JPH07142012A - Glass bulb for cathode-ray tube - Google Patents

Glass bulb for cathode-ray tube

Info

Publication number
JPH07142012A
JPH07142012A JP28684193A JP28684193A JPH07142012A JP H07142012 A JPH07142012 A JP H07142012A JP 28684193 A JP28684193 A JP 28684193A JP 28684193 A JP28684193 A JP 28684193A JP H07142012 A JPH07142012 A JP H07142012A
Authority
JP
Japan
Prior art keywords
face
glass
thickness
ray tube
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28684193A
Other languages
Japanese (ja)
Other versions
JP2636706B2 (en
Inventor
Tsunehiko Sugawara
恒彦 菅原
Toshihide Murakami
敏英 村上
Yusuke Kobayashi
裕介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17709729&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07142012(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP28684193A priority Critical patent/JP2636706B2/en
Priority to US08/341,918 priority patent/US5536995A/en
Publication of JPH07142012A publication Critical patent/JPH07142012A/en
Application granted granted Critical
Publication of JP2636706B2 publication Critical patent/JP2636706B2/en
Priority to US09/289,648 priority patent/USRE36838E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To flatten and thin a face and at the same time to increase strength without increasing brightness difference. CONSTITUTION:Compressive stress layers 20, 21 are formed, which satisfy 1.0<=td/t0<=1.2 on the diagonal line of a face part and have the thickness of not less than t0/10 in the external surface and the internal surface of the face part when the thicknesses of glass in the center and in the vicinity of the end part of the face part 7 of a glass panel 3 are respectively t0 and td. Thereby, strength is increased and the development of a crack by impulse is stopped or rertarded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はテレビジョン等に用いる
陰極線管(ブラウン管)用ガラスバルブに関し、特にそ
の表示面側を構成するガラスパネルの構成に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass bulb for a cathode ray tube (cathode ray tube) used in a television or the like, and more particularly to the construction of a glass panel constituting the display surface side thereof.

【0002】[0002]

【従来の技術】図3にテレビジョン等に用いる陰極線管
の構成を示す。陰極線管1は、基本的に映像表示面側の
ガラスパネル部3と、このガラスパネル部3に対し密封
的に接合されるじょうご状のファンネル部4と、電子銃
17を格納したネック部5とからなるガラスバルブ2に
より構成される。ガラスパネル3は映像表示面を構成す
る実質的に矩形のフェース部7と、このフェース部7に
対しその周縁部から実質的に垂直方向に延在するスカー
ト部6とにより構成される。
2. Description of the Related Art FIG. 3 shows the structure of a cathode ray tube used in a television or the like. The cathode ray tube 1 basically includes a glass panel portion 3 on the image display surface side, a funnel-shaped funnel portion 4 that is hermetically joined to the glass panel portion 3, and a neck portion 5 that houses an electron gun 17. The glass bulb 2 is composed of The glass panel 3 is composed of a substantially rectangular face portion 7 which constitutes an image display surface, and a skirt portion 6 which extends from the peripheral portion of the face portion 7 in a substantially vertical direction.

【0003】スカート部6の外周には、パネル強度を保
持し破損時の飛散を防止するための防爆補強バンド8が
巻回される。フェース部7の内面側には電子銃からの電
子線衝撃により蛍光を発する蛍光膜12、およびこの蛍
光膜12からの陰極線管後方への発光を反射するための
アルミニウム膜13が積層され、さらにその内部側に電
子線の照射位置を規定するシャドウマスク14が設けら
れる。シャドウマスク14は、スタッドピン15により
スカート部6の内面に固定される。
An explosion-proof reinforcing band 8 is wound around the outer periphery of the skirt portion 6 for maintaining the panel strength and preventing scattering at the time of breakage. On the inner surface side of the face portion 7, a fluorescent film 12 that emits fluorescence due to an electron beam impact from an electron gun, and an aluminum film 13 for reflecting light emitted from the fluorescent film 12 to the rear of the cathode ray tube are laminated. A shadow mask 14 that defines the electron beam irradiation position is provided on the inner side. The shadow mask 14 is fixed to the inner surface of the skirt portion 6 by stud pins 15.

【0004】このようなガラスパネル部3は封着部10
に設けたハンダガラス等のシール剤によりファンネル部
4に対し密封接合される。ファンネル部4の内側には、
シャドウマスク14の電子線による高帯電を防ぎ外部へ
導通接地するための内部コーティング16が施される。
Such a glass panel portion 3 is a sealing portion 10.
It is hermetically joined to the funnel portion 4 by a sealing agent such as solder glass provided on the. Inside the funnel section 4,
An internal coating 16 is provided to prevent the shadow mask 14 from being highly charged by an electron beam and to be electrically grounded to the outside.

【0005】上記構成の陰極線管用ガラスバルブは、真
空容器として用いられるため、大気圧が外表面に作用し
応力が発生する。この場合、ガラスバルブは球殻とは異
なる非対称構造でありこれに起因して引っ張り応力の領
域が圧縮応力とともに比較的広範囲に存在する。このた
め、何らかの機械的衝撃が加わり局部的に亀裂や破壊が
生じると、貯えられた歪エネルギーを解放しようとして
瞬時にこの亀裂等を進展させ爆縮を招く。
Since the glass bulb for a cathode ray tube having the above structure is used as a vacuum container, atmospheric pressure acts on the outer surface to generate stress. In this case, the glass bulb has an asymmetric structure different from the spherical shell, and due to this, the tensile stress region exists in a relatively wide range together with the compressive stress. For this reason, when some kind of mechanical shock is applied and a crack or breakage locally occurs, the crack or the like is instantly developed in order to release the stored strain energy, resulting in implosion.

【0006】このような危険性を防止するため、従来前
述のように、ガラスパネル3のスカート部6に金属製の
補強バンド8を装着したり、あるいはガラスバルブを極
力球殻に近い構造にしてガラスパネルの曲率半径を小さ
くし(例えば1R程度:ここで1R=42.5×V/2
5.4+45.0で表わされ、Vは有効表示面対角径
(mm)である)、これにより衝撃に対する強度を確保
していた。また、ガラスパネルのフェース部を厚くして
強度を高める方法も行われていた。
In order to prevent such a danger, as described above, a metal reinforcing band 8 is attached to the skirt portion 6 of the glass panel 3 or the glass bulb is structured as close to a spherical shell as possible. Reduce the radius of curvature of the glass panel (for example, about 1R: here, 1R = 42.5 × V / 2
It is represented by 5.4 + 45.0, V is the diagonal diameter (mm) of the effective display surface, and thus the strength against impact was secured. Further, a method of increasing the strength by thickening the face portion of the glass panel has also been performed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記従
来の陰極線管用ガラスバルブにおいて、衝撃に対する強
度を高めるためにガラスパネルの曲率半径を小さくする
と視認性が悪くなり画面が見づらくなる。このためフェ
ースのフラット化が要求され1.5R〜2R程度の曲率
半径として画面を平坦化して見やすくする必要がある。
ところがこのようにフェースを平坦化すると機械的衝撃
に対し弱くなるという問題が生ずる。
However, in the above-mentioned conventional glass bulb for a cathode ray tube, if the radius of curvature of the glass panel is reduced in order to increase the strength against impact, the visibility becomes poor and the screen becomes difficult to see. For this reason, it is necessary to flatten the face, and it is necessary to flatten the screen to make it easier to see with a radius of curvature of about 1.5R to 2R.
However, when the face is flattened in this manner, there arises a problem that the face becomes weak against mechanical shock.

【0008】また、前述の補強バンドをガラスパネルに
装着した場合、締め付け力がフェース周縁のスカート部
に沿って不均一となり、安定した信頼性の高い防爆機能
が得られずフェース補強が充分達成されなかった。
Further, when the above-mentioned reinforcing band is attached to the glass panel, the tightening force becomes non-uniform along the skirt portion at the peripheral edge of the face, the stable and highly reliable explosion-proof function cannot be obtained, and the face reinforcement is sufficiently achieved. There wasn't.

【0009】また、補強のためにフェース部全体を厚く
すると重量が重くなり取扱性が悪くなる。この点に対処
するため、フェース部の外表面をフラットにし、内表面
の曲率半径を小さくしてフェース周辺部特に4隅のコー
ナー部を厚肉化した構成が用いられている。このような
構成により、全体の重量の軽減は図られるが、フェース
中央部と周辺部での厚さの違いにより、透過率に差が生
じ画像の輝度差が大きくなって表示品質が低下するとい
う問題を生ずる。
If the entire face portion is thickened for reinforcement, the weight becomes heavy and the handleability becomes poor. In order to deal with this point, a configuration is used in which the outer surface of the face portion is flattened and the radius of curvature of the inner surface is reduced to thicken the peripheral portion of the face, especially the four corner portions. With such a configuration, the weight of the entire face can be reduced, but the difference in the thickness between the central portion and the peripheral portion of the face causes a difference in the transmittance, resulting in a large difference in the luminance of the image and a reduction in the display quality. Cause problems.

【0010】なお、輝度Bは、B=ρTmpab
/Sで表わされる。ここで、ρは蛍光体の発光効率、T
m はマスクの透過率、Tp はガラスパネルの透過率、V
は陽極電圧、Iはビーム電流、Sはスクリーン面積、
a、bは定数である。
The brightness B is B = ρT m T p V a I b
/ S. Where ρ is the luminous efficiency of the phosphor, T
m is the transmittance of the mask, T p is the transmittance of the glass panel, V
Is the anode voltage, I is the beam current, S is the screen area,
a and b are constants.

【0011】また、ガラスパネルの透過率Tは、T=
(1−R)2 ・exp(−k・t)で表わされる。ここ
で、Rはガラスの反射率(4〜4.5%)、kは吸光係
数、tはガラス肉厚である。旭硝子社製の2種類のガラ
スパネル材料についての透過率と吸光係数を以下の表1
に示す。
Further, the transmittance T of the glass panel is T =
It is represented by (1-R) 2 · exp (−k · t). Here, R is the reflectance of the glass (4 to 4.5%), k is the extinction coefficient, and t is the glass wall thickness. The transmittance and extinction coefficient of two types of glass panel materials manufactured by Asahi Glass Co., Ltd. are shown in Table 1 below.
Shown in.

【0012】[0012]

【表1】 [Table 1]

【0013】また、以下の表2には、同一ガラス材料に
より形成した各種サイズのガラスパネルについて、フェ
ース中央と周辺部での肉厚およびその比とフラット性、
および透過率とその比を示す。
Further, in Table 2 below, regarding the glass panels of various sizes formed of the same glass material, the wall thicknesses at the center and peripheral portions of the face, their ratios and flatness,
And the transmittance and its ratio are shown.

【0014】[0014]

【表2】 [Table 2]

【0015】表2のサイズの欄において、カッコ内は画
面のアスペクト比を示し、表示のないものはアスペクト
比が4:3のものを示す。この表から分かるように、サ
イズに応じてフラット性を変えることによりパネル周縁
部での厚さが変わり透過率が変化する。これにより、フ
ェース中央部と端部との間で透過率の差を小さくしその
比を100%に近づけて輝度分布の均一化を図ることが
できる。
In the size column of Table 2, the aspect ratio of the screen is shown in parentheses, and the aspect ratio of 4: 3 is not shown. As can be seen from this table, by changing the flatness according to the size, the thickness at the peripheral portion of the panel changes and the transmittance changes. This makes it possible to reduce the difference in transmittance between the center portion and the end portion of the face and bring the ratio close to 100% to make the luminance distribution uniform.

【0016】しかしながら、前述のように、等肉厚性を
保ってフラット化を図ると防爆性が弱くなり、僅かな衝
撃によっても破壊しやすくなる。強度を高めるために厚
さを厚くすると重量が増加し取扱性が低下する。重量を
軽減するために、フェース内表面の曲率半径を小さくし
てフェース中央部を薄く、端部を厚く形成すると、フェ
ース中央部と端部との間で輝度格差が大きくなり視認性
が低下する。
However, as described above, if flattening is performed while maintaining uniform wall thickness, the explosion-proof property is weakened, and it is easy to break even by a slight impact. If the thickness is increased to increase the strength, the weight increases and the handleability deteriorates. To reduce the weight, if the radius of curvature of the face inner surface is made small and the face center part is made thin and the end part is made thick, the brightness difference between the face center part and the end part becomes large and the visibility deteriorates. .

【0017】本発明は上記従来技術の欠点に鑑みなされ
たものであって、フェース中央部と周辺部との輝度差を
大きくすることなくフェース外表面の平坦化およびガラ
スパネル全体の薄型化を図り、かつ機械的衝撃に対し強
度を高めた陰極線管用ガラスバルブの提供を目的とす
る。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and achieves flattening of the outer surface of the face and thinning of the entire glass panel without increasing the brightness difference between the central portion and the peripheral portion of the face. In addition, an object of the present invention is to provide a glass bulb for a cathode ray tube, which has improved strength against mechanical shock.

【0018】[0018]

【課題を解決するための手段】前記目的を達成するた
め、本発明では、表示画面を構成するほぼ矩形のフェー
ス部と該フェース部に対しその周縁部から実質的に垂直
方向に延在するスカート部とからなるガラスパネル部
と、該ガラスパネル部に対し密封的に接合されるじょう
ご状のファンネル部と、電子銃を格納する前記ファンネ
ル部根元のネック部とにより構成された陰極線管用ガラ
スバルブにおいて、前記ガラスパネルのフェース部の有
効画面部の中央およびその端部近傍のガラス肉厚をそれ
ぞれt0 およびtd とするとき、該フェース部の対角線
上において、1.0≦td /t0 ≦1.2であり、かつ
該フェース部の外表面および内表面にt0 /10以上の
厚さの圧縮応力層が形成されたことを特徴とする陰極線
管用ガラスバルブを提供するものである。
In order to achieve the above object, according to the present invention, a substantially rectangular face portion forming a display screen and a skirt extending substantially vertically from the peripheral portion of the face portion. In a glass bulb for a cathode ray tube comprising a glass panel part consisting of a tube part, a funnel-shaped funnel part hermetically joined to the glass panel part, and a neck part at the base of the funnel part for housing an electron gun. Assuming that the glass thicknesses in the center of the effective screen portion of the face portion of the glass panel and in the vicinity of the end portions thereof are t 0 and t d , respectively, 1.0 ≦ t d / t 0 on the diagonal line of the face portion. Provided is a glass bulb for a cathode ray tube, wherein ≦ 1.2, and a compressive stress layer having a thickness of t 0/10 or more is formed on an outer surface and an inner surface of the face portion. To do.

【0019】また、本発明の好ましい態様として、前記
フェース部の有効画面部の対角線を含む領域内におい
て、前記圧縮応力層の応力値をσc とするとき、60k
g/cm2 ≦σc ≦200kg/cm2 であることを特
徴とする。
In a preferred aspect of the present invention, when the stress value of the compressive stress layer is σ c in a region including a diagonal line of the effective screen portion of the face portion, 60 k
It is characterized in that g / cm 2 ≦ σ c ≦ 200 kg / cm 2 .

【0020】本発明において、前記圧縮応力層は、ガラ
スパネル成形後の冷却処理により形成されるものであ
る。
In the present invention, the compressive stress layer is formed by a cooling treatment after molding the glass panel.

【0021】本発明でいうフェース部の端部近傍のガラ
ス肉厚td とは、実質的にフェース部の有効画面端部の
肉厚をいう。フェース部の有効画面端部とは、パネルフ
ェース内曲面とブレンドR(内曲面とスカートとの接
円)との接点部を示す。
The glass thickness t d in the vicinity of the end portion of the face portion as referred to in the present invention substantially means the thickness of the end portion of the effective screen of the face portion. The effective screen end portion of the face portion refers to a contact portion between the inner curved surface of the panel face and the blend R (the tangent circle between the inner curved surface and the skirt).

【0022】[0022]

【作用】ガラスパネルのフェース中央部と周辺部の厚さ
の差が小さくほぼ等肉厚形状であって、フェースの内外
両面に形成された圧縮応力層によりガラスが強化され、
薄型フラット化が可能になる。
[Function] The difference in thickness between the central portion and the peripheral portion of the face of the glass panel is small, and the thickness is almost equal, and the glass is strengthened by the compressive stress layers formed on both inner and outer faces of the face.
It can be thin and flat.

【0023】即ち、ガラスパネルの少なくともフェース
部に、物理強化により亀裂の進展を阻止したり遅延させ
るのに充分な応力値と応力厚みを有する圧縮層を形成す
る。これにより、1.5Rから2.0R程度のフラット
性を確保しながら、重量を軽減するとともに中央部と端
部との間の輝度差を小さくし、しかも衝撃に耐え得る強
度の大きい陰極線管用ガラスバルブが実現可能になる。
That is, a compression layer having a stress value and a stress thickness sufficient to prevent or delay the progress of cracks is formed by physical strengthening on at least the face portion of the glass panel. As a result, while maintaining a flatness of about 1.5R to 2.0R, the weight is reduced, the brightness difference between the central portion and the end portion is reduced, and the glass for a cathode ray tube having a high strength capable of withstanding an impact is also provided. The valve becomes feasible.

【0024】[0024]

【実施例】図1は本発明の実施例に係る陰極線管用ガラ
スバルブのガラスパネル部3の断面構成図である。この
実施例においては、フェース部7の中央部の厚さをt0
とし、周辺部の厚さをtd としたとき、1.0≦td
0 ≦1.2となるようにガラスパネルが形成されてい
る。即ち、フェース中央部と周辺部との厚さの比を1ま
たはそれに近くして厚さの差を小さくし、等肉厚化が図
られている。このように等肉厚化することにより、ガラ
スの光透過率や吸光係数がフェース全面にわたってほぼ
均一化し、中央部と周辺部での輝度差が減少し画面が見
やすくなる。図2は、上記ガラスパネル3のフェース部
7の平面図である。X、Yはそれぞれ横方向および縦方
向の中心軸を示す。点線は画面を16分割している。フ
ェース7の内表面の曲率半径は外表面の曲率半径より小
さいため、フェース中心から距離が遠くなるほどガラス
肉厚が厚くなる。したがって、フェース7の4隅部の
A、B、C、Dで示す部分の肉厚が一番厚くなる。本発
明に係るガラスパネルにおいては、この4隅部A、B、
C、Dを含む対角線上において上記厚さに関する条件式
1.0≦td /t0 ≦1.2を満足することが望まし
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of a glass panel portion 3 of a glass bulb for a cathode ray tube according to an embodiment of the present invention. In this embodiment, the thickness of the central portion of the face portion 7 is t 0.
And the thickness of the peripheral portion is t d , 1.0 ≦ t d /
The glass panel is formed so that t 0 ≦ 1.2. That is, the thickness difference between the central portion and the peripheral portion of the face is set to 1 or close to 1 to reduce the difference in thickness, thereby achieving equal thickness. By making the thickness equal, the light transmittance and the extinction coefficient of the glass are made substantially uniform over the entire face, the brightness difference between the central portion and the peripheral portion is reduced, and the screen is easy to see. FIG. 2 is a plan view of the face portion 7 of the glass panel 3. X and Y indicate central axes in the horizontal and vertical directions, respectively. The dotted line divides the screen into 16 parts. Since the radius of curvature of the inner surface of the face 7 is smaller than the radius of curvature of the outer surface, the glass thickness increases as the distance from the face center increases. Therefore, the four corners of the face 7 are thickest at the portions indicated by A, B, C, and D. In the glass panel according to the present invention, the four corners A, B,
On the diagonal line including C and D, it is desirable to satisfy the conditional expression 1.0 ≦ t d / t 0 ≦ 1.2 regarding the thickness.

【0025】上記実施例において、図1の点線で示すよ
うに、フェース部7の有効画面部の外側表面および内側
表面には圧縮応力層20、21が形成されている。これ
らの圧縮応力層20、21の厚さはt0 /10以上であ
る。またこれらの圧縮応力層20、21の応力値をσc
とするとき、60kg/cm2 ≦σc ≦200kg/c
2 であることが望ましい。
In the above embodiment, as shown by the dotted line in FIG. 1, compressive stress layers 20 and 21 are formed on the outer surface and inner surface of the effective screen portion of the face portion 7. The thickness of the compressive stress layers 20 and 21 is t 0/10 or more. In addition, the stress values of these compressive stress layers 20 and 21 are expressed by σ c
And 60 kg / cm 2 ≦ σ c ≦ 200 kg / c
It is preferably m 2 .

【0026】このような圧縮応力層20、21を形成す
る方法としては、溶融ガラスをプレス成形してガラスパ
ネルを形成後、これを徐冷炉内で冷却して物理強化する
ことによってガラス表面側に圧縮応力層を形成する。こ
の場合、発生する応力の大きさはガラス表面が徐冷温度
から歪点に下がるまでに要する時間によって左右され、
冷却が早ければ早い程内部との収縮の差が大きくなり、
冷却終了後は表面に大きな圧縮応力が発生する。このよ
うな圧縮応力層の存在によりガラス表面の機械的強度が
高められる。
As a method of forming the compressive stress layers 20 and 21, the molten glass is press-molded to form a glass panel, which is then cooled in a slow cooling furnace to be physically strengthened and compressed to the glass surface side. Form a stress layer. In this case, the magnitude of the generated stress depends on the time required for the glass surface to cool from the annealing temperature to the strain point,
The faster the cooling, the greater the difference in shrinkage with the inside,
After completion of cooling, a large compressive stress is generated on the surface. The presence of such a compressive stress layer enhances the mechanical strength of the glass surface.

【0027】本発明でいう物理強化においては、ガラス
の軟化点近くの高温域から急冷すると、表面は急激に収
縮固化する反面、内部はまだ充分流動性を保持し膨張し
たままの状態にあり、一時歪を流動により瞬時に緩和し
てしまう。さらに冷却されると内部も収縮しようとする
が、その動きは固化した表面層の存在によって制限され
る。この結果、ガラスの温度が室温まで下がり充分な平
衡状態に達した時には、表面には大きな圧縮応力層と内
部には引張応力層が形成され残留応力として残る。
In the physical strengthening referred to in the present invention, when the glass is rapidly cooled from a high temperature region near the softening point of the glass, the surface rapidly shrinks and solidifies, while the interior still retains sufficient fluidity and remains expanded. The temporary strain is instantly relieved by the flow. Upon further cooling, the interior will also try to shrink, but its movement is limited by the presence of the solidified surface layer. As a result, when the temperature of the glass falls to room temperature and reaches a sufficient equilibrium state, a large compressive stress layer is formed on the surface and a tensile stress layer is formed inside and remains as residual stress.

【0028】この際発生する応力の大きさは、ガラス表
面が徐冷温度から歪点に下がるまでに要する時間によっ
て左右され、冷却が早ければ早いほど内部との収縮の差
が大きくなる。そして、徐冷後は表面に大きな圧縮応力
層σc が発生する。しかし、同時にこの圧縮応力を打ち
消す形で内部中央にはσt =−σc /2の大きさの引張
応力が必然的に形成される。
The magnitude of the stress generated at this time depends on the time required for the glass surface to drop from the annealing temperature to the strain point, and the faster the cooling, the greater the difference in shrinkage with the inside. Then, after slow cooling, a large compressive stress layer σ c is generated on the surface. However, at the same time, a tensile stress with a magnitude of σ t = −σ c / 2 is inevitably formed in the inner center in a form of canceling this compressive stress.

【0029】したがって、表面の圧縮応力層の存在が強
度を向上させる反面、内部中央の引張応力が大き過ぎる
と、内部中央付近に存在する未溶解物質等の欠陥が引き
金となって、内部に貯えられた引張歪エネルギーを解放
しようとして、自爆する危険性がある。
Therefore, while the presence of the compressive stress layer on the surface enhances the strength, when the tensile stress in the inner center is too large, defects such as undissolved substances existing in the vicinity of the inner center trigger and are stored inside. There is a risk of self-destruction in an attempt to release the entrained tensile strain energy.

【0030】通常の陰極線管組み立て工程における熱衝
撃等をも考慮すると、自爆を発生させないためには、1
00kg/cm2 を超えない範囲に内部中央の引張応力
を抑制する必要があることが、ガラスバルブの熱衝撃試
験から判明した。したがって、σc =−2σt の関係か
ら圧縮応力としては200kg/cm2 を超えない範囲
に設定する必要がある。
Considering thermal shock and the like in the normal cathode ray tube assembly process, in order to prevent self-destruction, 1
It was found from the thermal shock test of the glass bulb that it is necessary to suppress the tensile stress at the inner center within a range not exceeding 00 kg / cm 2 . Therefore, from the relationship of σ c = −2σ t , it is necessary to set the compressive stress within a range not exceeding 200 kg / cm 2 .

【0031】このような物理強化による圧縮応力層を設
けることにより、ガラスパネルの平坦化、薄型化および
等肉厚化が可能となり視認性が向上するとともに透過率
が向上しフェース輝度の均一化を図ることができる。
By providing the compressive stress layer by such physical strengthening, the glass panel can be flattened, thinned, and made to have an equal thickness, so that the visibility is improved and the transmittance is improved to make the face brightness uniform. Can be planned.

【0032】表3は、フェース部の曲率半径や肉厚、透
過率等の条件を変えて実際に作成したガラスパネルの6
種類のサンプルデータを示す。
Table 3 shows the glass panels which were actually prepared by changing the conditions such as the radius of curvature of the face portion, the wall thickness and the transmittance.
Shows sample data for types.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】各サンプル1〜6は、カラーテレビジョン
用の陰極線管に使用されるガラスバルブであって、表4
に示す特性を有し、表5に記載された組成からなるガラ
ス材料を用いて形成したガラスバルブである。このガラ
スバルブのフェース部は、アスペクト比が4:3で、対
角径が36cmの有効画面を有する15形テレビジョン
用のものであり、通常の製造工程にしたがって陰極線管
の組み立てを行ったものである。
Each of Samples 1 to 6 is a glass bulb used in a cathode ray tube for a color television.
A glass bulb having the characteristics shown in Table 1 and formed from a glass material having the composition shown in Table 5. The face portion of this glass bulb is for a 15-inch television having an aspect ratio of 4: 3 and an effective screen with a diagonal diameter of 36 cm. The cathode ray tube is assembled according to a normal manufacturing process. Is.

【0037】表3において、防爆試験不合格率のデータ
は、米国のUL安全規格に規定されているように、陰極
線管ガラスパネルのフェース部を鋼球を用いて7Jのエ
ネルギーで衝撃し、その際飛散するガラスの量の大小に
よって安全性の可否を判定したものである。この場合、
衝撃位置は防爆特性に対しフェース部の肉厚分布の影響
を受け易い有効画面端から対角線上30mmの位置とし
た。
In Table 3, the data of the failure rate of the explosion-proof test is, as specified in the UL safety standard of the United States, the face part of the cathode ray tube glass panel is impacted with a steel ball at an energy of 7 J, and its Whether or not safety is judged is determined by the size of the glass that scatters significantly. in this case,
The impact position was set at a position 30 mm on the diagonal from the end of the effective screen, which is easily affected by the thickness distribution of the face portion with respect to the explosion-proof property.

【0038】(サンプル−1)圧縮応力層は形成されて
いない。外面および内面の曲率半径が小さくサンプル中
最も球殻構造に近い。このため衝撃に対し強く、防爆試
験の不合格品を出さずに対角線上の表示端部近傍の肉厚
を12.5mmと比較的薄くすることができた。またフ
ェース中央と対角線上端部との間の光透過率比は93%
と良好である。しかしながら、外面曲率半径が640m
mと小さいため視認性が悪く画面が見づらい。
(Sample-1) No compressive stress layer was formed. The outer and inner surfaces have small radii of curvature and are closest to the spherical shell structure in the sample. For this reason, it was strong against impact, and the wall thickness in the vicinity of the display end portion on the diagonal line could be made relatively thin as 12.5 mm without producing a product that failed the explosion-proof test. The light transmittance ratio between the center of the face and the upper end of the diagonal is 93%.
And good. However, the outer radius of curvature is 640 m
Since it is as small as m, the visibility is poor and the screen is difficult to see.

【0039】(サンプル−2)圧縮応力層は形成されて
いない。外面の曲率半径を1200mmと大きくして視
認性を改善した。フェース中央部肉厚と有効画面部の端
部肉厚との比は1.10であり等肉厚性は良好である。
また、表示面端部の肉厚を11.0mmと薄くして光透
過率を95.4%と向上させた。しかしながら、有効画
面の端部肉厚が薄くなったため、強度が低下し、防爆試
験の不合格率が約50%(20個中9個が不合格)と極
めて悪かった。
(Sample-2) The compressive stress layer is not formed. Visibility is improved by increasing the radius of curvature of the outer surface to 1200 mm. The ratio of the thickness of the face center portion to the thickness of the end portion of the effective screen portion is 1.10, and the equal thickness is good.
Further, the thickness of the end portion of the display surface was reduced to 11.0 mm to improve the light transmittance to 95.4%. However, since the thickness of the edge portion of the effective screen was thin, the strength was lowered and the rejection rate of the explosion-proof test was about 50% (9 out of 20 failed), which was extremely poor.

【0040】(サンプル−3)パネル形状はサンプル−
2と同一である。防爆強度を向上させるために、パネル
表面に物理強化による圧縮応力層を形成した。圧縮応力
値はフェース中央部で43kg/cm2 、フェース端部
で40kg/cm2 であり、フェース有効表示画面内で
ほぼ一様に分布している。またこの圧縮応力層の厚さは
1.5mmから1.8mmであって、ガラス中央部の厚
さの1/10以上であった。このような圧縮応力層を形
成することにより、衝撃に対する強度が高まり、同一形
状のサンプル−2に比べ防爆試験結果が向上した。しか
しながら、10%の不合格率が発生している。
(Sample-3) Panel shape is sample-
Same as 2. In order to improve the explosion-proof strength, a compressive stress layer was formed on the panel surface by physical strengthening. The compressive stress value is 43 kg / cm 2 at the center of the face and 40 kg / cm 2 at the end of the face, which are distributed almost uniformly in the face effective display screen. The thickness of this compressive stress layer was 1.5 mm to 1.8 mm, which was 1/10 or more of the thickness of the central portion of the glass. By forming such a compressive stress layer, the strength against impact was increased, and the explosion-proof test result was improved as compared with Sample-2 having the same shape. However, a rejection rate of 10% has occurred.

【0041】(サンプル−4)パネル形状はサンプル−
2と同一である。圧縮応力層の応力値をサンプル−3の
約1.5倍としフェース中央部で65kg/cm2 、フ
ェース端部で63kg/cm2 まで高めて防爆強度を強
めた。この結果防爆試験の合格率が100%となり不良
品は発生しなかった。
(Sample-4) Panel shape is sample-
Same as 2. The stress value of the compressive stress layer was increased to about 1.5 times that of Sample-3 to 65 kg / cm 2 at the center of the face and 63 kg / cm 2 at the end of the face to enhance the explosion-proof strength. As a result, the pass rate of the explosion-proof test was 100%, and no defective product was generated.

【0042】(サンプル−5)パネル形状はサンプル−
2と同一である。圧縮応力層の応力値をサンプル−4よ
りさらに高めてフェース中央部で187kg/cm2
フェース端部で183kg/cm2 とした。この場合に
も、防爆試験の合格率は100%となり不良品は発生し
なかった。
(Sample-5) Sample shape is panel-
Same as 2. The stress value of the compressive stress layer was further increased from that of Sample-4 to 187 kg / cm 2 at the center of the face,
The face edge was 183 kg / cm 2 . In this case as well, the pass rate of the explosion-proof test was 100%, and no defective product was generated.

【0043】(サンプル−6)圧縮応力層を形成せずに
強度を高め防爆試験の合格率を100%にしたものであ
る。しかしながら、このサンプルでは内面曲率半径が小
さくフェース端部の肉厚が厚くなり重量が大きくなり
(4.2kg)、取扱いが不便になる。また、中央部と
端部との間の肉厚差が大きくなり、このため透過率の格
差が拡がり視認性が悪くなるという結果となった。
(Sample-6) The strength was increased without forming a compressive stress layer and the pass rate of the explosion-proof test was set to 100%. However, in this sample, the radius of curvature of the inner surface is small, and the thickness of the face end portion is large and the weight is large (4.2 kg), which makes the handling inconvenient. Further, the difference in thickness between the central portion and the end portion becomes large, which results in widening the difference in transmittance and deteriorating the visibility.

【0044】[0044]

【発明の効果】以上説明したように、本発明に係る陰極
線管用ガラスバルブにおいては、ガラスパネルフェース
面に物理強化により所定厚さで所定強さの圧縮応力層を
形成しているため、強度が高まり衝撃による亀裂の進展
が阻止あるいは遅延され、爆縮の発生が抑制される。ま
た、充分な強度を保持しながら、フラット性を高めかつ
表示面内での輝度格差を抑制し、視認性の向上を図ると
ともに、全体のガラス肉厚の薄型化および軽量化を図る
ことができる。
As described above, in the glass bulb for a cathode ray tube according to the present invention, since the compressive stress layer having a predetermined thickness and a predetermined strength is formed on the glass panel face surface by physical strengthening, the strength is The development of cracks due to rising impact is prevented or delayed, and the occurrence of implosion is suppressed. In addition, while maintaining sufficient strength, it is possible to improve flatness and suppress the brightness difference in the display surface, improve visibility, and reduce the overall glass thickness and weight. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るガラスパネルの断面図。FIG. 1 is a sectional view of a glass panel according to an embodiment of the present invention.

【図2】図1のガラスパネルの平面図。FIG. 2 is a plan view of the glass panel shown in FIG.

【図3】本発明が適用される陰極線管の構成図。FIG. 3 is a configuration diagram of a cathode ray tube to which the present invention is applied.

【符号の説明】[Explanation of symbols]

3:ガラスパネル 6:スカート部 7:フェース部 20、21:圧縮応力層 3: Glass panel 6: Skirt part 7: Face part 20, 21: Compressive stress layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表示画面を構成するほぼ矩形のフェース部
と該フェース部に対しその周縁部から実質的に垂直方向
に延在するスカート部とからなるガラスパネル部と、該
ガラスパネル部に対し密封的に接合されるじょうご状の
ファンネル部と、電子銃を格納する前記ファンネル部根
元のネック部とにより構成された陰極線管用ガラスバル
ブにおいて、前記ガラスパネルのフェース部の有効画面
部の中央およびその端部近傍のガラス肉厚をそれぞれt
0 およびtd とするとき、該フェース部の対角線上にお
いて、1.0≦td /t0 ≦1.2であり、かつ該フェ
ース部の外表面および内表面にt0 /10以上の厚さの
圧縮応力層が形成されたことを特徴とする陰極線管用ガ
ラスバルブ。
1. A glass panel portion comprising a substantially rectangular face portion forming a display screen and a skirt portion extending from the peripheral portion of the face portion in a direction substantially perpendicular to the face portion, and with respect to the glass panel portion. In a glass bulb for a cathode ray tube constituted by a funnel-shaped funnel portion that is hermetically joined and a neck portion at the base of the funnel portion that houses an electron gun, the center of the effective screen portion of the face portion of the glass panel and its The glass thickness near the edge is t
0 and t d , 1.0 ≦ t d / t 0 ≦ 1.2 on the diagonal line of the face portion, and a thickness of t 0/10 or more on the outer surface and the inner surface of the face portion. A glass bulb for a cathode ray tube, characterized in that a compressive stress layer is formed.
【請求項2】前記フェース部の有効画面部の対角線を含
む領域内において、前記圧縮応力層の応力値をσc とす
るとき、60kg/cm2 ≦σc ≦200kg/cm2
であることを特徴とする請求項1に記載の陰極線管用ガ
ラスバルブ。
2. When the stress value of the compressive stress layer is σ c in a region including a diagonal line of the effective screen portion of the face portion, 60 kg / cm 2 ≦ σ c ≦ 200 kg / cm 2
The glass bulb for a cathode ray tube according to claim 1, wherein
JP28684193A 1993-11-16 1993-11-16 Glass bulb for cathode ray tube Expired - Lifetime JP2636706B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28684193A JP2636706B2 (en) 1993-11-16 1993-11-16 Glass bulb for cathode ray tube
US08/341,918 US5536995A (en) 1993-11-16 1994-11-16 Glass bulb for a cathode ray and a method of producing the same
US09/289,648 USRE36838E (en) 1993-11-16 1999-04-12 Glass bulb for a cathode ray and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28684193A JP2636706B2 (en) 1993-11-16 1993-11-16 Glass bulb for cathode ray tube

Publications (2)

Publication Number Publication Date
JPH07142012A true JPH07142012A (en) 1995-06-02
JP2636706B2 JP2636706B2 (en) 1997-07-30

Family

ID=17709729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28684193A Expired - Lifetime JP2636706B2 (en) 1993-11-16 1993-11-16 Glass bulb for cathode ray tube

Country Status (1)

Country Link
JP (1) JP2636706B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547409A (en) * 1993-12-28 1996-08-20 Mitsubishi Denki Kabushiki Kaisha Manufacturing method of picture tube
US6133686A (en) * 1997-02-24 2000-10-17 Mitsubishi Denki Kabushiki Kaisha Display tube having an inner curvature compensating for floating distortion
US6133681A (en) * 1997-09-02 2000-10-17 Mitsubishi Denki Kabushiki Kaisha Color picture tube device having contoured panel and auxiliary coil for reducing apparent screen distortions
KR20010040176A (en) * 1999-10-25 2001-05-15 모리 가즈히로 A cathod-ray tube
US6252349B1 (en) 1998-10-27 2001-06-26 Mitsubishi Denki Kabushiki Kaisha Image display device having a cathode board held between front and back display cases
EP1241700A1 (en) * 2001-03-12 2002-09-18 Asahi Glass Co., Ltd. Glass bulb for a cathode ray tube and cathode ray tube
KR20040008779A (en) * 2002-07-19 2004-01-31 삼성에스디아이 주식회사 Cathode ray tube
KR100400342B1 (en) * 1997-02-27 2004-03-24 아사히 가라스 가부시키가이샤 Glass panel of cathode ray tube
DE19804753B4 (en) * 1997-02-06 2004-11-11 Asahi Glass Co., Ltd. Glass screen for a cathode ray tube and its use
USRE39739E1 (en) 1996-08-23 2007-07-24 Sony Corporation Glass bulb for color picture tube and the same tube

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547409A (en) * 1993-12-28 1996-08-20 Mitsubishi Denki Kabushiki Kaisha Manufacturing method of picture tube
USRE39739E1 (en) 1996-08-23 2007-07-24 Sony Corporation Glass bulb for color picture tube and the same tube
DE19804753B4 (en) * 1997-02-06 2004-11-11 Asahi Glass Co., Ltd. Glass screen for a cathode ray tube and its use
US6133686A (en) * 1997-02-24 2000-10-17 Mitsubishi Denki Kabushiki Kaisha Display tube having an inner curvature compensating for floating distortion
KR100400342B1 (en) * 1997-02-27 2004-03-24 아사히 가라스 가부시키가이샤 Glass panel of cathode ray tube
US6133681A (en) * 1997-09-02 2000-10-17 Mitsubishi Denki Kabushiki Kaisha Color picture tube device having contoured panel and auxiliary coil for reducing apparent screen distortions
US6252349B1 (en) 1998-10-27 2001-06-26 Mitsubishi Denki Kabushiki Kaisha Image display device having a cathode board held between front and back display cases
KR20010040176A (en) * 1999-10-25 2001-05-15 모리 가즈히로 A cathod-ray tube
EP1241700A1 (en) * 2001-03-12 2002-09-18 Asahi Glass Co., Ltd. Glass bulb for a cathode ray tube and cathode ray tube
KR20040008779A (en) * 2002-07-19 2004-01-31 삼성에스디아이 주식회사 Cathode ray tube

Also Published As

Publication number Publication date
JP2636706B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
JP2671766B2 (en) Glass bulb for cathode ray tube
US5536995A (en) Glass bulb for a cathode ray and a method of producing the same
KR100353185B1 (en) Glass bulb for a cathode ray tube
JP2636706B2 (en) Glass bulb for cathode ray tube
JP3215765B2 (en) Picture tube manufacturing method
JP2904067B2 (en) Glass bulb for cathode ray tube
JP2000113839A (en) Glass fannel for cathode ray tube and cathode ray tube
US6987351B2 (en) Flat panel for use in a cathode ray tube
US3519161A (en) Implosion-resistant cathode-ray tube and method of making
JP2003100235A (en) Cathode-ray tube and glass bulb therefor
JPH07142013A (en) Glass bulb for cathode-ray tube
JP3417900B2 (en) Cathode ray tube
US6707245B2 (en) Glass panel for cathode ray tube
US7005791B2 (en) Flat panel for cathode-ray tube
US20030025439A1 (en) Glass funnel for a cathode ray tube and cathode ray tube
JP2000133171A (en) Glass bulb for cathode-ray tube
JP2000348643A (en) Glass panel for cathode-ray tube
JP3362946B2 (en) Glass bulb for cathode ray tube
JP2000243316A (en) Glass funnel for cathode-ray tube and cathode-ray tube
KR100480489B1 (en) Flat panel for use in a cathode ray tube
JPS59165348A (en) Cathode-ray tube
JP2002270116A (en) Funnel for cathode-ray tube
JP2002008563A (en) Color cathode ray tube
JP2003051273A (en) Glass bulb for color cathode-ray tube, and color cathode- ray tube
KR20020086498A (en) Glass funnel and glass bulb for cathode ray tube

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970311