrease in the critical current density due to the magnetic field becomes more remarkable, and the permanent current switch can be operated even when the magnetic field is weak.

【0046】請求項17記載の発明においては、上記請
求項16に記載の永久電流スイッチの高温超電導材の結
晶のc軸方向に略平行に磁界を印加するのにコイルを用
いると簡単に永久電流スイッチを動作させることができ
る。
In the seventeenth aspect of the present invention, the permanent current can be easily obtained by using the coil to apply the magnetic field substantially parallel to the c-axis direction of the crystal of the high temperature superconducting material of the permanent current switch according to the sixteenth aspect. The switch can be operated.

【0047】請求項18記載の発明においては、高温超
電導体の膜材を用いた永久電流スイッチを備えるので、
従来のように線材を巻回するのに比べて臨界電流密度が
高いため、膜材の断面積が小さくてよく、超電導体でな
くなった場合に発生する抵抗値が高いため、永久電流ス
イッチの体積を小さくできる。
According to the eighteenth aspect of the invention, since the permanent current switch using the film material of the high temperature superconductor is provided,
Since the critical current density is higher than that of winding a wire as in the past, the cross-sectional area of the film material may be small and the resistance value generated when it is no longer a superconductor is high. Can be made smaller.

【0048】請求項19記載の発明においては、金属テ
ープ上に高温超電導体層を形成し、この高温超電導体層
を形成した金属テープ上にもう1枚の金属テープを重ね
て加圧することにより上記2枚の金属テープと高温超電
導体層を一体化することにより高温超電導テープ材を製
造するので、金属テープと高温超電導体の界面は平滑で
あり、さらに高温超電導体の粒は薄板状でありプレスに
より方位が揃うため、高温超電導体の粒間の結合が強く
なり、臨界電流が高い高温超電導テープ材が得られる。
In a nineteenth aspect of the present invention, a high temperature superconductor layer is formed on a metal tape, and another metal tape is stacked on the metal tape having the high temperature superconductor layer formed thereon and pressed, whereby Since the high temperature superconducting tape material is manufactured by integrating the two metal tapes and the high temperature superconducting layer, the interface between the metal tape and the high temperature superconducting material is smooth, and the particles of the high temperature superconducting material are thin plates and pressed. Since the azimuths are aligned with each other, the intergranular bonds of the high temperature superconductor are strengthened, and a high temperature superconducting tape material having a high critical current can be obtained.

【0049】請求項20記載の発明においては、請求項
19記載の製造方法において、金属テープは溝を有し、
高温超電導体層は上記溝に形成されるので、上記効果に
加えて高温超電導体層を金属テープで確実に覆うことが
できるとともに均一な厚みを有する高温超電導テープ材
が得られる効果がある。
According to a twentieth aspect of the invention, in the manufacturing method according to the nineteenth aspect, the metal tape has a groove,
Since the high temperature superconductor layer is formed in the groove, in addition to the above effects, the high temperature superconductor layer can be reliably covered with the metal tape, and a high temperature superconducting tape material having a uniform thickness can be obtained.

【0050】[0050]

【実施例】【Example】

実施例1.図1(a)は請求項1および2の発明の一実
施例に係る高温超電導コイルを一部断面で示す斜視図、
(b)は(a)の導体の断面を拡大して示す断面図であ
る。図において、121、122、123はそれぞれ導
体断面積の異なる導体、111、112、113はそれ
ぞれ導体121、122、123を巻回して作製したコ
イルユニット、110はコイルユニット111、11
2、113を例えばアルミナ板から成る絶縁物100を
介して積層して作製した高温超電導コイルであり、コイ
ルユニット間で導体は互いに接続されている。なお、各
導体121、122、123は例えばアルミナ繊維から
なる絶縁物を介して巻回されている。
Example 1. FIG. 1 (a) is a perspective view showing a partial cross section of a high temperature superconducting coil according to an embodiment of the invention of claims 1 and 2.
(B) is sectional drawing which expands and shows the cross section of the conductor of (a). In the figure, 121, 122, 123 are conductors having different conductor cross-sectional areas, 111, 112, 113 are coil units produced by winding the conductors 121, 122, 123, respectively, and 110 is a coil unit 111, 11
This is a high temperature superconducting coil produced by laminating 2 and 113 via an insulator 100 made of, for example, an alumina plate, and conductors are connected to each other between coil units. The conductors 121, 122, 123 are wound around an insulator made of alumina fiber, for example.

【0051】図2は実施例1を説明するための図であ
り、(a)は温度5Kにおける高温超電導導体(Bi
1-xPbx)Sr2Ca2Cu3yの臨界電流密度の磁界の
強さおよび角度依存性を示す特性図であり、角度はテー
プの長手方向には垂直でテープの表面に並行な場合を0
度、垂直な場合を90度としている。また、(b)は高
温超電導コイルの巻線部の磁界分布を示す説明図であ
り、片側断面のみを示し、矢印で磁界の強さと向きを表
している。前記のように構成された高温超電導コイル1
10に通電すると、高温超電導コイル110の導体部に
は、図2(b)に示す磁界が発生する。磁界の強さおよ
び向きを変えた場合の導体の臨界電流密度と高温超電導
コイル110の磁界分布より、コイルユニット111、
112、113毎に臨界電流密度が最も低い場所の臨界
電流密度を求め、臨界電流密度の逆数に比例して導体1
21、122、123の導体断面積を決定する。これに
より、導体121、122、123の臨界電流がほぼ同
じとなり、高温超電導コイル110は導体の能力を発揮
し、高温超電導コイルの発生磁界が高まる。
FIG. 2 is a diagram for explaining the first embodiment, in which (a) is a high temperature superconducting conductor (Bi at a temperature of 5K).
FIG. 3 is a characteristic diagram showing the magnetic field strength and angle dependence of the critical current density of 1-x Pb x ) Sr 2 Ca 2 Cu 3 O y , where the angle is perpendicular to the longitudinal direction of the tape and is parallel to the surface of the tape. Case 0
Degrees are 90 degrees when vertical. Further, (b) is an explanatory view showing the magnetic field distribution in the winding portion of the high temperature superconducting coil, showing only one side cross section, and the arrows indicate the strength and direction of the magnetic field. High temperature superconducting coil 1 configured as described above
When electricity is applied to 10, a magnetic field shown in FIG. 2B is generated in the conductor part of the high temperature superconducting coil 110. From the critical current density of the conductor and the magnetic field distribution of the high temperature superconducting coil 110 when the strength and direction of the magnetic field are changed, the coil unit 111,
The critical current density of the place where the critical current density is the lowest is calculated for each 112 and 113, and the conductor 1 is proportional to the reciprocal of the critical current density.
The conductor cross-sectional areas of 21, 122 and 123 are determined. As a result, the critical currents of the conductors 121, 122, 123 become substantially the same, the high temperature superconducting coil 110 exhibits the performance of the conductor, and the magnetic field generated by the high temperature superconducting coil is increased.

【0052】例えば、内径20mm、外径80mm、コ
イル高さ5mm、導体断面積が一定のコイルユニット1
11を8個積層した高温超電導コイル110において、
発生磁界0.6テスラであった。コイルユニットの臨界
電流の比は端部のコイルユニットから中心のコイルユニ
ットの順に、例えば1:1.1:1.3:1.5である
場合、端部のコイルユニットがクエンチしたことがわか
る。そこで、コイルユニットの導体の断面積を1:0.
9:0.8:0.7とすれば、各コイルユニットの臨界
電流の比はほぼ1:1:1:1となり、高温超電導コイ
ルの発生磁界は、約0.8テスラとなる。
For example, the coil unit 1 having an inner diameter of 20 mm, an outer diameter of 80 mm, a coil height of 5 mm, and a constant conductor cross-sectional area.
In a high temperature superconducting coil 110 in which eight 11 are laminated,
The generated magnetic field was 0.6 Tesla. When the ratio of the critical currents of the coil units is from the end coil unit to the center coil unit in the order of, for example, 1: 1.1: 1.3: 1.5, it can be seen that the end coil unit is quenched. . Therefore, the cross-sectional area of the conductor of the coil unit is set to 1: 0.
If it is set to 9: 0.8: 0.7, the ratio of the critical current of each coil unit will be about 1: 1: 1: 1, and the magnetic field generated by the high temperature superconducting coil will be about 0.8 Tesla.

【0053】実施例2.図3(a)は請求項1および2
記載の発明の他の実施例であり、磁気浮上式鉄道に搭載
したレーストラック型の高温超電導コイル153であ
り、(b)に拡大して示すように、コイルユニット11
1、112、113の導体の断面積を、コイルユニット
111、112、113の順に1:0.7:0.5と変
えている。このように、浮上走行する磁気浮上式鉄道に
搭載したコイル153では、コイルユニット毎に導体断
面積を変えることにより、導体の能力を十分に発揮でき
るため、高温超電導コイル153を軽くできる。なお、
151は各コイルユニット間に挿入される熱電導部材で
あり、これを拡大して示す図3(c)と共に実施例10
で詳細に説明する。
Example 2. FIG. 3A shows claims 1 and 2.
It is another embodiment of the described invention, which is a racetrack type high temperature superconducting coil 153 mounted on a magnetic levitation railway, and as shown in an enlarged view in FIG.
The cross-sectional areas of the conductors 1, 112, 113 are changed to 1: 0.7: 0.5 in the order of the coil units 111, 112, 113. As described above, in the coil 153 mounted on the magnetically levitated railway that is levitating, the conductor capacity can be sufficiently exhibited by changing the conductor cross-sectional area for each coil unit, so that the high temperature superconducting coil 153 can be lightened. In addition,
Reference numeral 151 denotes a thermoelectric conductive member inserted between the coil units, which is shown in FIG.
Will be described in detail.

【0054】実施例3.次に請求項3記載の発明の一実
施例で、導体が高温超電導テープ材で構成されている場
合に、テープ材130の積層数を変えることにより断面
積を変えた場合を図4(a)、(b)に示す。1枚の高
温超電導テープ材130の臨界電流密度は、高温超電導
テープ材130のテープ厚さが0.1mmから0.2m
m程度で最大となるため、高温超電導テープ材130の
テープ厚さは大きく変えることが出来ない。そこで、導
体131、132、133毎に高温超電導テープ材の積
層数を変えれば臨界電流密度を低下させることなく導体
131、132、133毎に導体断面積を変えることが
でき、実施例1と同様の効果を得ることができる。
Example 3. Next, in an embodiment of the invention described in claim 3, when the conductor is composed of a high-temperature superconducting tape material, the case where the cross-sectional area is changed by changing the number of laminated tape materials 130 is shown in FIG. , (B). The critical current density of one high-temperature superconducting tape material 130 is such that the tape thickness of the high-temperature superconducting tape material 130 is 0.1 mm to 0.2 m.
Since the maximum is about m, the tape thickness of the high temperature superconducting tape material 130 cannot be changed greatly. Therefore, if the number of laminated high-temperature superconducting tape materials is changed for each of the conductors 131, 132, 133, the conductor cross-sectional area can be changed for each of the conductors 131, 132, 133 without lowering the critical current density. The effect of can be obtained.

【0055】実施例4.また、請求項3記載の発明の他
の実施例で、導体141、142、143の幅を変えた
実施例を図5に示す。この例では導体141、142、
143の厚みが一定であるため、コイルの外径を変える
ことなく導体の断面積をコイルユニット111、11
2、113毎に変えることができ、コイル設計が容易に
なる。
Example 4. FIG. 5 shows another embodiment of the invention described in claim 3 in which the widths of the conductors 141, 142 and 143 are changed. In this example, the conductors 141, 142,
Since the thickness of 143 is constant, the cross-sectional area of the conductor can be changed without changing the outer diameter of the coil.
It can be changed every 2 and 113, and the coil design becomes easy.

【0056】なお、高温超電導テープ材の幅および積層
数の両方を変え、導体断面積を変えてもよいのは云うま
でもない。
Needless to say, the cross-sectional area of the conductor may be changed by changing both the width and the number of layers of the high temperature superconducting tape material.

【0057】実施例5.また、請求項1および2項記載
の発明の他の実施例として、例えば図37に示したよう
な導体の超電導体533と安定化材532の割合を変え
てもよい。この場合、コイル形状、巻数が変わらないた
め、磁界の分布が変わらないという利点がある。
Example 5. As another embodiment of the invention described in claims 1 and 2, the ratio of the superconductor 533 and the stabilizing material 532 of the conductor as shown in FIG. 37 may be changed. In this case, there is an advantage that the distribution of the magnetic field does not change because the coil shape and the number of turns do not change.

【0058】実施例6.図6は請求項4記載の発明の一
実施例を示し、高温超電導テープ材を用いた高温超電導
コイルユニット111を複数個積層した高温超電導コイ
ルの両端に、強磁性体として例えばケイ素鋼板等の鉄製
のフランジ160を取り付けた高温超電導マグネットで
ある。
Example 6. FIG. 6 shows an embodiment of the invention as set forth in claim 4, wherein both ends of a high temperature superconducting coil in which a plurality of high temperature superconducting coil units 111 using a high temperature superconducting tape material are laminated are made of iron, such as a silicon steel plate, as a ferromagnetic material. It is a high temperature superconducting magnet with a flange 160 of No. 1 attached.

【0059】図7(a)はフランジ160がある場合、
(b)はフランジ160が無い場合のそれぞれコイル巻
線部の磁束の様子を示す説明図である。図中、矢印が磁
束の向きと大きさを表す。フランジ160がある場合、
磁界はフランジ160に向かうため磁束の高温超電導テ
ープ材130に垂直な成分が、フランジ160が無い場
合と比べ少ない。このため、高温超電導テープ材130
の磁界による臨界電流密度の低下が小さく、高温超電導
マグネットの発生磁界が高まる。
FIG. 7A shows that when the flange 160 is provided,
(B) is explanatory drawing which shows the mode of the magnetic flux of each coil winding part when there is no flange 160. In the figure, arrows indicate the direction and magnitude of magnetic flux. If there is a flange 160,
Since the magnetic field is directed to the flange 160, the component of the magnetic flux perpendicular to the high temperature superconducting tape material 130 is smaller than in the case without the flange 160. Therefore, the high temperature superconducting tape material 130
The decrease in the critical current density due to the magnetic field is small, and the magnetic field generated by the high temperature superconducting magnet is increased.

【0060】実施例7.図8(a)は請求項4記載の発
明の他の実施例で、磁気浮上式鉄道に搭載したレースト
ラック型の高温超電導コイル153の片面に、図8
(b)に拡大して示すように、鉄製のフランジ160を
取り付けた高温超電導マグネットである。これにより、
臨界電流が低い箇所を減らすことができる。
Example 7. FIG. 8 (a) is another embodiment of the invention according to claim 4, in which one side of a racetrack type high temperature superconducting coil 153 mounted on a magnetic levitation railway is provided.
As shown in an enlarged view in (b), it is a high temperature superconducting magnet to which an iron flange 160 is attached. This allows
It is possible to reduce locations where the critical current is low.

【0061】実施例8.また、上記実施例7ではフラン
ジ160はドーナツ型のものを用いて高温超電導コイル
153の巻線部付近のみに設置したが、楕円板状のもの
が高温超電導コイルの片側全面にあってもよい。この場
合、上記実施例7の効果に加えて、フランジ160を取
り付けた側を磁気浮上式鉄道の車両の内側とすれば、車
体の中に漏れる磁界を少なくできるという効果も得られ
る。
Example 8. In the seventh embodiment, the flange 160 is a donut type and is installed only near the winding portion of the high temperature superconducting coil 153. However, an elliptical plate shape may be provided on the entire one side of the high temperature superconducting coil. In this case, in addition to the effect of the seventh embodiment, if the side to which the flange 160 is attached is the inside of the vehicle of the magnetic levitation railway, the effect of reducing the magnetic field leaking into the vehicle body can be obtained.

【0062】実施例9.図9は請求項5記載の発明の一
実施例を示し、コイルユニット間にヒータ152を設け
た熱伝導部材151を挿入したものである。このように
構成されたものにおいて、高温超電導コイルの一部で超
電導破壊が検出された場合、ヒータ152により熱伝導
部材151を加熱し、高温超電導コイル110全体を超
電導破壊させる。これにより、超電導コイル全体で高温
超電導コイルに蓄えられたエネルギを吸収し、高温超電
導コイルの一部にエネルギが集中して高温超電導コイル
が焼損するのを防止できる。
Example 9. FIG. 9 shows an embodiment of the invention described in claim 5, in which a heat conducting member 151 provided with a heater 152 is inserted between coil units. In such a structure, when the superconducting destruction is detected in a part of the high temperature superconducting coil, the heater 152 heats the heat conducting member 151 to cause the entire high temperature superconducting coil 110 to undergo the superconducting destruction. This makes it possible to prevent the energy stored in the high-temperature superconducting coil from being absorbed by the entire superconducting coil and prevent the high-temperature superconducting coil from being burned due to the concentration of energy in a part of the high-temperature superconducting coil.

【0063】実施例10.また、請求項5記載の発明の
他の実施例として、図3(a)に示すような永久電流で
運転される高温超電導コイル153では、超電導破壊し
た場合の高温超電導コイル153のエネルギを外部に取
り出すことができないため、図3(b)、(c)に示す
ようにコイルユニット111、112、113間にヒー
タ152を設けた熱伝導部材151を挿入し、高温超電
導コイル153全体でエネルギを吸収することが特に有
効である。
Example 10. Further, as another embodiment of the invention according to claim 5, in the high temperature superconducting coil 153 operated with a permanent current as shown in FIG. 3A, the energy of the high temperature superconducting coil 153 in the case of superconducting breakdown is transferred to the outside. Since it cannot be taken out, a heat conducting member 151 provided with a heater 152 is inserted between the coil units 111, 112, 113 as shown in FIGS. 3B and 3C, and the high temperature superconducting coil 153 absorbs energy as a whole. This is especially effective.

【0064】実施例11.図10(a)は請求項6記載
の発明の一実施例を一部破断して示す斜視図、(b)は
(a)の要部を拡大して示す斜視図である。この例で
は、導体121間の電気絶縁にセラミックス繊維として
アルミナ繊維203を使用し、その繊維方向を導体12
1の長手方向とほぼ直向させて含浸材で固定している。
図11に、導体121、アルミナ繊維203、含浸材で
ある樹脂(例えばグレース社製スタイキャスト126
6)およびアルミナ繊維203と樹脂の複合材の熱膨張
率を示すように、導体121と複合材の繊維方向に平行
な熱膨張率が異なるため、冷却時の熱歪みにより導体の
臨界電流が低下するが、導体121と複合材の繊維方向
に垂直な熱膨張率はほぼ一致するため導体121の臨界
電流は低下しない。
Example 11. FIG. 10 (a) is a perspective view showing an embodiment of the invention according to claim 6 in a partially cutaway manner, and FIG. 10 (b) is an enlarged perspective view showing a main part of FIG. 10 (a). In this example, alumina fibers 203 are used as ceramic fibers for electrical insulation between the conductors 121, and the fiber direction is the conductor 12
It is fixed with an impregnating material so as to be oriented almost directly in the longitudinal direction of 1.
FIG. 11 shows a conductor 121, an alumina fiber 203, and a resin as an impregnating material (for example, Stycast 126 manufactured by Grace Co.
6) and the coefficient of thermal expansion of the composite material of the alumina fiber 203 and the resin, the coefficient of thermal expansion of the conductor 121 and that of the composite material parallel to the fiber direction are different, so that the critical current of the conductor decreases due to thermal strain during cooling. However, since the coefficient of thermal expansion of the conductor 121 and that of the composite material in the fiber direction are substantially the same, the critical current of the conductor 121 does not decrease.

【0065】なお、セラミックス繊維203は、高温超
電導コイルを焼成する温度に耐える材料であればアルミ
ナ繊維に限らず何であってもよく、また、複合材中のセ
ラミックス繊維203の占有率は、導体121と複合材
の熱膨張率が略一致するよう選定する。また、高温超電
導コイル110を冷却した場合の導体121と複合材2
01の熱膨張率の差に基づく歪は、0.1%程度以下で
あれば実用上問題ない。
The ceramic fiber 203 is not limited to the alumina fiber as long as it can withstand the temperature at which the high temperature superconducting coil is fired, and any ceramic fiber 203 may be used. And the coefficient of thermal expansion of the composite material are selected to be approximately the same. In addition, the conductor 121 and the composite material 2 when the high temperature superconducting coil 110 is cooled
The strain due to the difference in thermal expansion coefficient of 01 is practically no problem as long as it is about 0.1% or less.

【0066】実施例12.また、請求項7記載のよう
に、含浸材を例えばエポキシ樹脂等のように室温程度以
下の温度で硬化する材料とすれば、温度を上げて硬化さ
せる含浸材を使用した場合と比べ、硬化温度と高温超電
導コイルの運転温度の温度差を少なくでき、冷却後の歪
みが少なくなり、導体121の臨界電流の低下を小さく
できるため、高温超電導コイルの発生磁界を高くでき
る。
Example 12 Further, as described in claim 7, when the impregnating material is a material that cures at a temperature of about room temperature or lower, such as an epoxy resin, the curing temperature is higher than that when an impregnating material that raises the temperature and cures is used. The temperature difference between the operating temperature of the high temperature superconducting coil can be reduced, the strain after cooling can be reduced, and the decrease in the critical current of the conductor 121 can be reduced, so that the magnetic field generated by the high temperature superconducting coil can be increased.

【0067】実施例13.図12(a)は請求項6記載
の発明の他の実施例に係る超電導コイルを一部破断して
示す斜視図、(b)は(a)の要部を拡大して示す斜視
図である。この例では例えば高温超電導テープ材からな
る導体121の全周にアルミナ繊維203を2層配置し
て電気絶縁している。この実施例の場合も上記実施例1
1と同様に導体の臨界電流の低下を防止できる効果があ
る。また、図10に示したような複数のコイルユニット
111を積層する超電導コイルにおいて、導体121の
側面だけでなく全周にセラミックス繊維を配置すること
により各コイルユニット111間に挿入される絶縁板1
00を省くこともできる。
Example 13 FIG. 12 (a) is a perspective view showing a partially broken superconducting coil according to another embodiment of the present invention, and FIG. 12 (b) is an enlarged perspective view showing an essential part of (a). . In this example, for example, two layers of alumina fibers 203 are arranged all around the conductor 121 made of a high-temperature superconducting tape material for electrical insulation. In the case of this embodiment as well,
As in the case of No. 1, there is an effect that the reduction of the critical current of the conductor can be prevented. In a superconducting coil in which a plurality of coil units 111 are stacked as shown in FIG. 10, by arranging ceramic fibers not only on the side surface of the conductor 121 but also on the entire circumference, the insulating plate 1 inserted between the coil units 111 can be formed.
00 can be omitted.

【0068】実施例14.図13(a)は請求項8記載
の発明の一実施例に係る超電導コイルを一部破断して示
す斜視図である。この例では、図13(b)に拡大して
示すように、導体121と例えばアルミナ板からなる絶
縁材202の間に例えば銀や銅やSUS等からなる応力
緩衝材301が挿入されているので、高温超電導コイル
を冷却した際、導体121と絶縁材202の熱膨張率の
差による導体121の歪みを応力緩衝材301が吸収
し、導体121は歪みが緩和されるため、歪みによる導
体121の臨界電流の低下がなくなり、高温超電導コイ
ルの発生磁界を高くできる。また、応力緩衝材301を
熱伝導性に優れた銀または銅とすれば、導体121と絶
縁材202の間に発生する熱をすばやく拡散するため、
高温超電導コイルの安定性が高まる。
Example 14 FIG. 13A is a perspective view showing a partially cutaway superconducting coil according to an embodiment of the present invention. In this example, as shown in an enlarged view in FIG. 13B, since the stress buffer material 301 made of, for example, silver, copper, SUS, or the like is inserted between the conductor 121 and the insulating material 202 made of, for example, an alumina plate. When the high-temperature superconducting coil is cooled, the stress buffer material 301 absorbs the strain of the conductor 121 due to the difference in the coefficient of thermal expansion between the conductor 121 and the insulating material 202, and the strain of the conductor 121 is relaxed. The decrease in critical current is eliminated, and the magnetic field generated by the high temperature superconducting coil can be increased. If the stress buffer material 301 is made of silver or copper having excellent thermal conductivity, the heat generated between the conductor 121 and the insulating material 202 is quickly diffused.
The stability of the high temperature superconducting coil is increased.

【0069】実施例15.また、上記実施例14では絶
縁材202の両側に応力緩衝材301を設けた場合につ
いて示したが、請求項8記載の発明の他の実施例とし
て、片側のみに設けても、臨界電流の低下を少なくでき
るのは明かである。
Example 15 In addition, although the stress buffering material 301 is provided on both sides of the insulating material 202 in the fourteenth embodiment, as another embodiment of the invention described in claim 8, even if the stress buffering material 301 is provided on only one side, the critical current decreases. It is clear that the amount can be reduced.

【0070】実施例16.図14(a)は請求項8記載
の発明のさらに他の実施例を一部破断して示す斜視図で
ある。この例では、図14(b)にその要部を拡大して
示すように、導体121の外周を応力緩衝材302で包
囲し、さらに応力緩衝材302の外周を絶縁材202で
包囲しており、この場合にも上記実施例14と同様の効
果を得ることができる。
Example 16. FIG. 14 (a) is a partially cutaway perspective view showing still another embodiment of the present invention. In this example, as shown in an enlarged view of the main part in FIG. 14B, the outer circumference of the conductor 121 is surrounded by the stress buffer material 302, and the outer circumference of the stress buffer material 302 is surrounded by the insulating material 202. Also in this case, the same effect as that of the fourteenth embodiment can be obtained.

【0071】実施例17.図15は請求項9記載の発明
の一実施例による高温超電導マグネットの運転方法を説
明するための説明図であり、2枚の高温超電導テープ材
を重ねて作製した導体を巻回した高温超電導コイルを励
磁する場合について説明する。2枚の高温超電導テープ
材をテープa、テープbとし、それぞれに流れる電流を
それぞれ電流a、電流bとした。図15(a)、(b)
は高温超電導コイルの運転温度より導体の温度マージン
だけ高い温度T1で励磁した場合を示し、(c)、
(d)は高温超電導コイルの運転温度T0で励磁した場
合を示す。ここで、コイルの運転電流が臨界電流となる
温度T1と、コイルの運転温度T0との差が温度マージン
である。
Example 17 FIG. 15 is an explanatory view for explaining an operating method of a high temperature superconducting magnet according to an embodiment of the invention described in claim 9, and is a high temperature superconducting coil formed by winding a conductor produced by stacking two high temperature superconducting tape materials. The case of exciting will be described. The two high-temperature superconducting tape materials were designated as tape a and tape b, and the currents flowing through them were designated as current a and current b, respectively. 15 (a), (b)
Indicates a case where the coil is excited at a temperature T 1 which is higher than the operating temperature of the high temperature superconducting coil by a temperature margin of the conductor, (c),
(D) shows the case of exciting at the operating temperature T 0 of the high temperature superconducting coil. Here, the difference between the temperature T 1 at which the coil operating current becomes a critical current and the coil operating temperature T 0 is the temperature margin.

【0072】図15(c)(d)に示すように、一般に
行われているように、高温超電導コイルの運転温度T0
で励磁した場合には、全電流を増していくと導体には高
温超電導コイルの自己磁界による誘導電流が流れて電流
aと電流bに差が生じ、電流aは高温超電導コイルの運
転温度に対応した電流で飽和する。この電流は高温超電
導コイルの運転電流値Aの半分の値2/1Aより大きい。
これにより、高温超電導コイルの励磁後は、電流aと電
流bに差が生じる。この状態ではテープ材aにわずかの
外乱が加わっても、高温超電導コイルは超電導破壊をす
る。そこで、図15(a)(b)に示すように、高温超
電導コイルの運転温度より導体の温度マージンだけ高い
温度T1で励磁した場合には、電流aが飽和する電流値
は、高温超電導コイルの運転電流値Aの半分の値2/1A
となる。高温超電導コイルの励磁完了時には、電流bは
電流aと同じ電流値となる。この状態で、高温超電導コ
イルの温度を運転温度まで低下させるとテープa、テー
プbともに外乱が発生しても超電導破壊を起こしにく
い。なお、この例では高温超電導テープ材が2枚の場合
で説明したが、これに限るものではなく、高温超電導テ
ープ材が3枚以上の場合でもこの例と同様の効果が得ら
れる。
As shown in FIGS. 15 (c) and 15 (d), the operating temperature T 0 of the high temperature superconducting coil, as is generally done.
When excited by, the induced current due to the self-magnetic field of the high temperature superconducting coil flows in the conductor as the total current increases, and a difference occurs between the current a and the current b. The current a corresponds to the operating temperature of the high temperature superconducting coil. Is saturated with the current. This current is larger than half of the operating current value A of the high temperature superconducting coil, which is 2 / 1A.
This causes a difference between the current a and the current b after the high temperature superconducting coil is excited. In this state, even if a slight disturbance is applied to the tape material a, the high temperature superconducting coil will be destroyed by superconductivity. Therefore, as shown in FIGS. 15A and 15B, when excited at a temperature T 1 higher than the operating temperature of the high temperature superconducting coil by the temperature margin of the conductor, the current value at which the current a saturates is high. Half the operating current value A of 2 / 1A
Becomes When the excitation of the high temperature superconducting coil is completed, the current b has the same current value as the current a. In this state, if the temperature of the high temperature superconducting coil is lowered to the operating temperature, superconducting breakdown is unlikely to occur even if disturbance occurs on both tape a and tape b. In this example, the case where there are two high temperature superconducting tape materials has been described, but the present invention is not limited to this, and the same effect as this example can be obtained even when there are three or more high temperature superconducting tape materials.

【0073】さらに、図16に、前記励磁後、高温超電
導コイルを時間Tで永久電流にした場合の電流の時間変
化を示す。図16(a)(b)は請求項9記載の発明の
一実施例に関わり、高温超電導コイルの運転温度より導
体の温度マージンだけ高い温度で励磁した後永久電流に
した場合を示し、(c)(d)は高温超電導コイルの運
転温度で励磁した後永久電流にした場合を示す。図16
(c)(d)において、電流aと電流bが異なっている
のでテープaからテープbに電流が移動し、移動する電
流は常電導部を通過するため、全電流はわずかづつ減少
する。これに対して図16(a)(b)では、電流aと
電流bは等しく、前記電流の移動がないため、全電流は
減少しない。
Further, FIG. 16 shows the time variation of the current when the high temperature superconducting coil is made a permanent current at time T after the excitation. FIGS. 16 (a) and 16 (b) relate to an embodiment of the invention of claim 9 and show a case where permanent current is applied after excitation at a temperature higher than the operating temperature of the high temperature superconducting coil by a temperature margin of the conductor, ) (D) shows the case where a permanent current was applied after excitation at the operating temperature of the high temperature superconducting coil. FIG.
In (c) and (d), since the current a and the current b are different, the current moves from the tape a to the tape b, and the moving current passes through the normal conducting portion, so that the total current decreases slightly. On the other hand, in FIGS. 16A and 16B, the current a is equal to the current b and the current does not move, so that the total current does not decrease.

【0074】実施例18.次に請求項10記載の発明の
一実施例について説明する。この例では例えば図9に示
したように、高温超電導コイルは励磁時昇温用のヒータ
152を備え、かつこの励磁時昇温用のヒータは高温超
電導コイルが超電導破壊した際の強制クエンチ用のヒー
タと兼ねている。ヒータ152により励磁時に高温超電
導コイルの温度を、高温超電導コイルの運転温度より温
度マージンだけ上げることができ、ヒータ数を増やすこ
となく超電導破壊しにくい高温超電導マグネットが得ら
れる。
Example 18. Next, an embodiment of the invention described in claim 10 will be described. In this example, as shown in FIG. 9, for example, the high temperature superconducting coil is provided with a heater 152 for raising the temperature during excitation, and the heater for raising the temperature during excitation is for forced quench when the high temperature superconducting coil is destroyed by superconductivity. Also serves as a heater. By the heater 152, the temperature of the high temperature superconducting coil can be increased by a temperature margin from the operating temperature of the high temperature superconducting coil during excitation, and a high temperature superconducting magnet which is hard to be broken by superconducting can be obtained without increasing the number of heaters.

【0075】実施例19.図17は請求項11記載の発
明の一実施例による高温超電導マグネットを説明する構
成図であり、図において、110は高温超電導コイル、
404は永久電流スイッチ、360は永久電流スイッチ
404と高温超電導コイル110を熱的に接続する熱伝
導部材360、152は熱伝導部材360に取り付けら
れたヒータである。このように構成されたものにおい
て、高温超電導コイル110を励磁する際、ヒータ15
2により熱伝導部材151を加熱すれば、永久電流スイ
ッチ404と高温超電導コイル110を同時に昇温する
ことができる。なお、この例ではヒータ152を熱伝導
部材360に設けた場合について説明したが、これに限
るものではなく、高温超電導コイル110や永久電流ス
イッチ404に設けてもよい。
Example 19 FIG. 17 is a block diagram for explaining a high temperature superconducting magnet according to an embodiment of the invention as set forth in claim 11, in which 110 is a high temperature superconducting coil,
Reference numeral 404 is a permanent current switch, 360 is a heat conducting member 360, 152 for thermally connecting the permanent current switch 404 and the high temperature superconducting coil 110, and heaters attached to the heat conducting member 360. When the high-temperature superconducting coil 110 is excited in the thus-configured one, the heater 15
By heating the heat conducting member 151 by 2, the temperature of the persistent current switch 404 and the high temperature superconducting coil 110 can be raised simultaneously. In this example, the heater 152 is provided in the heat conducting member 360, but the present invention is not limited to this, and the heater 152 may be provided in the high temperature superconducting coil 110 or the persistent current switch 404.

【0076】実施例20.図18は請求項12記載の発
明の一実施例を示し、(a)に斜視図で示したように、
2枚の高温超電導テープ材341、342を絶縁物を介
して重ね合わせた導体を巻回して構成されるコイルユニ
ットA311と、同様に構成されこのコイルユニット3
11と積層されるもう一つのコイルユニットBとの、高
温超電導テープ材同士の接続の仕方に関するものであ
る。すなわち(b)に示すように、各コイルユニット
A、B311、312間での上記高温超電導テープ材の
接続においては、2組のテープ材は、一方のコイルユニ
ットの内側から1番目に卷かれた高温超電導テープ材3
41、343と、他方のコイルユニットの内側から2番
目に卷かれた高温超電導テープ材342、344とを接
続することにより、上記高温超電導テープ材の作るルー
プを貫く磁束の和が略ゼロになるように構成したもので
ある。なお、105は電極リード、330は接続部を示
す。このように接続することにより、高温超電導コイル
の励磁時に領域AとBで誘導される電圧がキャンセルさ
れ、磁界変化にともなう誘導電流が高温超電導テープ材
に生じない。よって高温超電導テープ341と高温超電
導テープ342、また高温超電導テープ343と高温超
電導テープ344に電流が平均して流れるため、高温超
電導コイルは超電導破壊しにくい。また、誘導電流が生
じないため、励磁速度を早くできる。
Example 20. FIG. 18 shows an embodiment of the invention according to claim 12, and as shown in a perspective view in (a),
A coil unit A311 configured by winding a conductor obtained by stacking two high temperature superconducting tape materials 341 and 342 with an insulator interposed therebetween, and the coil unit A311 configured in the same manner.
The present invention relates to a method of connecting the high temperature superconducting tape materials to each other and another coil unit B to be laminated. That is, as shown in (b), in the connection of the above-mentioned high temperature superconducting tape material between the coil units A, B 311, 312, two sets of tape materials were wound first from the inside of one coil unit. High temperature superconducting tape material 3
By connecting 41 and 343 to the high-temperature superconducting tape materials 342 and 344 that are rolled up second from the inside of the other coil unit, the sum of the magnetic fluxes that penetrate through the loop formed by the high-temperature superconducting tape material becomes approximately zero. It is configured as follows. In addition, 105 is an electrode lead and 330 is a connection part. This connection cancels the voltage induced in the regions A and B when the high-temperature superconducting coil is excited, so that the induced current due to the change in the magnetic field does not occur in the high-temperature superconducting tape material. Therefore, since the currents evenly flow through the high temperature superconducting tape 341 and the high temperature superconducting tape 342, and between the high temperature superconducting tape 343 and the high temperature superconducting tape 344, the high temperature superconducting coil is less likely to undergo superconducting breakdown. Moreover, since no induced current is generated, the excitation speed can be increased.

【0077】実施例21.図19、20は請求項12記
載の発明の他の実施例を示し、図18(a)と同様に構
成されたコイルユニット311、312、313、31
4が4個の場合の接続例であり、これらの例でも高温超
電導テープ材の作るループを貫く磁束の和が略ゼロにな
るように構成されており、上記実施例20と同様の効果
がある。
Example 21. 19 and 20 show another embodiment of the invention according to claim 12, and coil units 311, 312, 313, 31 having the same structure as in FIG. 18 (a).
4 is a connection example in the case of 4 pieces, and in these examples as well, the sum of the magnetic fluxes passing through the loop made by the high temperature superconducting tape material is configured to be substantially zero, and there is the same effect as in the above-mentioned Example 20. .

【0078】実施例22.図21、22は請求項12記
載の発明の他の実施例を示し、3枚の高温超電導テープ
材341、342、343を絶縁物を介して重ね合わせ
た導体を巻回して構成されたコイルユニットが図21は
2個311、312の場合、図22は3個311、31
2、313の場合の接続例である。図21においては、
一方のコイルユニットの内側から1番目に卷かれた高温
超電導テープ材341と他方のコイルユニットの内側か
ら3番目に卷かれた高温超電導テープ材343、内側か
ら2番目に卷かれた高温超電導テープ材342どうし、
および内側から3番目に卷かれた高温超電導テープ材3
43と内側から1番目に卷かれた高温超電導テープ材3
41とをそれぞれ接続しており、図22においては一方
のコイルユニットの内側から1番目に卷かれた高温超電
導テープ材341と他方のコイルユニットの内側から2
番目に卷かれた高温超電導テープ材342、内側から2
番目に巻かれた高温超電導テープ材342と内側から3
番目に巻かれた高温超電導テープ材343、および内側
から3番目に巻かれた高温超電導テープ材343と内側
から1番目に卷かれた高温超電導テープ材341とをそ
れぞれ接続している。これらの例でも高温超電導テープ
材の作るループを貫く磁束の和が略ゼロになるように構
成されており、上記実施例20と同様の効果がある。
Example 22. 21 and 22 show another embodiment of the invention according to claim 12, which is a coil unit formed by winding a conductor in which three sheets of high temperature superconducting tape materials 341, 342 and 343 are superposed with an insulator interposed therebetween. 21 shows two 311, 312, and FIG. 22 shows three 311, 31
This is a connection example in the case of 2, 313. In FIG. 21,
High temperature superconducting tape material 341 rolled first from the inside of one coil unit, high temperature superconducting tape material 343 rolled third from the inside of the other coil unit, high temperature superconducting tape material rolled second from the inside. 342,
And the third high-temperature superconducting tape material 3 from the inside
43 and the high-temperature superconducting tape material 3 rolled up from the inside 3
In FIG. 22, the high-temperature superconducting tape material 341 rolled from the inside of one coil unit and the other from the inside of the other coil unit are connected to each other in FIG.
Second high temperature superconducting tape material 342, 2 from inside
High-Tc superconducting tape material 342 wrapped around the third and 3 from the inside
The high-temperature superconducting tape material 343 wound in the third order, the high-temperature superconducting tape material 343 wound in the third order from the inside, and the high-temperature superconducting tape material 341 wound in the first order from the inside are respectively connected. Also in these examples, the sum of magnetic fluxes passing through the loop formed by the high temperature superconducting tape material is set to be substantially zero, and the same effect as that of the above-mentioned Example 20 is obtained.

【0079】実施例23.図23、24は請求項12記
載の発明のさらに他の実施例を示し、4枚の高温超電導
テープ材341、342、343、344を絶縁物を介
して重ね合わせた導体を巻回して構成されたコイルユニ
ットが2個の場合の接続例である。図23においては一
方のコイルユニットの内側から1番目に卷かれた高温超
電導テープ材341と他方のコイルユニットの内側から
2番目に卷かれた高温超電導テープ材342、内側から
2番目に卷かれた高温超電導テープ材342と内側から
1番目に卷かれた高温超電導テープ材341、内側から
3番目に巻かれた高温超電導テープ材343と内側から
4番目に巻かれた高温超電導テープ材344、および内
側から4番目に巻かれた高温超電導テープ材344と内
側から3番目に巻かれた高温超電導テープ材343とが
それぞれ接続されており、図24においては一方のコイ
ルユニットの内側から1番目に卷かれた高温超電導テー
プ材341と他方のコイルユニットの内側から4番目に
卷かれた高温超電導テープ材344、内側から2番目に
卷かれた高温超電導テープ材342と内側から3番目に
卷かれた高温超電導テープ材343、内側から3番目に
巻かれた高温超電導テープ材343と内側から2番目に
巻かれた高温超電導テープ材342、および内側から4
番目に巻かれた高温超電導テープ材344と内側から1
番目に巻かれた高温超電導テープ材341とがそれぞれ
接続されている。これらの例でも高温超電導テープ材の
作るループを貫く磁束の和が略ゼロになるように構成さ
れており、上記実施例20と同様の効果がある。
Example 23. 23 and 24 show still another embodiment of the invention according to claim 12, which is constructed by winding a conductor in which four sheets of high temperature superconducting tape materials 341, 342, 343 and 344 are superposed with an insulator interposed therebetween. This is an example of connection when there are two coil units. In FIG. 23, the high-temperature superconducting tape material 341 rolled first from the inside of one coil unit, the high-temperature superconducting tape material 342 rolled second from the inside of the other coil unit, and the second winding roller from the inside. High temperature superconducting tape material 342, high temperature superconducting tape material 341 wound first from the inside, high temperature superconducting tape material 343 wound third from the inner side, high temperature superconducting tape material 344 wound from the fourth inside, and inner side The fourth high temperature superconducting tape material 344 and the third high temperature superconducting tape material 343 wound from the inside are connected to each other, and in FIG. High temperature superconducting tape material 341 and the other coil unit, the high temperature superconducting tape material 344 rolled up from the inside of the other coil unit, the second from the inside High-temperature superconducting tape material 342 wound up, high-temperature superconducting tape material 343 wound third from the inside, high-temperature superconducting tape material 343 wound third from the inside, and high-temperature superconducting tape material 342 wound second from the inside. , And 4 from the inside
High-temperature superconducting tape material 344 wrapped around the second and 1 from the inside
The high-temperature superconducting tape material 341 wound in the second order is connected to each. Also in these examples, the sum of magnetic fluxes passing through the loop formed by the high temperature superconducting tape material is set to be substantially zero, and the same effect as that of the above-mentioned Example 20 is obtained.

【0080】以上、実施例20〜23で説明したよう
に、複数枚の高温超電導テープ材を絶縁物を介して重ね
合わせた導体を巻回して構成されるコイルユニットを複
数個積層した高温超電導コイルを備えるものにおいて、
各コイルユニット間での高温超電導テープ材の接続にお
いては、少なくとも2組のテープ材は、一方のコイルユ
ニットの内側からn番目に卷かれた高温超電導テープ材
と、他方のコイルユニットの内側からm番目(ただし
n、mは異なる整数)に卷かれた高温超電導テープ材と
を接続することにより、高温超電導テープ材の作るルー
プを貫く磁束の和が略ゼロになるように構成すれば、重
ね合わされた各高温超電導テープ材に電流が平均して流
れるため、高温超電導コイルは超電導破壊し難く、ま
た、誘導電流が生じないため、励磁速度を早くできる。
As described above in Examples 20 to 23, the high temperature superconducting coil is formed by laminating a plurality of coil units formed by winding a conductor in which a plurality of high temperature superconducting tape materials are superposed with an insulator interposed therebetween. With
In the connection of the high temperature superconducting tape material between the coil units, at least two sets of tape materials include a high temperature superconducting tape material wound nth from the inside of one coil unit and m from the inside of the other coil unit. If the sum of the magnetic fluxes passing through the loop made by the high temperature superconducting tape material is made substantially zero by connecting the second high temperature superconducting tape material (where n and m are different integers), they will be superposed. In addition, since the current flows through each of the high-temperature superconducting tape materials evenly, the high-temperature superconducting coil is less likely to undergo superconducting breakdown, and since no induced current is generated, the exciting speed can be increased.

【0081】実施例24.図25は請求項13記載の発
明の一実施例を示し、各コイルユニット間での導体の接
続部近傍に冷却用の熱伝導部材を設置した例である。こ
の例では各コイルユニット111間の接続部を二箇所に
集め、接続部材351の近傍に冷凍機に接続された熱伝
導部材360を設置している。高温超電導コイルを励磁
すると、接続抵抗や接続部材351の抵抗により接続部
が発熱するが、熱伝導部材360を接続部近傍に設置し
たので、発熱を速やかに除去でき、高温超電導コイルの
温度上昇を防ぐことができ、高温超電導コイルは超電導
破壊しにくい。
Example 24. FIG. 25 shows an embodiment of the invention according to claim 13 and is an example in which a heat conduction member for cooling is installed in the vicinity of the connecting portion of the conductor between the coil units. In this example, the connecting portions between the coil units 111 are collected at two places, and the heat conducting member 360 connected to the refrigerator is installed near the connecting member 351. When the high temperature superconducting coil is excited, the connection portion and the resistance of the connecting member 351 generate heat in the connection portion, but since the heat conducting member 360 is installed in the vicinity of the connection portion, the heat generation can be quickly removed and the temperature rise of the high temperature superconducting coil can be prevented. It is possible to prevent it, and the high temperature superconducting coil is hard to be broken by superconductivity.

【0082】実施例25.図26は請求項14記載の発
明の一実施例を示し、図において、360は熱電導部
材、361はコイル支持部材、370はコイルを収納す
る容器である。この例では、コイル支持部材361に冷
凍機に接続された熱伝導部材360を接続し、熱伝導部
材360を高温超電導コイル110に接続している。こ
のように、熱伝導部材360を介して高温超電導コイル
110とコイル支持部材361を接続したため、通常、
室温または略液体窒素温度であるコイル容器370か
ら、コイル支持部材361を介して高温超電導コイル1
10に伝わる熱を大幅に低減でき高温超電導コイル11
0の温度上昇を防ぐことができ、クエンチしにくい高温
超電導マグネットが得られる。
Example 25. FIG. 26 shows an embodiment of the invention set forth in claim 14, in which 360 is a thermoconductive member, 361 is a coil support member, and 370 is a container for housing the coil. In this example, the heat conducting member 360 connected to the refrigerator is connected to the coil supporting member 361, and the heat conducting member 360 is connected to the high temperature superconducting coil 110. In this way, since the high temperature superconducting coil 110 and the coil supporting member 361 are connected via the heat conducting member 360, normally,
From the coil container 370 at room temperature or substantially liquid nitrogen temperature, the high temperature superconducting coil 1 via the coil supporting member 361.
High-temperature superconducting coil 11 capable of significantly reducing heat transmitted to 10
A high temperature superconducting magnet that can prevent a temperature rise of 0 and is hard to quench is obtained.

【0083】実施例26.なお、請求項14記載の発明
の他の実施例として、高温超電導コイル110とコイル
支持部材361を接続し、接続した箇所の近傍に冷却用
の熱伝導部材360を設置してもよい。この場合、上記
実施例25と同様の効果に加えて高温超電導コイル11
0とコイル支持部材361を強固に固定できるという効
果も得られる。
Example 26. As another embodiment of the fourteenth aspect of the present invention, the high temperature superconducting coil 110 and the coil supporting member 361 may be connected, and the heat conducting member 360 for cooling may be installed in the vicinity of the connected portion. In this case, in addition to the effect similar to that of Example 25, the high temperature superconducting coil 11
0 and the coil support member 361 can be firmly fixed.

【0084】実施例27.図27は請求項15記載の発
明の一実施例を示し、図において、401は高温超電導
コイル110が収納される液体窒素温度以下の低温空
間、402は超電導コイル110の運転温度より高く高
温超電導材の臨界温度より低い中温空間、403は室温
空間、404は高温超電導コイル110と並列に接続さ
れ臨界温度が80Kから150Kの高温超電導体で作製
した永久電流スイッチ、405は高温超電導コイル11
0を励磁する電源、406は永久電流スイッチ404の
温度を上げるためのヒータである。高温超電導コイル1
10は液体窒素温度以下の低温空間401、永久電流ス
イッチ404は中温空間402、電源405は室温空間
403にそれぞれ配置されている。このように、永久電
流スイッチ404を超電導コイルの運転温度より高く高
温超電導材の臨界温度より低い中温空間、すなわち高温
超電導体の臨界温度である80Kから150Kに近い略
液体窒素温度空間402に設置しているので、永久電流
スイッチ404を作動させるためには、永久電流スイッ
チ404の温度を略液体窒素温度と臨界温度の間で変化
させれば良く、スイッチ速度が早くなる。また、永久電
流スイッチ404を作動させるのに必要なヒータ406
の熱量が少なくてよい。
Example 27. 27 shows an embodiment of the invention according to claim 15, wherein 401 is a low temperature space below the liquid nitrogen temperature in which the high temperature superconducting coil 110 is housed, and 402 is a high temperature superconducting material higher than the operating temperature of the superconducting coil 110. Is a medium temperature space lower than the critical temperature, 403 is a room temperature space, 404 is a permanent current switch connected in parallel with the high temperature superconducting coil 110 and made of a high temperature superconductor having a critical temperature of 80K to 150K, and 405 is a high temperature superconducting coil 11.
A power source for exciting 0, 406 is a heater for raising the temperature of the permanent current switch 404. High temperature superconducting coil 1
Reference numeral 10 is a low temperature space 401 below the liquid nitrogen temperature, permanent current switch 404 is a medium temperature space 402, and power source 405 is a room temperature space 403. Thus, the permanent current switch 404 is installed in the medium temperature space higher than the operating temperature of the superconducting coil and lower than the critical temperature of the high temperature superconducting material, that is, in the substantially liquid nitrogen temperature space 402 close to 80K to 150K which is the critical temperature of the high temperature superconductor. Therefore, in order to operate the persistent current switch 404, the temperature of the persistent current switch 404 may be changed between approximately the liquid nitrogen temperature and the critical temperature, and the switch speed becomes faster. Also, the heater 406 required to operate the permanent current switch 404 is
It requires less heat.

【0085】図28にBi系高温超電導テープ材の臨界
電流密度の温度依存性を示す。略液体窒素温度では高温
超電導テープ材の臨界電流密度は磁界により急激に低下
し、ほぼゼロとなるため。磁界により永久電流スイッチ
404を動作できる。この場合、永久電流スイッチ40
4の温度は上昇していないため、磁界による永久電流ス
イッチの動作は瞬時にできる。
FIG. 28 shows the temperature dependence of the critical current density of the Bi type high temperature superconducting tape material. At approximately liquid nitrogen temperature, the critical current density of the high temperature superconducting tape material drops sharply due to the magnetic field and becomes almost zero. The permanent current switch 404 can be operated by the magnetic field. In this case, the permanent current switch 40
Since the temperature of No. 4 has not risen, the operation of the permanent current switch by the magnetic field can be instantaneously performed.

【0086】実施例28.図29は請求項16および1
7記載の発明の一実施例を示し、図において、421は
コイル、422は高温超電導体、423は磁界、424
は高温超電導体422のc軸である。図28で示した6
3Kにおいて磁界を高温超電導体422のc軸424に
平行にかけた場合と垂直にかけた場合の臨界電流密度の
変化から明らかなように、コイル421により磁界42
3を高温超電導体422のc軸424に平行にかけた場
合、磁界423による臨界電流密度の低下はより顕著と
なり、磁界423が弱くても永久電流スイッチを動作さ
せることができる。なお、図28では63Kにおける磁
界を高温超電導体422のc軸424に平行にかけた場
合と垂直にかけた場合の臨界電流密度の変化の違いを示
したが、63Kに限るものではなく、他の温度でも同様
の傾向がある。
Example 28. FIG. 29 shows claims 16 and 1.
7 shows an embodiment of the invention described in 7, wherein 421 is a coil, 422 is a high temperature superconductor, 423 is a magnetic field, 424.
Is the c-axis of the high temperature superconductor 422. 6 shown in FIG.
As is clear from the change in the critical current density when the magnetic field is applied parallel to and perpendicular to the c-axis 424 of the high temperature superconductor 422 at 3 K, the magnetic field 42 is generated by the coil 421.
When 3 is applied in parallel to the c-axis 424 of the high temperature superconductor 422, the decrease in the critical current density due to the magnetic field 423 becomes more remarkable, and the permanent current switch can be operated even if the magnetic field 423 is weak. Note that FIG. 28 shows the difference in change in the critical current density between when the magnetic field at 63K is applied parallel to the c-axis 424 of the high-temperature superconductor 422 and when it is applied vertically, but the present invention is not limited to 63K and other temperatures are used. But there is a similar tendency.

【0087】実施例29.なお、上記実施例28ではコ
イルにより磁界を印加した場合を示したが、請求項16
記載の発明の他の実施例として、永久磁石を用い、永久
磁石と高温超電導体との距離を変えることにより永久電
流スイッチ404を動作させてもよい。
Example 29. Note that, although the case where the magnetic field is applied by the coil is shown in the 28th embodiment, the 16th embodiment
As another embodiment of the described invention, a permanent magnet may be used and the permanent current switch 404 may be operated by changing the distance between the permanent magnet and the high temperature superconductor.

【0088】実施例30.図30は請求項18記載の発
明の一実施例に係る永久電流スイッチの構成を示す斜視
図である。図において、411は基板であり例えばSr
TiO3(チタン酸ストロンチウム)よりなる。412
は高温超電導体の膜材であり例えばYSZ(イットリウ
ムスタビライズドジルコニア)よりなり、スパッタやC
VD法等により1μm程度の厚さに形成されている。従
来、永久電流スイッチとしては、例えば図31に示した
ように複数本のNbTi線413をCuNi414で含
芯して線状としたものをコイル状に巻回し、このコイル
の外周に加熱用のヒータを配置し、さらにこの回りを例
えばエポキシ樹脂で覆ったものが用いられていたが、全
体的に体積の大きなものであった。これに対して、図3
0に示した実施例のように、高温超電導体を膜材412
とすれば、線を巻回する場合に比べて臨界電流密度が高
いため、膜材の断面積が小さく、超電導体でなくなった
場合に発生する抵抗値が高いため、永久電流スイッチの
体積を小さくできる。
Example 30. FIG. 30 is a perspective view showing the structure of a permanent current switch according to an embodiment of the present invention. In the figure, 411 is a substrate, for example, Sr
It is made of TiO 3 (strontium titanate). 412
Is a film material of a high temperature superconductor, and is made of, for example, YSZ (yttrium stabilized zirconia), and is sputtered or C
It is formed to a thickness of about 1 μm by the VD method or the like. Conventionally, as a permanent current switch, for example, as shown in FIG. 31, a plurality of NbTi wires 413 are cored with CuNi 414 into a linear shape and wound into a coil, and a heater for heating is provided on the outer circumference of the coil. Was used, and the area around this was covered with, for example, an epoxy resin, but it had a large volume as a whole. On the other hand, FIG.
As in the embodiment shown in FIG.
If so, the critical current density is higher than in the case of winding a wire, the cross-sectional area of the film material is small, and the resistance value generated when it is no longer a superconductor is high, so the volume of the permanent current switch is small. it can.

【0089】実施例31.図32は請求項19記載の発
明の一実施例による高温超電導テープ材の製造方法を説
明する製造工程図である。図において、511は高温超
電導体層、522は金属テープすなわち銀テープであ
り、これら高温超電導体層511および銀テープ522
の厚みは共に0.05〜1mm程度である。高温超電導
テープ材の製造方法は、まず、銀テープ522上に例え
ばスクリーン印刷により高温超電導体層511を形成す
る。次に、300℃程度の加熱によりスクリーン印刷時
の溶媒等の不純物を蒸発させる。次にもう1枚の銀テー
プ522を重ねて、5t/cm2程度の加圧により2枚
の銀テープ522と高温超電導体層511を一体化す
る。さらに、840℃程度の加熱により超電導を得る。
このようにして形成された高温超電導テープ材は、従来
のように高温超電導体の粉末を銀パイプに充填し、線引
き、圧延して形成されたものに比べて、銀522と高温
超電導体層511との境界面が平滑であり、高温超電導
体層511の粒は薄板状でありプレスにより方位が揃う
ため、高温超電導体層511の粒間の結合が強くなり、
臨界電流が高い高温超電導テープ材501が得られる。
よって、この高温超電導テープ材501を超電導マグネ
ットに用いれば、発生磁界の高いものが得られる。
Example 31. 32 is a manufacturing process diagram for explaining a method of manufacturing a high temperature superconducting tape material according to an embodiment of the present invention. In the figure, 511 is a high temperature superconductor layer, 522 is a metal tape or silver tape, and these high temperature superconductor layer 511 and silver tape 522
Both have a thickness of about 0.05 to 1 mm. In the method of manufacturing the high temperature superconducting tape material, first, the high temperature superconductor layer 511 is formed on the silver tape 522 by screen printing, for example. Then, by heating at about 300 ° C., impurities such as a solvent during screen printing are evaporated. Next, another silver tape 522 is overlaid and the two silver tapes 522 and the high temperature superconductor layer 511 are integrated by applying a pressure of about 5 t / cm 2 . Further, superconductivity is obtained by heating at about 840 ° C.
The high-temperature superconducting tape material formed in this manner has a silver 522 and a high-temperature superconducting layer 511 in comparison with a conventional high-temperature superconducting powder prepared by filling a high-temperature superconductor powder into a silver pipe, drawing and rolling. Since the boundary surface of the high temperature superconductor layer 511 is smooth, and the grains of the high temperature superconductor layer 511 are thin plates and have the same orientation by pressing, the intergranular bonds of the high temperature superconductor layer 511 become strong.
A high temperature superconducting tape 501 having a high critical current can be obtained.
Therefore, if this high-temperature superconducting tape material 501 is used for a superconducting magnet, a material having a high generated magnetic field can be obtained.

【0090】なお、加圧と超電導を得るための加熱は繰
り返し行われてもよいし、加圧の変形として圧延が行わ
れてもよい。また、銀テープ523上に高温超電導体層
511を形成するのに、スパッタ法やスクリーン印刷法
が用いられてもよい。さらに、金属テープ522、52
3の材料は銀に限らず焼成時に反応しない金属であれば
よい。
The pressing and heating for obtaining superconductivity may be repeated, or rolling may be performed as a deformation of pressing. Further, a sputtering method or a screen printing method may be used to form the high temperature superconductor layer 511 on the silver tape 523. Further, metal tapes 522, 52
The material of 3 is not limited to silver and may be any metal that does not react during firing.

【0091】実施例32.図33は請求項20記載の発
明の一実施例による高温超電導テープ材の製造方法を説
明する製造工程図である。この実施例において、上記実
施例31と異なっているのは一方の金属テープすなわち
銀テープ523に溝を有する点だけである。このよう
に、溝に高温超電導体層511を形成すれば、高温超電
導体層511が銀テープからはみ出すこともなく、上記
実施例31のように平板面に形成するとどうしても高温
超電導体層511が形成されている中央部に比べて高温
超電導体層511が形成されない周縁部の厚みが薄くな
り、このテープ材を巻回してコイルを形成したときに不
都合が生じるが、このようなこともない。
Example 32. FIG. 33 is a manufacturing process diagram for explaining a method of manufacturing a high temperature superconducting tape material according to an embodiment of the present invention. In this embodiment, the only difference from the above-mentioned embodiment 31 is that one metal tape, that is, the silver tape 523 has a groove. As described above, when the high temperature superconductor layer 511 is formed in the groove, the high temperature superconductor layer 511 does not protrude from the silver tape, and when the high temperature superconductor layer 511 is formed on the flat plate surface as in Example 31, the high temperature superconductor layer 511 is formed. The peripheral portion where the high-temperature superconductor layer 511 is not formed has a smaller thickness than the central portion, and when the tape material is wound to form a coil, inconvenience occurs, but this does not occur.

【0092】実施例33.図34は請求項20記載の発
明の他の実施例による高温超電導テープ材の製造方法を
説明する製造工程図である。この例では、溝を有する銀
テープ523の溝に高温超電導体層511を形成したも
のを2層重ね、その上に溝の無い銀テープ522を重ね
て高温超電導テープ材502を形成している。この実施
例により、臨界電流密度が高く、厚みが厚い高温超電導
テープ材502が得られる。なお、層数は2層に限るも
のではなく、複数層とすることができる。
Example 33. FIG. 34 is a manufacturing process diagram illustrating a method for manufacturing a high temperature superconducting tape material according to another embodiment of the present invention. In this example, a high temperature superconducting tape material 502 is formed by stacking two layers of a silver tape 523 having a groove and a high temperature superconductor layer 511 formed on the groove, and superposing a non-grooved silver tape 522 thereon. According to this embodiment, a high temperature superconducting tape material 502 having a high critical current density and a large thickness can be obtained. Note that the number of layers is not limited to two, but may be multiple.

【0093】実施例34.図35は請求項20記載の発
明のさらに他の実施例による高温超電導テープ材の製造
方法を説明する製造工程図である。この例では、溝の無
い銀テープ522上に高温超電導体層511を形成した
ものを3層、深い溝を有する銀テープ523に挿入した
のちプレスすることにより製造した高温超電導テープ材
503である。この場合も上記実施例33と同様の効果
が得られる。
Example 34. FIG. 35 is a manufacturing process diagram illustrating a method of manufacturing a high temperature superconducting tape material according to still another embodiment of the invention. In this example, the high-temperature superconducting tape material 503 is manufactured by inserting three layers of the high-temperature superconductor layer 511 formed on a grooveless silver tape 522 into a silver tape 523 having a deep groove and then pressing. Also in this case, the same effect as that of the above-mentioned Example 33 can be obtained.

【0094】なお、上記各実施例31〜34により製造
された高温超電導テープ材は、臨界電流密度が高いた
め、ブスバー、送電ケーブルなど高温超電導コイル以外
にも使用できる。
Since the high-temperature superconducting tape materials produced in the above Examples 31 to 34 have high critical current densities, they can be used for bus bars, power transmission cables and the like other than high-temperature superconducting coils.

【0095】[0095]

【発明の効果】以上のように、請求項1記載の発明によ
れば、各コイルユニット毎に導体の高温超電導部の断面
積を変え、各コイルユニットの臨界電流を略一致させる
ように構成したので、発生磁界が高い高温超電導マグネ
ットが得られる。
As described above, according to the first aspect of the present invention, the cross-sectional area of the high temperature superconducting portion of the conductor is changed for each coil unit so that the critical currents of the coil units are made substantially equal to each other. Therefore, a high temperature superconducting magnet having a high generated magnetic field can be obtained.

【0096】また、請求項2記載の発明によれば、上記
請求項1記載の導体の高温超電導部の断面積を、磁界の
強さおよび向きを変えた場合の上記導体の臨界電流密度
と高温超電導コイルの磁界分布より、コイルユニット毎
に臨界電流密度が最も低い場所の臨界電流密度を求め、
その逆数に比例して求めるので、各コイルユニットの臨
界電流をうまく一致させることができる。
According to the second aspect of the present invention, the cross-sectional area of the high temperature superconducting portion of the conductor according to the first aspect is changed to the critical current density and high temperature of the conductor when the strength and direction of the magnetic field are changed. From the magnetic field distribution of the superconducting coil, find the critical current density where the critical current density is the lowest for each coil unit,
Since it is calculated in proportion to its reciprocal, the critical currents of the coil units can be well matched.

【0097】また、請求項3記載の発明によれば、高温
超電導材としてテープ材を用い、このテープ材の積層数
または幅を変えることにより、コイルユニット毎の導体
の断面積を変えるので、発生磁界が高い高温超電導マグ
ネットが得られる。
According to the third aspect of the present invention, a tape material is used as the high temperature superconducting material, and the cross-sectional area of the conductor is changed for each coil unit by changing the number of layers or the width of the tape material. A high temperature superconducting magnet having a high magnetic field can be obtained.

【0098】また、請求項4記載の発明によれば、高温
超電導材を用いた導体を巻回して構成される高温超電導
コイルの端面に、強磁性体のフランジを備えたので、導
体の磁界による臨界電流密度の低下が小さく、発生磁界
が高い高温超電導マグネットが得られる。
According to the fourth aspect of the invention, since the high temperature superconducting coil formed by winding the conductor using the high temperature superconducting material is provided with the flange of the ferromagnetic material on the end surface, It is possible to obtain a high-temperature superconducting magnet with a small decrease in critical current density and a high generated magnetic field.

【0099】また、請求項5記載の発明によれば、コイ
ルユニット間にヒータを設けた熱伝導部材を挿入したの
で、超電導破壊が生じた場合にヒータにより熱電導部材
を加熱して高温超電導コイル全体を超電導破壊させるこ
とにより、超電導コイル全体でエネルギを吸収し、超電
導コイルの一部にエネルギが集中して超電導コイルが焼
損するのを防止する。
According to the fifth aspect of the present invention, since the heat conducting member provided with the heater is inserted between the coil units, the superconducting member is heated by the heater when the superconducting breakdown occurs, so that the high temperature superconducting coil is formed. The whole superconducting coil is destroyed by superconducting to absorb energy and prevent the energy from concentrating on a part of the superconducting coil and burning the superconducting coil.

【0100】また、請求項6記載の発明によれば、高温
超電導材を用いた導体間の電気絶縁にセラミックス繊維
を使用し、上記導体の長手方向とセラミックス繊維の繊
維方向を略直向させたので、導体とセラミックス繊維の
繊維方向に垂直な熱膨張率はほぼ一致するため、導体の
臨界電流の低下を防止でき、発生磁界が高い高温超電導
マグネットが得られる。
According to the sixth aspect of the present invention, ceramic fibers are used for electrical insulation between the conductors using the high temperature superconducting material, and the longitudinal direction of the conductors and the fiber direction of the ceramic fibers are made substantially straight. Therefore, the coefficient of thermal expansion of the conductor and that of the ceramic fiber perpendicular to the fiber direction are substantially the same, so that it is possible to prevent a decrease in the critical current of the conductor and obtain a high-temperature superconducting magnet with a high generated magnetic field.

【0101】また、請求項7記載の発明によれば、高温
超電導コイルを室温程度以下の温度で硬化する含浸材で
含浸したので、温度を上げて硬化させる含浸材を使用し
た場合と比べて硬化温度と高温超電導コイルの運転温度
との温度差を少なくでき、冷却後の歪みが少なくなり、
導体の臨界電流の低下を小さくできるため、発生磁界が
高い高温超電導マグネットが得られる。
Further, according to the invention described in claim 7, since the high temperature superconducting coil is impregnated with the impregnating material which is hardened at a temperature of about room temperature or lower, it is hardened as compared with the case of using the impregnating material which is hardened by raising the temperature. The temperature difference between the temperature and the operating temperature of the high temperature superconducting coil can be reduced, and the distortion after cooling is reduced,
Since the decrease in the critical current of the conductor can be reduced, a high temperature superconducting magnet having a high magnetic field generated can be obtained.

【0102】また、請求項8記載の発明によれば、高温
超電導材を用いた導体を絶縁物を介して巻回して構成さ
れる高温超電導コイルを備えるものにおいて、上記導体
と絶縁物との間に応力緩衝材を挿入したので、高温超電
導コイルを冷却した際、導体と絶縁材の熱膨張率の差に
よる導体の歪みを応力緩衝材が吸収し、導体は歪みが緩
和されるため、歪みによる導体の臨界電流の低下を防止
でき、発生磁界が高い高温超電導マグネットが得られ
る。
According to the invention of claim 8, there is provided a high-temperature superconducting coil formed by winding a conductor using a high-temperature superconducting material with an insulator interposed between the conductor and the insulator. Since the stress buffer is inserted in the coil, when the high temperature superconducting coil is cooled, the stress buffer absorbs the strain of the conductor due to the difference in the coefficient of thermal expansion between the conductor and the insulating material, and the strain is relaxed in the conductor. It is possible to obtain a high-temperature superconducting magnet that can prevent a decrease in the critical current of the conductor and generate a high magnetic field.

【0103】また、請求項9記載の発明によれば、複数
枚の高温超電導テープ材を絶縁物を介して重ね合わせた
導体を巻回して構成される高温超電導コイルを備え、コ
イル運転電流が略臨界電流である温度で上記コイルを励
磁するので、高温超電導コイルの励磁完了時には、各高
温超電導テープ材を流れる電流はほぼ同じ電流値とな
る。この状態で、高温超電導コイルの温度を、運転温度
まで低下させると各テープ材ともに外乱が発生しても超
電導破壊を起こしにくい。さらに、各テープ材に流れる
電流値が異なる場合は大きい方から小さい方へ電流が移
動し、移動する電流は常電導部を通過するため全電流は
僅かづつ減少するが、同じ大きさの電流が流れた場合に
は電流の移動がないため全電流は減少しない。
According to the invention of claim 9, there is provided a high temperature superconducting coil constituted by winding a conductor in which a plurality of high temperature superconducting tape materials are superposed with an insulator interposed therebetween, and the coil operating current is substantially the same. Since the coil is excited at a temperature that is a critical current, the current flowing through each high-temperature superconducting tape material has substantially the same current value when the high-temperature superconducting coil is completely excited. In this state, if the temperature of the high-temperature superconducting coil is lowered to the operating temperature, superconducting breakdown is unlikely to occur even if disturbance occurs in each tape material. Furthermore, when the current value flowing in each tape material is different, the current moves from the larger one to the smaller one, and since the moving current passes through the normal conducting part, the total current decreases slightly, but the current of the same magnitude decreases. When flowing, there is no movement of current, so the total current does not decrease.

【0104】また、請求項10記載の発明によれば、励
磁時昇温用のヒータは高温超電導コイルが超電導破壊し
た際の強制クエンチ用のヒータと兼ねているので、ヒー
タ数を少なくできる。
According to the tenth aspect of the invention, since the heater for raising the temperature during excitation also serves as the heater for the forced quench when the high temperature superconducting coil is destroyed by superconductivity, the number of heaters can be reduced.

【0105】また、請求項11記載の発明によれば、高
温超電導コイルと永久電流スイッチとが熱的に接続され
ており、上記高温超電導コイルと永久電流スイッチのど
ちらか一方または両者の接続部にヒータを備えているの
で、高温超電導コイルを励磁する際、永久電流スイッチ
と高温超電導コイルを同時に昇温できる。
According to the eleventh aspect of the present invention, the high temperature superconducting coil and the persistent current switch are thermally connected, and one or both of the high temperature superconducting coil and the persistent current switch is connected. Since the heater is provided, the permanent current switch and the high temperature superconducting coil can be heated at the same time when the high temperature superconducting coil is excited.

【0106】また、請求項12記載の発明によれば、複
数枚の高温超電導テープ材を絶縁物を介して重ね合わせ
た導体を巻回して構成されるコイルユニットを複数個積
層した高温超電導コイルを備え、上記各コイルユニット
間での上記高温超電導テープ材の接続においては、少な
くとも2組のテープ材は、一方のコイルユニットの内側
からn番目に卷かれた高温超電導テープ材と、他方のコ
イルユニットの内側からm番目(ただしn、mは異なる
整数)に卷かれた高温超電導テープ材とを接続すること
により、上記高温超電導テープ材の作るループを貫く磁
束の和が略ゼロになるように構成したので、高温超電導
コイルの励磁時に、磁界変化にともなう誘導電流が高温
超電導テープ材に生じず、重ね合わされた各高温超電導
テープ材には同じ大きさの電流が流れるため、高温超電
導コイルは超電導破壊しにくい。さらに、誘導電流が生
じないため、励磁速度を早くできる。
According to the twelfth aspect of the present invention, there is provided a high temperature superconducting coil in which a plurality of coil units constituted by winding a conductor in which a plurality of high temperature superconducting tape materials are superposed with an insulator interposed therebetween are laminated. In the connection of the high-temperature superconducting tape material between the coil units, at least two sets of tape materials include a high-temperature superconducting tape material wound n-th from the inside of one coil unit and the other coil unit. By connecting the m-th high-temperature superconducting tape material wound from the inside of n (where n and m are different integers), the sum of the magnetic fluxes passing through the loop formed by the high-temperature superconducting tape material is made substantially zero. Therefore, when exciting the high-temperature superconducting coil, the induced current due to the change in magnetic field does not occur in the high-temperature superconducting tape material, and it is the same for each of the superposed high-temperature superconducting tape materials. Since the can of current flow, the high temperature superconducting coil is hard to superconducting destroyed. Furthermore, since no induced current is generated, the excitation speed can be increased.

【0107】また、請求項13記載の発明によれば、各
コイルユニット間での導体の接続部近傍に冷却用の熱伝
導部材を設置したので、高温超電導コイル励磁時に接続
抵抗や接続部材の抵抗により接続部に発生する熱を速や
かに除去でき、高温超電導コイルの温度上昇を防ぐこと
ができ、超電導破壊を防止できる。
According to the thirteenth aspect of the present invention, the heat conducting member for cooling is installed in the vicinity of the connecting portion of the conductor between the coil units. Therefore, the connection resistance and the resistance of the connecting member during the excitation of the high temperature superconducting coil are set. Thus, the heat generated in the connection portion can be quickly removed, the temperature rise of the high temperature superconducting coil can be prevented, and the superconducting breakdown can be prevented.

【0108】また、請求項14記載の発明によれば、高
温超電導コイルとコイル支持部材との接続部に冷却用の
熱伝導部材を設置したので、通常、室温または略液体窒
素温度であるコイル容器から、コイル支持部材を介して
熱が高温超電導コイルに伝わるのを防止して高温超電導
コイルの温度上昇を防ぐことができ、クエンチしにくい
高温超電導マグネットが得られる。
According to the fourteenth aspect of the invention, since the heat conducting member for cooling is installed at the connecting portion between the high temperature superconducting coil and the coil supporting member, the coil container is usually at room temperature or substantially liquid nitrogen temperature. Therefore, it is possible to prevent heat from being transferred to the high temperature superconducting coil via the coil supporting member and prevent the temperature rise of the high temperature superconducting coil, and to obtain a high temperature superconducting magnet which is hard to quench.

【0109】また、請求項15記載の発明によれば、永
久電流スイッチは超電導コイルの運転温度より高く上記
高温超電導材の臨界温度より低い中温空間に配置されて
いるので、永久電流スイッチを作動のに、永久電流スイ
ッチの温度を上記中温と臨界温度の間で変化させればよ
く、スイッチ速度が早くなるとともに永久電流スイッチ
を作動させるのに必要なヒータの熱量を低減できる。
According to the fifteenth aspect of the present invention, since the permanent current switch is arranged in a medium temperature space which is higher than the operating temperature of the superconducting coil and lower than the critical temperature of the high temperature superconducting material, the permanent current switch can be operated. In addition, the temperature of the permanent current switch may be changed between the above-mentioned intermediate temperature and the critical temperature, the switch speed becomes faster, and the amount of heat of the heater required to operate the permanent current switch can be reduced.

【0110】また、請求項16記載の発明によれば、永
久電流スイッチの高温超電導材の結晶のc軸方向に略平
行に磁界を印加し、上記永久電流スイッチを動作させる
ように構成したので、磁界がc軸に平行な場合、磁界に
よる臨界電流密度の低下はより顕著となり、磁界が弱く
ても永久電流スイッチを動作させることができる。
Further, according to the sixteenth aspect of the invention, since the magnetic field is applied substantially parallel to the c-axis direction of the crystal of the high temperature superconducting material of the permanent current switch, the permanent current switch is operated. When the magnetic field is parallel to the c-axis, the decrease in the critical current density due to the magnetic field becomes more remarkable, and the permanent current switch can be operated even if the magnetic field is weak.

【0111】また、請求項17記載の発明によれば、上
記請求項16に記載の永久電流スイッチの高温超電導材
の結晶のc軸方向に略平行に磁界を印加するのにコイル
を用いると簡単に永久電流スイッチを動作させることが
できる。
According to the seventeenth aspect of the invention, it is easy to use a coil to apply a magnetic field substantially parallel to the c-axis direction of the crystal of the high temperature superconducting material of the permanent current switch according to the sixteenth aspect. The permanent current switch can be operated.

【0112】また、請求項18記載の発明によれば、高
温超電導体の膜材を用いた永久電流スイッチを備えるの
で、従来のように線材を巻回するのに比べて臨界電流密
度が高いため、膜材の断面積が小さくてよく、超電導体
でなくなった場合に発生する抵抗値が高いため、永久電
流スイッチの体積を小さくできる。
According to the eighteenth aspect of the present invention, since the permanent current switch using the film material of the high temperature superconductor is provided, the critical current density is higher than that of the conventional winding of the wire. Since the cross-sectional area of the film material may be small and the resistance value generated when it is not a superconductor is high, the volume of the permanent current switch can be reduced.

【0113】また、請求項19記載の発明によれば、金
属テープ上に高温超電導体層を形成し、この高温超電導
体層を形成した金属テープ上にもう1枚の金属テープを
重ねて加圧することにより上記2枚の金属テープと高温
超電導体層を一体化することにより高温超電導テープ材
を製造するので、金属テープと高温超電導体の界面は平
滑であり、さらに高温超電導体の粒は薄板状でありプレ
スにより方位が揃うため、高温超電導体の粒間の結合が
強くなり、臨界電流が高い高温超電導テープ材が得られ
る。
According to the nineteenth aspect of the present invention, a high temperature superconductor layer is formed on the metal tape, and another metal tape is stacked and pressed on the metal tape having the high temperature superconductor layer formed thereon. As a result, a high-temperature superconducting tape material is manufactured by integrating the above two metal tapes and the high-temperature superconducting layer, so that the interface between the metal tape and the high-temperature superconducting material is smooth, and the particles of the high-temperature superconducting material are thin plates. Since the orientations are aligned by pressing, the intergranular bonds of the high temperature superconductor are strengthened and a high temperature superconducting tape material having a high critical current can be obtained.

【0114】また、請求項20記載の発明によれば、請
求項19記載の製造方法において、金属テープは溝を有
し、高温超電導体層は上記溝に形成されるので、上記効
果に加えて高温超電導体層を金属テープで確実に覆うこ
とができるとともに均一な厚みを有する高温超電導テー
プ材が得られる効果がある。
According to the invention of claim 20, in the manufacturing method of claim 19, since the metal tape has a groove and the high temperature superconductor layer is formed in the groove, in addition to the above effects. There is an effect that the high temperature superconducting layer can be surely covered with the metal tape and a high temperature superconducting tape material having a uniform thickness can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による高温超電導コイルを示
し、(a)は一部断面で示す斜視図、(b)は(a)の
導体の断面を拡大して示す断面図である。
1A and 1B show a high temperature superconducting coil according to Example 1 of the present invention, FIG. 1A is a perspective view showing a partial cross section, and FIG. 1B is a cross sectional view showing an enlarged cross section of a conductor of FIG. 1A.

【図2】実施例1を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the first embodiment.

【図3】本発明の実施例2による高温超電導コイルを示
し、(a)は一部断面で示す斜視図、(b)は(a)の
要部拡大図、(c)は(b)の要部拡大図である。
FIG. 3 shows a high temperature superconducting coil according to a second embodiment of the present invention, (a) is a perspective view showing a partial cross section, (b) is an enlarged view of a main part of (a), and (c) is a view of (b). FIG.

【図4】本発明の実施例3による高温超電導コイルを示
し、(a)は一部断面で示す斜視図、(b)は(a)の
要部拡大断面図である。
4A and 4B show a high temperature superconducting coil according to Example 3 of the present invention, FIG. 4A is a perspective view showing a partial cross section, and FIG. 4B is an enlarged cross sectional view of a main part of FIG. 4A.

【図5】本発明の実施例4による高温超電導コイルを示
し、(a)は一部断面で示す斜視図、(b)は(a)の
要部拡大断面図である。
5A and 5B show a high temperature superconducting coil according to Example 4 of the present invention, FIG. 5A is a perspective view showing a partial cross section, and FIG. 5B is an enlarged cross-sectional view of a main part of FIG. 5A.

【図6】本発明の実施例6による高温超電導コイルを一
部断面で示す斜視図である。
FIG. 6 is a perspective view showing a partial cross section of a high temperature superconducting coil according to a sixth embodiment of the present invention.

【図7】実施例6による高温超電導マグネットの作用を
説明する説明図であり、(a)はフランジがある場合、
(b)はフランジが無い場合を示す。
FIG. 7 is an explanatory view for explaining the action of the high temperature superconducting magnet according to Example 6, where (a) is a case with a flange,
(B) shows the case where there is no flange.

【図8】本発明の実施例7による高温超電導コイルを示
し、(a)は一部断面で示す斜視図、(b)は(a)の
要部拡大図である。
8A and 8B show a high temperature superconducting coil according to Example 7 of the present invention, FIG. 8A is a perspective view showing a partial cross section, and FIG. 8B is an enlarged view of a main part of FIG. 8A.

【図9】本発明の実施例9による高温超電導コイルを一
部断面で示す斜視図である。
FIG. 9 is a perspective view showing a partial cross section of a high temperature superconducting coil according to Example 9 of the present invention.

【図10】本発明の実施例11による高温超電導コイル
を示し、(a)は一部断面で示す斜視図、(b)は
(a)の要部拡大図である。
FIG. 10 shows a high temperature superconducting coil according to Example 11 of the present invention, (a) is a perspective view showing a partial cross section, and (b) is an enlarged view of a main part of (a).

【図11】実施例11の作用を説明する説明図である。FIG. 11 is an explanatory diagram illustrating an operation of the eleventh embodiment.

【図12】本発明の実施例13による高温超電導コイル
を示し、(a)は一部断面で示す斜視図、(b)は
(a)の要部拡大図である。
FIG. 12 shows a high temperature superconducting coil according to Example 13 of the present invention, (a) is a perspective view showing a partial cross section, and (b) is an enlarged view of a main part of (a).

【図13】本発明の実施例14による高温超電導コイル
を示し、(a)は一部断面で示す斜視図、(b)は
(a)の要部拡大図である。
13A and 13B show a high temperature superconducting coil according to Example 14 of the present invention, FIG. 13A is a perspective view showing a partial cross section, and FIG. 13B is an enlarged view of a main part of FIG. 13A.

【図14】本発明の実施例16による高温超電導コイル
を示し、(a)は一部断面で示す斜視図、(b)は
(a)の要部拡大図である。
FIG. 14 shows a high temperature superconducting coil according to Example 16 of the present invention, (a) is a perspective view showing a partial cross section, and (b) is an enlarged view of a main part of (a).

【図15】本発明の実施例17による高温超電導マグネ
ットの運転方法を説明するためのの説明図である。
FIG. 15 is an explanatory diagram for explaining an operating method of the high temperature superconducting magnet according to Example 17 of the present invention.

【図16】本発明の実施例17による高温超電導マグネ
ットの運転方法を説明するためのの説明図である。
FIG. 16 is an explanatory diagram for explaining an operating method of the high temperature superconducting magnet according to Example 17 of the present invention.

【図17】本発明の実施例19による高温超電導マグネ
ットを説明する構成図である。
FIG. 17 is a configuration diagram illustrating a high temperature superconducting magnet according to Example 19 of the present invention.

【図18】本発明の実施例20による高温超電導コイル
を説明し、(a)は高温超電導テープ材の巻かれ方を模
式的に示す斜視図、(b)は接続の仕方を説明する説明
図である。
FIG. 18 illustrates a high temperature superconducting coil according to a twentieth embodiment of the present invention, (a) is a perspective view schematically showing how the high temperature superconducting tape material is wound, and (b) is an explanatory diagram illustrating a connecting method. Is.

【図19】本発明の実施例21による高温超電導コイル
の接続の仕方を説明する説明図である。
FIG. 19 is an explanatory diagram for explaining how to connect a high temperature superconducting coil according to a twenty first embodiment of the present invention.

【図20】本発明の実施例21による高温超電導コイル
の接続の仕方を説明する説明図である。
FIG. 20 is an explanatory view illustrating how to connect the high temperature superconducting coils according to the twenty-first embodiment of the present invention.

【図21】本発明の実施例22による高温超電導コイル
の接続の仕方を説明する説明図である。
FIG. 21 is an explanatory diagram for explaining how to connect a high temperature superconducting coil according to a twenty-second embodiment of the present invention.

【図22】本発明の実施例22による高温超電導コイル
の接続の仕方を説明する説明図である。
FIG. 22 is an explanatory diagram for explaining how to connect a high temperature superconducting coil according to a twenty-second embodiment of the present invention.

【図23】本発明の実施例23による高温超電導コイル
の接続の仕方を説明する説明図である。
FIG. 23 is an explanatory view illustrating how to connect a high temperature superconducting coil according to a twenty-third embodiment of the present invention.

【図24】本発明の実施例23による高温超電導コイル
の接続の仕方を説明する説明図である。
FIG. 24 is an explanatory diagram for explaining how to connect a high temperature superconducting coil according to a twenty-third embodiment of the present invention.

【図25】本発明の実施例24による高温超電導コイル
を示す構成断面図である。
FIG. 25 is a structural cross-sectional view showing a high temperature superconducting coil according to Example 24 of the present invention.

【図26】本発明の実施例25による高温超電導マグネ
ットの要部を示す構成断面図である。
FIG. 26 is a structural cross-sectional view showing the main parts of a high temperature superconducting magnet according to Example 25 of the invention.

【図27】本発明の実施例27による高温超電導マグネ
ットを示す構成図である。
FIG. 27 is a structural diagram showing a high temperature superconducting magnet according to Example 27 of the present invention.

【図28】実施例27による高温超電導マグネットの動
作を説明するための説明図である。
28 is an explanatory diagram for explaining the operation of the high temperature superconducting magnet according to Example 27. FIG.

【図29】本発明の実施例28による永久電流スイッチ
の動作を説明する説明図である。
FIG. 29 is an explanatory diagram illustrating an operation of the permanent current switch according to the twenty-eighth embodiment of the present invention.

【図30】本発明の実施例30による永久電流スイッチ
の構成を示す斜視図である。
FIG. 30 is a perspective view showing a configuration of a persistent current switch according to a thirtieth embodiment of the present invention.

【図31】従来の永久電流スイッチに用いられる導体の
構成を一部断面で示す斜視図である。
FIG. 31 is a perspective view showing a partial cross-section of the structure of a conductor used in a conventional persistent current switch.

【図32】本発明の実施例31による高温超電導テープ
材の製造方法を説明する製造工程図である。
FIG. 32 is a manufacturing process diagram illustrating the method of manufacturing the high temperature superconducting tape material according to Example 31 of the present invention.

【図33】本発明の実施例32による高温超電導テープ
材の製造方法を説明する製造工程図である。
FIG. 33 is a manufacturing process diagram illustrating the method of manufacturing the high temperature superconducting tape material according to Example 32 of the present invention.

【図34】本発明の実施例33による高温超電導テープ
材の製造方法を説明する製造工程図である。
FIG. 34 is a manufacturing process diagram illustrating a method of manufacturing a high temperature superconducting tape material according to Example 33 of the present invention.

【図35】本発明の実施例34による高温超電導テープ
材の製造方法を説明する製造工程図である。
FIG. 35 is a manufacturing process diagram illustrating the method of manufacturing the high temperature superconducting tape material according to Example 34 of the present invention.

【図36】従来の高温超電導コイルの構成図である。FIG. 36 is a configuration diagram of a conventional high temperature superconducting coil.

【図37】従来の高温超電導テープ材の断面図である。FIG. 37 is a cross-sectional view of a conventional high temperature superconducting tape material.

【符号の説明】[Explanation of symbols]

101、102 パンケーキコイル 103 ダブルパンケーキコイル 104 接続用金属部材 105 電流リード 106 フランジ 110 高温超電導コイル 111、112、113 コイルユニット 120、121、122、123 導体 130 高温超電導テープ材 131、132、133 導体 141、142、143 導体 151 熱伝導部材 152 ヒータ 153 高温超電導コイル 160 フランジ 202 絶縁材 203 アルミナ繊維 301 応力緩衝材 311、312、313、314 コイルユニット 330 接続部 341、342、343、344 高温超電導テープ材 351 接続部材 360 熱伝導部材 361 コイル支持部材 370 コイル容器 401 液体窒素温度以下の低温空間 402 中温空間 403 室温空間 404 永久電流スイッチ 405 電源 406 ヒータ 411 基板 412 高温超電導体の膜材 421 コイル 422 高温超電導体 423 磁界 424 c軸 501、502、503 高温超電導テープ材 511 高温超電導体層 522、523、524 銀テープ 532 銀シース 533 高温超電導体 534 界面 101, 102 Pancake coil 103 Double pancake coil 104 Connection metal member 105 Current lead 106 Flange 110 High temperature superconducting coil 111, 112, 113 Coil unit 120, 121, 122, 123 Conductor 130 High temperature superconducting tape material 131, 132, 133 Conductors 141, 142, 143 Conductors 151 Heat-conducting member 152 Heater 153 High-temperature superconducting coil 160 Flange 202 Insulating material 203 Alumina fiber 301 Stress buffering materials 311, 312, 313, 314 Coil unit 330 Connection part 341, 342, 343, 344 High-temperature superconducting Tape material 351 Connection member 360 Heat conduction member 361 Coil support member 370 Coil container 401 Low temperature space below liquid nitrogen temperature 402 Medium temperature space 403 Room temperature space 404 Permanent electricity Switch 405 Power source 406 Heater 411 Substrate 412 High temperature superconductor film material 421 Coil 422 High temperature superconductor 423 Magnetic field 424 c-axis 501, 502, 503 High temperature superconducting tape material 511 High temperature superconductor layer 522, 523, 524 Silver tape 532 Silver sheath 533 High temperature superconductor 534 interface

【手続補正書】[Procedure amendment]

【提出日】平成6年1月21日[Submission date] January 21, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0038】請求項9記載の発明においては、複数枚の
高温超電導テープ材を絶縁物を介して重ね合わせた導体
を巻回して構成される高温超電導コイルを備え、コイル
運転電流が略臨界電流である温度で上記コイルを励磁す
るので、高温超電導コイルの励磁完了時には、各高温超
電導テープ材を流れる電流はほぼ同じ電流値となる。こ
の状態で、高温超電導コイルの温度を、運転温度まで低
下させると各テープ材ともに外乱が発生しても超電導破
壊を起こしにくい。さらに、高温超電導コイルを永久電
流とした場合、各テープ材に流れる電流値が異なる場合
は大きい方から小さい方へ電流が移動し、移動する電流
は常電導部を通過するため全電流は僅かづつ減少する
が、同じ大きさの電流が流れた場合には電流の移動がな
いため全電流は減少しない。
According to a ninth aspect of the present invention, there is provided a high temperature superconducting coil formed by winding a conductor obtained by stacking a plurality of high temperature superconducting tape materials with an insulator interposed therebetween, and the coil operating current is a substantially critical current. Since the coil is excited at a certain temperature, when the high temperature superconducting coil is completely excited, the current flowing through each high temperature superconducting tape material has almost the same current value. In this state, if the temperature of the high-temperature superconducting coil is lowered to the operating temperature, superconducting breakdown is unlikely to occur even if disturbance occurs in each tape material. In addition, the high temperature superconducting coil
In the case of current flow, if the current value flowing in each tape material is different, the current moves from the larger one to the smaller one, and since the moving current passes through the normal conducting part, the total current decreases slightly, but the same magnitude. When the current flows, the total current does not decrease because the current does not move.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0088[Correction target item name] 0088

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0088】実施例30.図30は請求項18記載の発
明の一実施例に係る永久電流スイッチの構成を示す斜視
図である。図において、411は基板であり例えばSr
TiO3(チタン酸ストロンチウム)やYSZ(イット
リウムスタビライズドジルコニア)よりなる。412は
高温超電導体の膜材であり例えばYBaCu
りなり、スパッタやCVD法等により1μm程度の厚さ
に形成されている。従来、永久電流スイッチとしては、
例えば図31に示したように複数本のNbTi線413
をCuNi414で含芯して線状としたものをコイル状
に巻回し、このコイルの外周に加熱用のヒータを配置
し、さらにこの回りを例えばエポキシ樹脂で覆ったもの
が用いられていたが、全体的に体積の大きなものであっ
た。これに対して、図30に示した実施例のように、高
温超電導体を膜材412とすれば、線を巻回する場合に
比べて臨界電流密度が高いため、膜材の断面積が小さ
く、超電導体でなくなった場合に発生する抵抗値が高い
ため、永久電流スイッチの体積を小さくできる。
Example 30. FIG. 30 is a perspective view showing the structure of a permanent current switch according to an embodiment of the present invention. In the figure, 411 is a substrate, for example, Sr
TiO 3 (strontium titanate) and YSZ (it )
(Stabilized zirconia) . Reference numeral 412 is a high-temperature superconductor film material, which is made of, for example, YBa 2 Cu 3 O 7 , and is formed to a thickness of about 1 μm by a sputtering method, a CVD method, or the like. Conventionally, as a permanent current switch,
For example, as shown in FIG. 31, a plurality of NbTi wires 413
Was used in which a wire was obtained by containing CuNi414 in the form of a core and winding it into a coil, and a heater for heating was arranged on the outer periphery of this coil, and further around this was covered with, for example, an epoxy resin. It had a large volume overall. On the other hand, when the film material 412 is a high-temperature superconductor as in the embodiment shown in FIG. 30, the critical current density is higher than in the case where a wire is wound, so that the cross-sectional area of the film material is small. Since the resistance value generated when the superconductor is not used is high, the volume of the persistent current switch can be reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/20 ZAA 9276−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 39/20 ZAA 9276-4M

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 高温超電導材を用いた導体を巻回して構
成される複数のコイルユニットを積層した高温超電導コ
イルを備えるものにおいて、上記各コイルユニット毎に
上記導体の高温超電導部の断面積を変え、各コイルユニ
ットの臨界電流を略一致させるように構成したことを特
徴とする高温超電導マグネット。
1. A high-temperature superconducting coil comprising a plurality of coil units laminated by winding a conductor made of a high-temperature superconducting material, wherein a cross-sectional area of a high-temperature superconducting portion of the conductor is set for each coil unit. The high temperature superconducting magnet is characterized in that the critical currents of the coil units are made to substantially match.
【請求項2】 上記請求項1記載の導体の高温超電導部
の断面積は、磁界の強さおよび向きを変えた場合の上記
導体の臨界電流密度と高温超電導コイルの磁界分布よ
り、コイルユニット毎に臨界電流密度が最も低い場所の
臨界電流密度を求め、その逆数に比例して求めることを
特徴とする高温超電導マグネットの設計方法。
2. The cross-sectional area of the high-temperature superconducting portion of the conductor according to claim 1 is determined for each coil unit from the critical current density of the conductor and the magnetic field distribution of the high-temperature superconducting coil when the strength and direction of the magnetic field are changed. A method for designing a high-temperature superconducting magnet, characterized in that the critical current density at the place where the critical current density is the lowest is found, and is found in proportion to the reciprocal thereof.
【請求項3】 高温超電導材としてテープ材を用い、こ
のテープ材の積層数または幅を変えることにより、コイ
ルユニット毎の導体の断面積を変えることを特徴とする
請求項1記載の高温超電導マグネット。
3. A high-temperature superconducting magnet according to claim 1, wherein a tape material is used as the high-temperature superconducting material, and the cross-sectional area of the conductor for each coil unit is changed by changing the number of layers or the width of the tape material. .
【請求項4】 高温超電導材を用いた導体を巻回して構
成される高温超電導コイルの端面に、強磁性体のフラン
ジを備えたことを特徴とする高温超電導マグネット。
4. A high temperature superconducting magnet, characterized in that a flange of a ferromagnetic material is provided on an end surface of a high temperature superconducting coil formed by winding a conductor using a high temperature superconducting material.
【請求項5】 高温超電導材を用いた導体を巻回して構
成される複数のコイルユニットを積層した高温超電導コ
イルを備えるものにおいて、上記コイルユニット間にヒ
ータを設けた熱伝導部材を挿入したことを特徴とする高
温超電導マグネット。
5. A high-temperature superconducting coil comprising a plurality of coil units formed by winding a conductor made of a high-temperature superconducting material, wherein a heat-conducting member provided with a heater is inserted between the coil units. High temperature superconducting magnet.
【請求項6】 高温超電導材を用いた導体を巻回して構
成される高温超電導コイルを備えるものにおいて、上記
高温超電導材を用いた導体間の電気絶縁にセラミックス
繊維を使用し、上記導体の長手方向とセラミックス繊維
の繊維方向を略直向させたことを特徴とする高温超電導
マグネット。
6. A high-temperature superconducting coil which is formed by winding a conductor using a high-temperature superconducting material, wherein ceramic fibers are used for electrical insulation between the conductors using the high-temperature superconducting material, and the length of the conductor is long. High-temperature superconducting magnet characterized in that the direction of the ceramic fiber and the fiber direction of the ceramic fiber are made substantially direct.
【請求項7】 高温超電導材を用いた導体を巻回して構
成される高温超電導コイルを備えるものにおいて、上記
高温超電導コイルを室温程度以下の温度で硬化する含浸
材で含浸したことを特徴とする高温超電導マグネット。
7. A high-temperature superconducting coil that is formed by winding a conductor using a high-temperature superconducting material, wherein the high-temperature superconducting coil is impregnated with an impregnating material that cures at a temperature of about room temperature or lower. High temperature superconducting magnet.
【請求項8】 高温超電導材を用いた導体を絶縁物を介
して巻回して構成される高温超電導コイルを備えるもの
において、上記導体と絶縁物との間に応力緩衝材を挿入
したことを特徴とする高温超電導マグネット。
8. A high-temperature superconducting coil which is formed by winding a conductor using a high-temperature superconducting material with an insulator interposed therebetween, wherein a stress buffer is inserted between the conductor and the insulator. High temperature superconducting magnet.
【請求項9】 複数枚の高温超電導テープ材を絶縁物を
介して重ね合わせた導体を巻回して構成される高温超電
導コイルを備えるものにおいて、上記コイル運転電流が
略臨界電流である温度で上記コイルを励磁することを特
徴とする高温超電導マグネットの運転方法。
9. A high-temperature superconducting coil constituted by winding a conductor obtained by stacking a plurality of high-temperature superconducting tape materials with an insulator interposed therebetween, wherein the coil operating current is substantially a critical current. A method for operating a high-temperature superconducting magnet, which comprises exciting a coil.
【請求項10】 高温超電導コイルは励磁時昇温用のヒ
ータを備え、かつこの励磁時昇温用のヒータは上記高温
超電導コイルが超電導破壊した際の強制クエンチ用のヒ
ータと兼ねていることを特徴とする高温超電導マグネッ
ト。
10. The high-temperature superconducting coil comprises a heater for raising the temperature during excitation, and the heater for raising the temperature during excitation also serves as a heater for forced quenching when the high-temperature superconducting coil undergoes superconducting breakdown. Characteristic high temperature superconducting magnet.
【請求項11】 高温超電導コイルと永久電流スイッチ
とが熱的に接続されており、上記高温超電導コイルと永
久電流スイッチのどちらか一方または両者の接続部にヒ
ータを備えていることを特徴とする高温超電導マグネッ
ト。
11. A high-temperature superconducting coil and a persistent current switch are thermally connected, and a heater is provided at either or both of the high-temperature superconducting coil and the persistent current switch. High temperature superconducting magnet.
【請求項12】 複数枚の高温超電導テープ材を絶縁物
を介して重ね合わせた導体を巻回して構成されるコイル
ユニットを複数個積層した高温超電導コイルを備え、上
記各コイルユニット間での上記高温超電導テープ材の接
続においては、少なくとも2組のテープ材は、一方のコ
イルユニットの内側からn番目に卷かれた高温超電導テ
ープ材と、他方のコイルユニットの内側からm番目(た
だしn、mは異なる整数)に卷かれた高温超電導テープ
材とを接続することにより、上記高温超電導テープ材の
作るループを貫く磁束の和が略ゼロになるように構成し
たことを特徴とする高温超電導マグネット。
12. A high-temperature superconducting coil comprising a plurality of coil units, each of which is formed by winding a conductor in which a plurality of high-temperature superconducting tape materials are superposed with an insulator interposed between the high-temperature superconducting coils. In the connection of the high-temperature superconducting tape material, at least two sets of tape materials include a high-temperature superconducting tape material wound n-th from the inside of one coil unit and an m-th (where n and m are from the inside of the other coil unit). High-temperature superconducting tape material is connected to the high-temperature superconducting tape material, and the sum of the magnetic fluxes passing through the loop formed by the high-temperature superconducting tape material is substantially zero.
【請求項13】 高温超電導材を用いた導体を巻回して
構成される複数のコイルユニットを積層した高温超電導
コイルを備えるものにおいて、上記各コイルユニット間
での導体の接続部近傍に冷却用の熱伝導部材を設置した
ことを特徴とする高温超電導マグネット。
13. A high-temperature superconducting coil comprising a stack of a plurality of coil units formed by winding a conductor made of a high-temperature superconducting material, wherein a cooling portion is provided near a connecting portion of the conductors between the coil units. A high temperature superconducting magnet having a heat conducting member installed.
【請求項14】 高温超電導コイルとコイル支持部材と
の接続部に冷却用の熱伝導部材を設置したことを特徴と
する高温超電導マグネット。
14. A high-temperature superconducting magnet, characterized in that a heat-conducting member for cooling is installed at a connecting portion between the high-temperature superconducting coil and the coil supporting member.
【請求項15】 高温超電導コイルと高温超電導材を使
用した永久電流スイッチを備えた高温超電導マグネット
において、上記永久電流スイッチは上記超電導コイルの
運転温度より高く上記高温超電導材の臨界温度より低い
中温空間に配置されていることを特徴とする高温超電導
マグネット。
15. A high temperature superconducting magnet comprising a high temperature superconducting coil and a persistent current switch using the high temperature superconducting material, wherein the permanent current switch is a medium temperature space higher than the operating temperature of the superconducting coil and lower than the critical temperature of the high temperature superconducting material. High-temperature superconducting magnet, which is characterized in that it is placed in.
【請求項16】 永久電流スイッチの高温超電導材の結
晶のc軸方向に略平行に磁界を印加し、上記永久電流ス
イッチを動作させるように構成したことを特徴とする請
求項15記載の高温超電導マグネット。
16. The high temperature superconducting device according to claim 15, wherein the permanent current switch is operated by applying a magnetic field substantially parallel to the c-axis direction of the crystal of the high temperature superconducting material of the persistent current switch. magnet.
【請求項17】 上記請求項16に記載の永久電流スイ
ッチの高温超電導材の結晶のc軸方向に略平行に磁界を
印加する手段はコイルであることを特徴とする請求項1
6記載の高温超電導マグネット。
17. The permanent-current switch according to claim 16, wherein the means for applying a magnetic field substantially parallel to the c-axis direction of the crystal of the high temperature superconducting material is a coil.
6. The high temperature superconducting magnet according to 6.
【請求項18】 高温超電導体の膜材を用いた永久電流
スイッチを備えることを特徴とする高温超電導マグネッ
ト。
18. A high-temperature superconducting magnet, comprising a permanent current switch using a film material of the high-temperature superconductor.
【請求項19】 金属テープ上に高温超電導体層を形成
し、この高温超電導体層を形成した金属テープ上にもう
1枚の金属テープを重ねて加圧することにより上記2枚
の金属テープと高温超電導体層を一体化する高温超電導
テープ材の製造方法。
19. A high-temperature superconductor layer is formed on a metal tape, and another metal tape is placed on the metal tape on which the high-temperature superconductor layer is formed and pressure is applied to the two metal tapes and the high temperature. A method for producing a high-temperature superconducting tape material which integrates a superconducting layer.
【請求項20】 金属テープは溝を有し、高温超電導体
層は上記溝に形成される請求項19記載の高温超電導テ
ープ材の製造方法。
20. The method for producing a high temperature superconducting tape material according to claim 19, wherein the metal tape has a groove, and the high temperature superconductor layer is formed in the groove.
JP5288175A 1993-11-17 1993-11-17 High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material Pending JPH07142245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5288175A JPH07142245A (en) 1993-11-17 1993-11-17 High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5288175A JPH07142245A (en) 1993-11-17 1993-11-17 High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001326374A Division JP2002184618A (en) 2001-10-24 2001-10-24 High-temperature superconducting magnet

Publications (1)

Publication Number Publication Date
JPH07142245A true JPH07142245A (en) 1995-06-02

Family

ID=17726789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5288175A Pending JPH07142245A (en) 1993-11-17 1993-11-17 High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material

Country Status (1)

Country Link
JP (1) JPH07142245A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041125A (en) * 1996-05-13 1998-02-13 Sumitomo Electric Ind Ltd Superconducting coil
US6081179A (en) * 1997-05-08 2000-06-27 Sumitomo Electric Industries, Ltd. Superconducting coil
JP2000277321A (en) * 1999-03-24 2000-10-06 Kazuo Funaki Superconducting coil
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
WO2001052274A1 (en) * 2000-01-11 2001-07-19 Sumitomo Electric Industries, Ltd. Ceramic sheet for heat-treating metal composite superconductive wires and method using the same for heat treating metal composite superconductive wires, and superconductive magnet and method of producing the same
JP2002075727A (en) * 2000-08-31 2002-03-15 Kyushu Electric Power Co Inc Superconducting coil, its manufacturing method, and superconductor used for the same
JP2005333040A (en) * 2004-05-21 2005-12-02 Furukawa Electric Co Ltd:The Superconducting coil
JP2006093639A (en) * 2004-09-24 2006-04-06 Hyosung Corp Transition method for superconductive wire rod
JP2006313923A (en) * 2006-06-26 2006-11-16 Toshiba Corp High temperature superconducting coil and high temperature superconducting magnet using the same
JP2007324335A (en) * 2006-05-31 2007-12-13 Sumitomo Electric Ind Ltd Superconducting coil
JP2008305861A (en) * 2007-06-05 2008-12-18 Sumitomo Heavy Ind Ltd Superconducting coil and superconductive magnet device
JP2009043912A (en) * 2007-08-08 2009-02-26 Kobe Steel Ltd Superconducting coil
JP2009043759A (en) * 2007-08-06 2009-02-26 Kobe Steel Ltd Superconducting electromagnet
WO2010016254A1 (en) * 2008-08-06 2010-02-11 株式会社Ihi Superconducting coil and magnetic field generator
JP2010045176A (en) * 2008-08-12 2010-02-25 Toshiba Corp Superconducting magnet
JP2010263122A (en) * 2009-05-08 2010-11-18 Sumitomo Electric Ind Ltd Superconducting coil, superconducting apparatus, rotor, and stator
JP2011525684A (en) * 2008-06-23 2011-09-22 シーメンス アクチエンゲゼルシヤフト Conductor device for resistive switching element comprising at least two composite conductors made of superconducting conductors
JP2011228479A (en) * 2010-04-20 2011-11-10 Fujikura Ltd Superconducting coil
JP2012033947A (en) * 2011-09-27 2012-02-16 Toshiba Corp High-temperature superconductive coil and manufacturing method thereof
JP2012064649A (en) * 2010-09-14 2012-03-29 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus
JP2012109309A (en) * 2010-11-15 2012-06-07 Toshiba Corp Superconducting coil
JP2012151339A (en) * 2011-01-20 2012-08-09 Toshiba Corp Superconducting coil device
WO2014020805A1 (en) 2012-07-31 2014-02-06 川崎重工業株式会社 Magnetic field generator and superconducting rotating machine provided with same
WO2014041768A1 (en) 2012-09-11 2014-03-20 川崎重工業株式会社 Superconducting field-pole magnet
JP2014216411A (en) * 2013-04-24 2014-11-17 株式会社フジクラ Oxide superconducting coil and superconducting apparatus including the same
JP2015162495A (en) * 2014-02-26 2015-09-07 株式会社東芝 high-temperature superconducting coil
JP5826442B1 (en) * 2014-11-26 2015-12-02 三菱電機株式会社 Superconducting magnet and superconducting magnet manufacturing method
CN107342146A (en) * 2017-08-29 2017-11-10 广东电网有限责任公司电力科学研究院 A kind of high-temperature superconducting magnet containing magnet ring
JP2018036248A (en) * 2016-05-12 2018-03-08 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH Magnet arrangement with field-shaping element for reducing radial field component in region of hts section
CN108899157A (en) * 2018-08-17 2018-11-27 广东电网有限责任公司 A kind of current limiter superconducting coil of helical structure
JP2019040771A (en) * 2017-08-25 2019-03-14 株式会社東芝 Superconducting tape wire, superconducting current lead with the superconducting tape wire, permanent current switch and superconducting coil
WO2019229947A1 (en) * 2018-05-31 2019-12-05 三菱電機株式会社 Superconducting magnet
CN112038036A (en) * 2020-09-14 2020-12-04 核工业西南物理研究院 Fusion reactor toroidal field high-temperature superconducting magnet coil and winding method
JP2021015833A (en) * 2019-07-10 2021-02-12 株式会社東芝 Superconducting coil and superconducting coil unit
CN113241249A (en) * 2021-05-11 2021-08-10 上海超导科技股份有限公司 Method for winding uninsulated coil and uninsulated coil
CN115980641A (en) * 2023-03-20 2023-04-18 中国科学院合肥物质科学研究院 System and method for testing critical current of super-conduction band material under complex stress and magnetic field
WO2023106566A1 (en) * 2021-12-09 2023-06-15 한국전기연구원 High-temperature superconducting magnet

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041125A (en) * 1996-05-13 1998-02-13 Sumitomo Electric Ind Ltd Superconducting coil
US6081179A (en) * 1997-05-08 2000-06-27 Sumitomo Electric Industries, Ltd. Superconducting coil
JP2000277321A (en) * 1999-03-24 2000-10-06 Kazuo Funaki Superconducting coil
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
WO2001052274A1 (en) * 2000-01-11 2001-07-19 Sumitomo Electric Industries, Ltd. Ceramic sheet for heat-treating metal composite superconductive wires and method using the same for heat treating metal composite superconductive wires, and superconductive magnet and method of producing the same
JP2002075727A (en) * 2000-08-31 2002-03-15 Kyushu Electric Power Co Inc Superconducting coil, its manufacturing method, and superconductor used for the same
JP2005333040A (en) * 2004-05-21 2005-12-02 Furukawa Electric Co Ltd:The Superconducting coil
JP4652721B2 (en) * 2004-05-21 2011-03-16 古河電気工業株式会社 Superconducting coil
JP2006093639A (en) * 2004-09-24 2006-04-06 Hyosung Corp Transition method for superconductive wire rod
JP2007324335A (en) * 2006-05-31 2007-12-13 Sumitomo Electric Ind Ltd Superconducting coil
JP2006313923A (en) * 2006-06-26 2006-11-16 Toshiba Corp High temperature superconducting coil and high temperature superconducting magnet using the same
JP4719090B2 (en) * 2006-06-26 2011-07-06 株式会社東芝 High temperature superconducting coil and high temperature superconducting magnet using the same
JP2008305861A (en) * 2007-06-05 2008-12-18 Sumitomo Heavy Ind Ltd Superconducting coil and superconductive magnet device
JP2009043759A (en) * 2007-08-06 2009-02-26 Kobe Steel Ltd Superconducting electromagnet
JP2009043912A (en) * 2007-08-08 2009-02-26 Kobe Steel Ltd Superconducting coil
JP2011525684A (en) * 2008-06-23 2011-09-22 シーメンス アクチエンゲゼルシヤフト Conductor device for resistive switching element comprising at least two composite conductors made of superconducting conductors
US8354907B2 (en) 2008-08-06 2013-01-15 Ihi Corporation Superconducting coil assembly and magnetic field generating equipment
EP2323141A4 (en) * 2008-08-06 2012-12-12 Ihi Corp Superconducting coil and magnetic field generator
EP2323141A1 (en) * 2008-08-06 2011-05-18 IHI Corporation Superconducting coil and magnetic field generator
JP2010040823A (en) * 2008-08-06 2010-02-18 Ihi Corp Superconducting coil and magnetic field generation device
WO2010016254A1 (en) * 2008-08-06 2010-02-11 株式会社Ihi Superconducting coil and magnetic field generator
JP2010045176A (en) * 2008-08-12 2010-02-25 Toshiba Corp Superconducting magnet
JP2010263122A (en) * 2009-05-08 2010-11-18 Sumitomo Electric Ind Ltd Superconducting coil, superconducting apparatus, rotor, and stator
JP2011228479A (en) * 2010-04-20 2011-11-10 Fujikura Ltd Superconducting coil
JP2012064649A (en) * 2010-09-14 2012-03-29 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus
JP2012109309A (en) * 2010-11-15 2012-06-07 Toshiba Corp Superconducting coil
JP2012151339A (en) * 2011-01-20 2012-08-09 Toshiba Corp Superconducting coil device
JP2012033947A (en) * 2011-09-27 2012-02-16 Toshiba Corp High-temperature superconductive coil and manufacturing method thereof
WO2014020805A1 (en) 2012-07-31 2014-02-06 川崎重工業株式会社 Magnetic field generator and superconducting rotating machine provided with same
KR20150038024A (en) 2012-07-31 2015-04-08 카와사키 주코교 카부시키 카이샤 Magnetic field generator and superconducting rotating machine provided with same
US20150206635A1 (en) * 2012-07-31 2015-07-23 Kawasaki Jukogyo Kabushiki Kaisha Magnetic field generating device and superconducting rotary machine comprising magnetic field generating device
US9799434B2 (en) 2012-07-31 2017-10-24 Kawasaki Jukogyo Kabushiki Kaisha Magnetic field generating device and superconducting rotary machine comprising magnetic field generating device
US9768652B2 (en) 2012-09-11 2017-09-19 Kawasaki Jukogyo Kabushiki Kaisha Superconducting field pole
WO2014041768A1 (en) 2012-09-11 2014-03-20 川崎重工業株式会社 Superconducting field-pole magnet
JP2014216411A (en) * 2013-04-24 2014-11-17 株式会社フジクラ Oxide superconducting coil and superconducting apparatus including the same
JP2015162495A (en) * 2014-02-26 2015-09-07 株式会社東芝 high-temperature superconducting coil
WO2016084164A1 (en) * 2014-11-26 2016-06-02 三菱電機株式会社 Superconducting magnet and method for manufacturing superconducting magnet
JP5826442B1 (en) * 2014-11-26 2015-12-02 三菱電機株式会社 Superconducting magnet and superconducting magnet manufacturing method
US10393833B2 (en) 2016-05-12 2019-08-27 Bruker Biospin Gmbh Magnet arrangement with field-shaping element for reducing the radial field component in the region of an HTS section
JP2018036248A (en) * 2016-05-12 2018-03-08 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH Magnet arrangement with field-shaping element for reducing radial field component in region of hts section
JP2019040771A (en) * 2017-08-25 2019-03-14 株式会社東芝 Superconducting tape wire, superconducting current lead with the superconducting tape wire, permanent current switch and superconducting coil
CN107342146A (en) * 2017-08-29 2017-11-10 广东电网有限责任公司电力科学研究院 A kind of high-temperature superconducting magnet containing magnet ring
JPWO2019229947A1 (en) * 2018-05-31 2020-12-10 三菱電機株式会社 Manufacturing method of superconducting magnets and superconducting magnets
WO2019229947A1 (en) * 2018-05-31 2019-12-05 三菱電機株式会社 Superconducting magnet
CN112166480A (en) * 2018-05-31 2021-01-01 三菱电机株式会社 Superconducting magnet
CN108899157A (en) * 2018-08-17 2018-11-27 广东电网有限责任公司 A kind of current limiter superconducting coil of helical structure
CN108899157B (en) * 2018-08-17 2024-02-13 广东电网有限责任公司 Superconducting coil of current limiter with spiral structure
JP2021015833A (en) * 2019-07-10 2021-02-12 株式会社東芝 Superconducting coil and superconducting coil unit
CN112038036A (en) * 2020-09-14 2020-12-04 核工业西南物理研究院 Fusion reactor toroidal field high-temperature superconducting magnet coil and winding method
CN113241249A (en) * 2021-05-11 2021-08-10 上海超导科技股份有限公司 Method for winding uninsulated coil and uninsulated coil
CN113241249B (en) * 2021-05-11 2023-01-03 上海超导科技股份有限公司 Method for winding uninsulated coil and uninsulated coil
WO2023106566A1 (en) * 2021-12-09 2023-06-15 한국전기연구원 High-temperature superconducting magnet
CN115980641A (en) * 2023-03-20 2023-04-18 中国科学院合肥物质科学研究院 System and method for testing critical current of super-conduction band material under complex stress and magnetic field

Similar Documents

Publication Publication Date Title
JPH07142245A (en) High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material
EP1212760B2 (en) Rotor assembly with superconducting magnetic coil
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
US5689223A (en) Superconducting coil
ITMI952776A1 (en) SUPERCONDUCTOR CABLE FOR HIGH POWER
US6194985B1 (en) Oxide-superconducting coil and a method for manufacturing the same
AU2021240133B2 (en) High temperature superconductor magnet
WO1998047155A1 (en) Low resistance cabled conductors comprising superconducting ceramics
EP2056305A1 (en) Superconducting coil and superconducting conductor for use therein
JP3151159B2 (en) Superconducting current lead
US6344956B1 (en) Oxide bulk superconducting current limiting element current
JPH0371518A (en) Superconductor
US4242534A (en) Superconductor structure and method for manufacturing same
JP5266852B2 (en) Superconducting current lead
Lubell State-of-the-art of superconducting magnets
US3440336A (en) Web-shaped superconductor
US3486146A (en) Superconductor magnet and method
JP4638983B2 (en) Superconductor and manufacturing method thereof
JP4634954B2 (en) Superconducting device
JP3120626B2 (en) Oxide superconducting conductor
KR20120092077A (en) Composite with coated conductor
JP2519773B2 (en) Superconducting material
JPH0644421B2 (en) Superconducting conductor
JP3120625B2 (en) Oxide superconducting conductor
JPS61265881A (en) Thermal type superconductive switch