JPH07140008A - Radiation thermometer - Google Patents

Radiation thermometer

Info

Publication number
JPH07140008A
JPH07140008A JP28531293A JP28531293A JPH07140008A JP H07140008 A JPH07140008 A JP H07140008A JP 28531293 A JP28531293 A JP 28531293A JP 28531293 A JP28531293 A JP 28531293A JP H07140008 A JPH07140008 A JP H07140008A
Authority
JP
Japan
Prior art keywords
resistor
heat
ambient temperature
sensitive
thermosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28531293A
Other languages
Japanese (ja)
Inventor
Hidekazu Himesawa
秀和 姫澤
Motoo Igari
素生 井狩
Fumihiro Kamiya
文啓 紙谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP28531293A priority Critical patent/JPH07140008A/en
Publication of JPH07140008A publication Critical patent/JPH07140008A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide a radiation thermometer capable of accurately and independently measuring surface temperature and the ambient temperature in a simple structure. CONSTITUTION:A sensor section 2 is so constituted that a series circuit of thermosensitive resistor 5 and a first reference thermosensitive resistor 6 and a series circuit of a second reference thermosensitive resistor 7 and a fixed resistor 8 are connected in parallel. The resistance value of the thermosensitive resistor 5 is varied by being reacted with the radiation energy of infrared radiation and the ambient temperature. The first and second reference thermosensitive resistor 6, 7 have resistance-temperature characteristics approximately the same as the thermosensitive resistor 5 and is reacted only with the ambient temperature. An output voltage Vr corresponding to the radiation energy of infrared radiation is obtained from a connection point (a) between the thermosensitive resistor 5 and first reference resistor 6. An output voltage Ve corresponding to the ambient temperature is obtained from a connection point (b) between the second reference thermosensitive resistor 7 and fixed resistor 8. It is possible to independently measure the surface temperature and the ambient temperature of an object to be measured by a non-contact manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定物から輻射され
る赤外線の輻射エネルギによって被測定物の表面温度と
周囲温度とを非接触で測定する放射温度計に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation thermometer for measuring the surface temperature and ambient temperature of an object to be measured in a non-contact manner by the radiant energy of infrared rays radiated from the object to be measured.

【0002】[0002]

【従来の技術】従来より、被測定物からの赤外線輻射量
を焦電素子やサーモパイル等によって検出し、被測定物
の表面温度と周囲温度とを非接触で測定する放射温度計
として、図4に示すようなものがある。図4に示す放射
温度計は、被測定物から放射される赤外線を光学系15
により焦電素子等の赤外線検出素子16の受光面に集光
し、赤外線検出素子16の受光面に入射する赤外線をチ
ョッパ17で遮断することによって、赤外線検出素子1
6の受光面に入射する赤外線の輻射エネルギ量とチョッ
パ17の表面に照射される赤外線の輻射エネルギ量との
差に起因する温度差を生じせしめ、チョッパ17の表面
温度を基準温度検出素子18によって検出し、同期信号
発生器19で赤外線検出素子16と基準温度検出素子1
8との検出タイミングを同期させ、赤外線検出素子16
の出力を増幅位相検波器20で増幅検波した出力と基準
温度検出素子18の出力を増幅器21で増幅した出力と
を合成部22にて合成することにより被測定物の表面温
度を測定している。すなわち、被測定物の表面温度とチ
ョッパ17の表面温度との差に応じて赤外線検出素子1
6の出力が変化するので、上述のようにして被測定物の
表面温度を測定することができるというものである。
2. Description of the Related Art Conventionally, as a radiation thermometer for detecting the amount of infrared radiation from an object to be measured by a pyroelectric element or a thermopile and measuring the surface temperature and the ambient temperature of the object to be measured in a non-contact manner, as shown in FIG. There is something like. The radiation thermometer shown in FIG. 4 uses an optical system 15 to detect infrared rays emitted from the object to be measured.
The infrared detector element 1 such as a pyroelectric element is focused on the light receiving surface of the infrared detector element 16 and the infrared rays incident on the light receiving surface of the infrared detector element 16 are blocked by the chopper 17.
6 causes a difference in temperature due to a difference between the amount of radiant energy of infrared rays incident on the light-receiving surface of 6 and the amount of radiant energy of infrared rays emitted to the surface of the chopper 17, and the surface temperature of the chopper 17 is controlled by the reference temperature detecting element 18. The infrared signal detecting element 16 and the reference temperature detecting element 1 are detected by the synchronizing signal generator 19.
Infrared detecting element 16
The surface temperature of the object to be measured is measured by synthesizing the output obtained by amplifying and detecting the output of the above with the amplifying phase detector 20 and the output obtained by amplifying the output of the reference temperature detecting element 18 by the amplifier 21 by the synthesizing unit 22. . That is, the infrared detection element 1 is determined according to the difference between the surface temperature of the object to be measured and the surface temperature of the chopper 17.
Since the output of 6 changes, the surface temperature of the object to be measured can be measured as described above.

【0003】また、特開平5−45219号において、
図5に示すような赤外線感応抵抗体Rtを用いた赤外線
検知回路が提案されている。図5に示すように、この赤
外線検知回路は、被測定物から輻射される赤外線の輻射
エネルギと周囲温度とに感応する赤外線感応抵抗体Rt
と、この赤外線感応抵抗体Rtと略同一の抵抗温度特性
を有し周囲温度のみに感応する基準抵抗体Rrefと、
固定抵抗Rivとの直列回路に直流電源Eから直流電流
を供給し、赤外線感応抵抗体Rtと基準抵抗体Rref
との接続点での電圧Vinと所定の基準電圧Vrefと
の差分を増幅器23で直流増幅することによって赤外線
の輻射エネルギに対応した出力電圧V2を取り出し、さ
らに、赤外線感応抵抗体Rtと基準抵抗体Rrefとを
流れる直流電流を固定抵抗Rivによって直流電圧に変
換して周囲温度に対応した出力電圧V3 を取り出すこと
によって、被測定物の表面温度及び周囲温度を非接触で
測定できるものである。
Further, in JP-A-5-45219,
An infrared detection circuit using an infrared sensitive resistor Rt as shown in FIG. 5 has been proposed. As shown in FIG. 5, the infrared detecting circuit includes an infrared sensitive resistor Rt which is sensitive to the radiant energy of infrared rays radiated from the object to be measured and the ambient temperature.
And a reference resistor Rref having substantially the same resistance temperature characteristic as the infrared sensitive resistor Rt and sensitive only to the ambient temperature,
A direct current is supplied from the direct current power source E to the series circuit with the fixed resistor Riv, and the infrared sensitive resistor Rt and the reference resistor Rref are supplied.
The output voltage V 2 corresponding to the radiant energy of infrared rays is taken out by amplifying the difference between the voltage Vin at the connection point with the predetermined reference voltage Vref by the amplifier 23 and further the infrared sensitive resistor Rt and the reference resistance. The surface temperature and the ambient temperature of the object to be measured can be measured in a non-contact manner by converting the direct current flowing through the body Rref into the direct voltage by the fixed resistance Riv and extracting the output voltage V 3 corresponding to the ambient temperature. .

【0004】[0004]

【発明が解決しようとする課題】ところが前者の従来構
成では、被測定物から放射される赤外線と、基準とする
物体(チョッパ17)で遮断される赤外線との輻射エネ
ルギ量の差を赤外線検出素子16で検出しており、赤外
線検出素子16の出力として得られるのは、赤外線検出
素子16の受光面の温度とチョッパ17の表面温度との
温度差であって、被測定物の表面温度を知るためにはチ
ョッパ17の表面温度を測定する手段を別途設ける必要
があり、構成が複雑になるという問題がある。
However, in the former conventional configuration, the infrared detecting element detects the difference in the amount of radiant energy between the infrared rays radiated from the object to be measured and the infrared rays blocked by the reference object (chopper 17). The temperature difference between the temperature of the light receiving surface of the infrared detecting element 16 and the surface temperature of the chopper 17 is detected as the output of the infrared detecting element 16, and the surface temperature of the object to be measured is known. Therefore, it is necessary to separately provide a means for measuring the surface temperature of the chopper 17, which causes a problem that the configuration becomes complicated.

【0005】また、後者の従来構成では、赤外線の輻射
エネルギによる赤外線感応抵抗体Rtの抵抗値の変化分
は、周囲温度による赤外線感応抵抗体Rtの抵抗値の変
化分に比べて充分小さいものと仮定しているため、被測
定物の表面温度が高くなるにつれて、赤外線の輻射エネ
ルギによる赤外線感応抵抗体Rtの抵抗値の変化分が周
囲温度による変化分に対して無視できなくなり、周囲温
度の測定誤差が大きくなるという問題がある。
In the latter conventional configuration, the change in resistance value of the infrared sensitive resistor Rt due to the radiant energy of infrared rays is sufficiently smaller than the change in resistance value of the infrared sensitive resistor Rt due to ambient temperature. Since it is assumed that the surface temperature of the object to be measured becomes higher, the change in the resistance value of the infrared sensitive resistor Rt due to the radiant energy of infrared rays cannot be ignored with respect to the change in the ambient temperature. There is a problem that the error becomes large.

【0006】本発明は上記問題に鑑みてなされたもので
あり、簡単な構成で被測定物の表面温度と周囲温度とを
独立して精度よく測定することができる放射温度計の提
供を目的とするものである。
The present invention has been made in view of the above problems, and an object thereof is to provide a radiation thermometer capable of independently and accurately measuring the surface temperature and the ambient temperature of an object to be measured with a simple structure. To do.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、被測定物から輻射される赤外線
の輻射エネルギと周囲温度とに感応して抵抗値が変化す
る感熱抵抗体と、感熱抵抗体と略同一の抵抗温度特性を
有し周囲温度のみに感応する第1及び第2の基準感熱抵
抗体と、固定抵抗とを備え、感熱抵抗体と第1の基準感
熱抵抗体との直列回路と、第2の基準感熱抵抗体と固定
抵抗との直列回路とを互いに並列に接続して成るセンサ
部に電源を接続し、感熱抵抗体と第1の基準感熱抵抗体
との接続点から赤外線の輻射エネルギに応じた出力を取
り出すとともに、第2の基準感熱抵抗体と固定抵抗との
接続点から周囲温度に応じた出力を取り出すことを特徴
とする。
In order to achieve the above object, the invention of claim 1 is a thermal resistance whose resistance value changes in response to radiant energy of infrared rays radiated from an object to be measured and ambient temperature. The body, the first and second reference heat-sensitive resistors having substantially the same resistance temperature characteristics as the heat-sensitive resistor and sensitive only to the ambient temperature, and the fixed resistance, and the heat-sensitive resistor and the first reference heat-sensitive resistor. A power source is connected to a sensor unit formed by connecting a series circuit of the body and a series circuit of a second reference thermal resistor and a fixed resistor in parallel to each other, and the thermal resistor and the first reference thermal resistor are connected to each other. The output according to the radiant energy of infrared rays is taken out from the connection point of, and the output according to the ambient temperature is taken out from the connection point of the second reference thermosensitive resistor and the fixed resistor.

【0008】請求項2の発明は、被測定物から輻射され
る赤外線の輻射エネルギと周囲温度とに感応して抵抗値
が変化する感熱抵抗体と、感熱抵抗体と略同一の抵抗温
度特性を有し周囲温度のみに感応する第1及び第2の基
準感熱抵抗体とを半導体基板の表面に形成し、各抵抗体
の下部の半導体基板を除去して各抵抗体と半導体基板と
を熱分離する熱分離空間を設け、感熱抵抗体と第1の基
準感熱抵抗体とを直列に接続するとともに第2の基準感
熱抵抗体と固定抵抗とを直列に接続し上記2つの直列回
路を並列に接続して成るセンサ部に電源を接続し、感熱
抵抗体と第1の基準感熱抵抗体との接続点から赤外線の
輻射エネルギに応じた出力を取り出すとともに、第2の
基準感熱抵抗体と固定抵抗との接続点から周囲温度に応
じた出力を取り出すことを特徴とする。
According to a second aspect of the present invention, a heat-sensitive resistor whose resistance value changes in response to radiant energy of infrared rays radiated from an object to be measured and ambient temperature, and a resistance temperature characteristic which is substantially the same as that of the heat-sensitive resistor. First and second reference thermosensitive resistors having sensitivity only to ambient temperature are formed on the surface of the semiconductor substrate, and the semiconductor substrate under each resistor is removed to thermally separate the resistors from the semiconductor substrate. A heat separation space is provided to connect the thermosensitive resistor and the first reference thermosensitive resistor in series, and also connect the second reference thermosensitive resistor and fixed resistor in series to connect the two series circuits in parallel. A power source is connected to the sensor unit formed by, and an output corresponding to the radiant energy of infrared rays is taken out from the connection point between the thermal resistor and the first reference thermal resistor, and the second reference thermal resistor and the fixed resistor are connected. Output from the connection point according to the ambient temperature It is characterized in.

【0009】請求項3の発明は、被測定物から輻射され
る赤外線の輻射エネルギと周囲温度とに感応して抵抗値
が変化する感熱抵抗体と、感熱抵抗体と略同一の抵抗温
度特性を有し周囲温度のみに感応する第1及び第2の基
準感熱抵抗体と、固定抵抗とを半導体基板の表面に形成
し、各抵抗体の下部の半導体基板を除去して各抵抗体と
半導体基板とを熱分離する熱分離空間を設け、感熱抵抗
体と第1の基準感熱抵抗体とを直列に接続するとともに
第2の基準感熱抵抗体と固定抵抗とを直列に接続し上記
2つの直列回路を並列に接続して成るセンサ部に電源を
接続し、感熱抵抗体と第1の基準感熱抵抗体との接続点
から赤外線の輻射エネルギに応じた出力を取り出すとと
もに、第2の基準感熱抵抗体と固定抵抗との接続点から
周囲温度に応じた出力を取り出すことを特徴とする。
According to a third aspect of the present invention, a heat sensitive resistor whose resistance value changes in response to radiant energy of infrared rays radiated from an object to be measured and ambient temperature, and a resistance temperature characteristic which is substantially the same as that of the heat sensitive resistor. First and second reference thermosensitive resistors having sensitivity only to ambient temperature and a fixed resistor are formed on the surface of the semiconductor substrate, and the semiconductor substrate under each resistor is removed to form each resistor and the semiconductor substrate. A heat separation space for thermally separating the two is connected, the heat-sensitive resistor and the first reference heat-sensitive resistor are connected in series, and the second reference heat-sensitive resistor and the fixed resistor are connected in series. A power source is connected to a sensor section formed by connecting in parallel with each other, and an output corresponding to the radiant energy of infrared rays is taken out from a connection point between the heat-sensitive resistor and the first reference heat-sensitive resistor, and a second reference heat-sensitive resistor. According to the ambient temperature from the connection point between Wherein the taking out force.

【0010】請求項4の発明は、請求項1乃至請求項3
の発明において、第1及び第2の基準感熱抵抗体の表面
に赤外線を遮光するための赤外線反射膜が形成されてい
ることを特徴とする。
The invention of claim 4 is the first to third aspects of the invention.
In the invention described above, an infrared reflection film for blocking infrared rays is formed on the surfaces of the first and second reference thermosensitive resistors.

【0011】[0011]

【作用】請求項1の発明の構成では、被測定物から輻射
される赤外線の輻射エネルギと周囲温度とに感応して抵
抗値が変化する感熱抵抗体と、感熱抵抗体と略同一の抵
抗温度特性を有し周囲温度のみに感応する第1及び第2
の基準感熱抵抗体と、固定抵抗とを備え、感熱抵抗体と
第1の基準感熱抵抗体との直列回路と、第2の基準感熱
抵抗体と固定抵抗との直列回路とを互いに並列に接続し
て成るセンサ部に電源を接続し、感熱抵抗体と第1の基
準感熱抵抗体との接続点から赤外線の輻射エネルギに応
じた出力を取り出すとともに、第2の基準感熱抵抗体と
固定抵抗との接続点から周囲温度に応じた出力を取り出
すので、感熱抵抗体と第1の基準感熱抵抗体との接続点
から取り出した出力と、第2の基準感熱抵抗体と固定抵
抗との接続点から取り出した出力とによって被測定物の
表面温度を非接触で測定することができ、また、第2の
基準感熱抵抗体と固定抵抗との接続点から取り出した出
力によって、被測定物の表面温度の測定と独立して周囲
温度を非接触で精度よく測定することができるものであ
る。
According to the structure of the invention of claim 1, the heat sensitive resistor whose resistance value changes in response to the radiant energy of infrared rays radiated from the object to be measured and the ambient temperature, and the resistance temperature substantially the same as the heat sensitive resistor. First and second that have characteristics and are sensitive only to ambient temperature
Of the reference thermosensitive resistor and a fixed resistor, and a series circuit of the thermosensitive resistor and the first reference thermosensitive resistor and a series circuit of the second reference thermosensitive resistor and the fixed resistor are connected in parallel to each other. A power source is connected to the sensor unit formed by, and an output corresponding to the radiant energy of infrared rays is taken out from the connection point between the thermal resistor and the first reference thermal resistor, and the second reference thermal resistor and the fixed resistor are connected. Since the output according to the ambient temperature is extracted from the connection point of, the output extracted from the connection point of the thermal resistor and the first reference thermal resistor and the connection point of the second reference thermal resistor and the fixed resistor The surface temperature of the measured object can be measured in a non-contact manner by the output taken out, and the surface temperature of the measured object can be measured by the output taken out from the connection point between the second reference thermal resistor and the fixed resistor. Independent of measurement, the ambient temperature is measured without contact. Those which can often be measured.

【0012】請求項2の発明の構成では、被測定物から
輻射される赤外線の輻射エネルギと周囲温度とに感応し
て抵抗値が変化する感熱抵抗体と、感熱抵抗体と略同一
の抵抗温度特性を有し周囲温度のみに感応する第1及び
第2の基準感熱抵抗体とを半導体基板の表面に形成し、
各抵抗体の下部の半導体基板を除去して各抵抗体と半導
体基板とを熱分離する熱分離空間を設け、感熱抵抗体と
第1の基準感熱抵抗体とを直列に接続するとともに第2
の基準感熱抵抗体と固定抵抗とを直列に接続し上記2つ
の直列回路を並列に接続して成るセンサ部に電源を接続
し、感熱抵抗体と第1の基準感熱抵抗体との接続点から
赤外線の輻射エネルギに応じた出力を取り出すととも
に、第2の基準感熱抵抗体と固定抵抗との接続点から周
囲温度に応じた出力を取り出すので、被測定物の表面温
度と周囲温度とを独立して非接触で精度よく測定するこ
とができ、しかも、半導体基板の表面に感熱抵抗体と第
1及び第2の基準感熱抵抗体とを形成してセンサ部を構
成しているため、略同一の抵抗温度特性を有する上記各
抵抗体を安価に、かつ小さく形成することができ、セン
サ部の小型化を図ることができるものである。
According to the second aspect of the invention, the heat sensitive resistor whose resistance value changes in response to the radiant energy of infrared rays radiated from the object to be measured and the ambient temperature, and a resistance temperature substantially the same as the heat sensitive resistor. Forming on the surface of the semiconductor substrate first and second reference thermosensitive resistors having characteristics and being sensitive only to ambient temperature;
The semiconductor substrate under each resistor is removed to provide a thermal separation space for thermally separating each resistor and the semiconductor substrate, and the thermal resistor and the first reference thermal resistor are connected in series and the second thermal resistor is connected.
From the connection point between the thermosensitive resistor and the first reference thermosensitive resistor, the power source is connected to the sensor unit formed by connecting the reference thermosensitive resistor and the fixed resistor in series and connecting the two series circuits in parallel. In addition to taking out the output according to the radiant energy of infrared rays, taking out the output according to the ambient temperature from the connection point between the second reference thermosensitive resistor and the fixed resistor, the surface temperature and the ambient temperature of the object to be measured are independent. It is possible to perform non-contact and accurate measurement, and since the heat sensitive resistor and the first and second reference heat sensitive resistors are formed on the surface of the semiconductor substrate to form the sensor unit, substantially the same. Each of the resistors having resistance temperature characteristics can be formed inexpensively and in a small size, and the sensor portion can be downsized.

【0013】請求項3の発明の構成では、被測定物から
輻射される赤外線の輻射エネルギと周囲温度とに感応し
て抵抗値が変化する感熱抵抗体と、感熱抵抗体と略同一
の抵抗温度特性を有し周囲温度のみに感応する第1及び
第2の基準感熱抵抗体と、固定抵抗とを半導体基板の表
面に形成し、各抵抗体の下部の半導体基板を除去して各
抵抗体と半導体基板とを熱分離する熱分離空間を設け、
感熱抵抗体と第1の基準感熱抵抗体とを直列に接続する
とともに第2の基準感熱抵抗体と固定抵抗とを直列に接
続し上記2つの直列回路を並列に接続して成るセンサ部
に電源を接続し、感熱抵抗体と第1の基準感熱抵抗体と
の接続点から赤外線の輻射エネルギに応じた出力を取り
出し、第2の基準感熱抵抗体と固定抵抗との接続点から
周囲温度に応じた出力を取り出して被測定物の温度と周
囲温度とを測定するので、被測定物の表面温度と周囲温
度とを独立して非接触で精度よく測定することができ、
しかも、感熱抵抗体と第1及び第2の基準感熱抵抗体と
固定抵抗とを半導体基板の表面に形成してセンサ部を構
成しているため、略同一の抵抗温度特性を有する上記各
抵抗体と固定抵抗とを安価に、かつ小さく形成すること
ができてセンサ部の小型化が図れ、しかも固定抵抗を半
導体基板の表面に形成したため、放射温度計自体の小型
化も図ることができるものである。
According to the third aspect of the invention, the heat sensitive resistor whose resistance value changes in response to the radiant energy of infrared rays radiated from the object to be measured and the ambient temperature, and the resistance temperature substantially the same as the heat sensitive resistor. First and second reference thermosensitive resistors that have characteristics and are sensitive only to ambient temperature, and fixed resistors are formed on the surface of the semiconductor substrate, and the semiconductor substrate below each resistor is removed to form each resistor. Providing a heat separation space for thermally separating the semiconductor substrate,
A power source is connected to a sensor unit formed by connecting a thermosensitive resistor and a first reference thermosensitive resistor in series, connecting a second reference thermosensitive resistor and a fixed resistor in series, and connecting the above two series circuits in parallel. And outputs an output corresponding to the radiant energy of infrared rays from the connection point between the heat-sensitive resistor and the first reference heat-sensitive resistor, and according to the ambient temperature from the connection point between the second reference heat-sensitive resistor and the fixed resistor. Since the output is taken out and the temperature of the object to be measured and the ambient temperature are measured, the surface temperature and the ambient temperature of the object to be measured can be independently and accurately measured without contact,
In addition, since the thermosensitive resistor, the first and second reference thermosensitive resistors, and the fixed resistor are formed on the surface of the semiconductor substrate to form the sensor portion, each of the resistors having substantially the same resistance temperature characteristic. Since the fixed resistance and the fixed resistance can be formed inexpensively and small, the sensor part can be downsized, and since the fixed resistance is formed on the surface of the semiconductor substrate, the radiation thermometer itself can be downsized. is there.

【0014】請求項4の発明の構成では、第1及び第2
の基準感熱抵抗体の表面に赤外線を遮光するための赤外
線反射膜が形成されているので、基準感熱抵抗体に入射
する赤外線を簡単な構成で遮光することができるもので
ある。
In the configuration of the invention of claim 4, the first and second aspects are provided.
Since the infrared reflective film for shielding infrared rays is formed on the surface of the reference thermosensitive resistor, the infrared rays incident on the reference thermosensitive resistor can be shielded with a simple structure.

【0015】[0015]

【実施例】【Example】

(実施例1)本実施例の概略回路構成図を図1に示す。
図1に示すように、本実施例の放射温度計は、電源電圧
が等しい2つの直流電源1a,1bと、被測定物の表面
温度及び周囲温度を検出するセンサ部2と、センサ部2
の一方の出力電圧Vrを増幅する第1の増幅器3と、セ
ンサ部2の他方の出力電圧Veを増幅する第2の増幅器
4とで構成されている。そして、2つの直流電源1a,
1bは直列に接続されるとともに、その接続点が接地さ
れている。また、センサ部2の出力電圧は共に第1及び
第2の増幅器3,4の各反転入力端子に入力され、第1
及び第2の増幅器3,4の非反転入力端子は共に接地さ
れている。
(Embodiment 1) A schematic circuit configuration diagram of this embodiment is shown in FIG.
As shown in FIG. 1, the radiation thermometer of this embodiment includes two DC power supplies 1a and 1b having the same power supply voltage, a sensor unit 2 for detecting the surface temperature and the ambient temperature of an object to be measured, and a sensor unit 2.
The first amplifier 3 that amplifies one output voltage Vr and the second amplifier 4 that amplifies the other output voltage Ve of the sensor unit 2. And two DC power supplies 1a,
1b is connected in series, and its connection point is grounded. Further, the output voltage of the sensor unit 2 is both input to the inverting input terminals of the first and second amplifiers 3 and 4, and
And the non-inverting input terminals of the second amplifiers 3 and 4 are both grounded.

【0016】さらに、センサ部2は、被測定物から輻射
される赤外線の輻射エネルギと周囲温度とに感応して抵
抗値が変化するサーミスタのような感熱抵抗体5と、感
熱抵抗体5と略同一の抵抗温度特性を有し周囲温度のみ
に感応する第1及び第2の基準感熱抵抗体6,7と、固
定抵抗8とを備え、感熱抵抗体5と第1の基準感熱抵抗
体6との直列回路と、第2の基準感熱抵抗体7と固定抵
抗8との直列回路とを並列に接続して構成されており、
感熱抵抗体5と第1の基準感熱抵抗体6との接続点aか
ら出力電圧Vrを取り出すとともに、第2の基準感熱抵
抗体7と固定抵抗8との接続点bから出力電圧Veを取
り出している。
Further, the sensor section 2 is composed of a heat sensitive resistor 5 such as a thermistor whose resistance value changes in response to the radiant energy of infrared rays radiated from the object to be measured and the ambient temperature, and the heat sensitive resistor 5 are substantially the same. The first and second reference thermosensitive resistors 6 and 7 having the same resistance temperature characteristic and sensitive only to the ambient temperature, and the fixed resistor 8 are provided, and the thermosensitive resistor 5 and the first reference thermosensitive resistor 6 are provided. And a series circuit of the second reference thermosensitive resistor 7 and the fixed resistor 8 are connected in parallel.
The output voltage Vr is taken out from the connection point a between the thermosensitive resistor 5 and the first reference thermosensitive resistor 6, and the output voltage Ve is taken out from the connection point b between the second reference thermosensitive resistor 7 and the fixed resistor 8. There is.

【0017】上記構成では、被測定物から輻射される赤
外線を感熱抵抗体5に入射することによる感熱抵抗体5
の温度変化に応じて感熱抵抗体5の抵抗値が変化するの
で、接続点aから取り出される出力電圧Vrは赤外線の
輻射エネルギに応じたものとなり、また、周囲温度によ
る第2の基準感熱抵抗体7の温度変化に応じて第2の基
準感熱抵抗体7の抵抗値が変化するので、接続点bから
取り出される出力電圧Veは周囲温度に応じたものとな
る。よって、出力電圧Veによって周囲温度を測定する
ことができるとともに、出力電圧Veと出力電圧Vrと
から求められる感熱抵抗体5に入射した赤外線の輻射エ
ネルギ量により、ステファン−ボルツマンの法則を用い
て被測定物の表面温度を測定することができるのであ
る。
In the above configuration, the infrared ray radiated from the object to be measured is incident on the thermal resistance element 5 so that the thermal resistance element 5 can be obtained.
Since the resistance value of the thermosensitive resistor 5 changes in accordance with the temperature change of, the output voltage Vr extracted from the connection point a depends on the radiant energy of infrared rays, and the second reference thermosensitive resistor depending on the ambient temperature. Since the resistance value of the second reference thermosensitive resistor 7 changes according to the temperature change of 7, the output voltage Ve taken out from the connection point b becomes according to the ambient temperature. Therefore, the ambient temperature can be measured by the output voltage Ve, and the amount of radiant energy of infrared rays incident on the heat-sensitive resistor 5 obtained from the output voltage Ve and the output voltage Vr can be used to measure the ambient temperature using the Stefan-Boltzmann law. The surface temperature of the measured object can be measured.

【0018】次に、被測定物の表面温度と周囲温度との
具体的な測定方法について説明する。ここで、感熱抵抗
体5と第1及び第2の基準感熱抵抗体6,7を略同一の
抵抗温度特性を有するサーミスタで構成し、直流電源1
a,1bの電源電圧をV、周囲温度がT1 のときの感熱
抵抗体5の抵抗値をR1 、固定抵抗8の抵抗値をRf、
サーミスタの抵抗変化率をBとする。また、周囲温度が
Teのときに感熱抵抗体5にある量の赤外線が入射され
て、接続点a及び接続点bの各出力電圧がそれぞれV
r,Veであったとする。
Next, a specific method of measuring the surface temperature and the ambient temperature of the object to be measured will be described. Here, the thermosensitive resistor 5 and the first and second reference thermosensitive resistors 6 and 7 are composed of thermistors having substantially the same resistance temperature characteristics, and the DC power source 1
The power supply voltage of a and 1b is V, the resistance value of the thermosensitive resistor 5 when the ambient temperature is T 1 is R 1 , the resistance value of the fixed resistor 8 is Rf,
The resistance change rate of the thermistor is B. Further, when the ambient temperature is Te, a certain amount of infrared rays are incident on the heat sensitive resistor 5, and the output voltages at the connection point a and the connection point b are respectively V.
It is assumed that they are r and Ve.

【0019】このとき、第2の基準感熱抵抗体7の抵抗
値Reは、接続点bの出力電圧Veによって次式で表さ
れる。 Re=Rf(V−Ve)/(V+Ve) ・・・(式1) 第2の基準感熱抵抗体7は周囲温度のみに感応し、赤外
線の輻射エネルギには感応しないので、周囲温度Teは
次式で表される。
At this time, the resistance value Re of the second reference thermosensitive resistor 7 is expressed by the following equation by the output voltage Ve at the connection point b. Re = Rf (V−Ve) / (V + Ve) (Equation 1) Since the second reference thermal resistor 7 is sensitive only to the ambient temperature and not to the radiant energy of infrared rays, the ambient temperature Te is It is represented by a formula.

【0020】 Te=1/(1/T1 −ln(R1 /Re)/B)・・・(式2) ∵B=ln(R1 /Re)/(1/T1 −1/Te) したがって、式1及び式2によって周囲温度Teを測定
することができ、しかも、式1及び式2には赤外線の輻
射エネルギに関係する項は含まれていないから、周囲温
度を被測定物の表面温度と独立して精度よく測定するこ
とができるのである。
Te = 1 / (1 / T 1 −ln (R 1 / Re) / B) (Equation 2) ∵B = ln (R 1 / Re) / (1 / T 1 −1 / Te ) Therefore, the ambient temperature Te can be measured by the equations 1 and 2, and since the equations 1 and 2 do not include the term relating to the radiant energy of infrared rays, the ambient temperature Te can be measured. It is possible to measure accurately independently of the surface temperature.

【0021】一方、同条件における感熱抵抗体5の抵抗
値をRr、第1の基準感熱抵抗体6の抵抗値Reとする
と、感熱抵抗体5の抵抗値Rrは接続点aの出力電圧V
rによって次式で表される。 Rr=Re(V−Vr)/(V+Vr) ・・・(式3) よって、赤外線の輻射エネルギによる感熱抵抗体5の温
度変化分Trは、式2と同様にして次式で表すことがで
きる。
On the other hand, assuming that the resistance value of the thermosensitive resistor 5 under the same conditions is Rr and the resistance value Re of the first reference thermosensitive resistor 6 is Re, the resistance value Rr of the thermosensitive resistor 5 is the output voltage V of the connection point a.
It is represented by the following equation by r. Rr = Re (V-Vr) / (V + Vr) (Equation 3) Therefore, the temperature change Tr of the thermal resistor 5 due to the radiant energy of infrared rays can be expressed by the following equation in the same manner as in Equation 2. .

【0022】 Tr=1/(1/T1 −ln(R1 /Rr)/B)・・・(式4) ここで、赤外線の輻射エネルギの単位量当たりのサーミ
スタの温度変化をΔtとすると、感熱抵抗体5に入射さ
れた赤外線の輻射エネルギ量Prは、 Pr=(Tr−Te)/Δt ・・・(式5) と表される。したがって、この輻射エネルギ量Prか
ら、ステファン−ボルツマンの法則によって被測定物の
表面温度を測定することができる。
Tr = 1 / (1 / T 1 −ln (R 1 / Rr) / B) (Equation 4) where Δt is the temperature change of the thermistor per unit amount of radiant energy of infrared rays. The amount of radiant energy Pr of infrared rays incident on the heat-sensitive resistor 5 is expressed as Pr = (Tr−Te) / Δt (Equation 5). Therefore, the surface temperature of the object to be measured can be measured from this radiant energy amount Pr according to the Stefan-Boltzmann law.

【0023】(実施例2)本実施例は実施例1の放射温
度計におけるセンサ部2のうち、固定抵抗8以外の各抵
抗体5〜7を半導体基板の表面に形成したものである。
したがって、他の構成や動作については実施例1と共通
であるので説明は省略する。図2に本実施例の放射温度
計のセンサ部2(固定抵抗8を除く)の平面図及び側面
図を示す。図2に示すように、半導体基板9の表面に絶
縁薄膜10を形成し、感応抵抗体5と第1及び第2の基
準感熱抵抗体6,7とを絶縁薄膜2上に形成している。
(Embodiment 2) In this embodiment, in the sensor section 2 of the radiation thermometer of Embodiment 1, the resistors 5 to 7 other than the fixed resistor 8 are formed on the surface of the semiconductor substrate.
Therefore, other configurations and operations are the same as those in the first embodiment, and the description thereof will be omitted. FIG. 2 shows a plan view and a side view of the sensor unit 2 (excluding the fixed resistor 8) of the radiation thermometer of this embodiment. As shown in FIG. 2, the insulating thin film 10 is formed on the surface of the semiconductor substrate 9, and the sensitive resistor 5 and the first and second reference thermosensitive resistors 6 and 7 are formed on the insulating thin film 2.

【0024】上記の各抵抗体5〜7は、通常のIC回路
作成における半導体プロセス等と同様の薄膜形成技術或
いは微細加工技術を利用して形成される非晶質シリコン
又は多結晶シリコン又は非晶質炭化シリコンから成る薄
膜抵抗体のサーミスタと、このサーミスタの表面に形成
された複数の電極から成るものである。さらに、感熱抵
抗体5の表面には赤外線吸収膜12が形成され、第1及
び第2の基準感応抵抗体6,7の表面には赤外線の輻射
エネルギに感応しないように赤外線反射膜11が形成さ
れている。赤外線反射膜11は、アルミニウムやクロム
等のように半導体プロセスで形成できるものが望ましい
が、それ以外の方法で形成するようなものであってもよ
い。
The resistors 5 to 7 are formed of amorphous silicon, polycrystalline silicon, or amorphous silicon by using a thin film forming technique or a fine processing technique similar to the semiconductor process in the usual IC circuit production. A thin film resistor thermistor made of silicon carbide and a plurality of electrodes formed on the surface of the thermistor. Further, an infrared absorbing film 12 is formed on the surface of the heat sensitive resistor 5, and an infrared reflecting film 11 is formed on the surfaces of the first and second reference sensitive resistors 6 and 7 so as not to be sensitive to infrared radiation energy. Has been done. The infrared reflective film 11 is preferably made of a semiconductor process, such as aluminum or chrome, but may be formed by any other method.

【0025】また、上記絶縁薄膜10は、熱伝導率が小
さく半導体プロセスに適した物質で構成され、例えば、
シリコン酸化膜やシリコン窒化膜あるいはそれらの多層
膜から成るものである。そして、図2(b)に示すよう
に、感熱抵抗体5の下部の半導体基板9をエッチング等
の方法により除去し、感熱抵抗体5と半導体基板9とを
熱的に分離する熱分離空間13を設けている。したがっ
て、上記熱分離空間13により感熱抵抗体5と半導体基
板9とが熱的に分離されることにより、赤外線の輻射エ
ネルギによる感熱抵抗体5の温度上昇が大きくなり、感
熱抵抗体5の感度を向上させることができる。また、第
1及び第2の基準感熱抵抗体6,7の下部の半導体基板
9もエッチング等の方法により除去することによって、
それぞれ感熱抵抗体5の抵抗温度特性と略同一になるよ
うにしている。
The insulating thin film 10 is made of a material having a small thermal conductivity and suitable for a semiconductor process.
It is composed of a silicon oxide film, a silicon nitride film, or a multilayer film thereof. Then, as shown in FIG. 2B, the semiconductor substrate 9 below the heat sensitive resistor 5 is removed by a method such as etching to thermally separate the heat sensitive resistor 5 and the semiconductor substrate 9 from each other. Is provided. Therefore, the thermal separation space 13 thermally separates the heat sensitive resistor 5 and the semiconductor substrate 9 from each other, so that the temperature rise of the heat sensitive resistor 5 due to the radiant energy of infrared rays increases, and the sensitivity of the heat sensitive resistor 5 is increased. Can be improved. Further, by removing the semiconductor substrate 9 below the first and second reference thermosensitive resistors 6 and 7 by a method such as etching,
The resistance temperature characteristics of the heat sensitive resistor 5 are made to be substantially the same.

【0026】上述のように、感熱抵抗体5と第1及び第
2の基準感熱抵抗体6,7とを半導体基板9の表面に形
成することによって、略同一の抵抗温度特性を有する抵
抗体5〜7を備えるセンサ部2を安価に製作することが
でき、しかも、固定抵抗8を除くセンサ部2を半導体チ
ップで構成することができるために放射温度計自体の小
型化も図ることができる。
As described above, by forming the thermosensitive resistor 5 and the first and second reference thermosensitive resistors 6 and 7 on the surface of the semiconductor substrate 9, the resistor 5 having substantially the same resistance temperature characteristic. It is possible to manufacture the sensor unit 2 including the elements 7 to 7 at low cost, and since the sensor unit 2 excluding the fixed resistor 8 can be configured by a semiconductor chip, the radiation thermometer itself can be downsized.

【0027】(実施例3)本実施例は、図3に示すよう
に実施例2と同じように感熱抵抗体5と第1及び第2の
基準感熱抵抗体6,7とを半導体基板9の表面に形成
し、さらに、固定抵抗8も同じ半導体基板9の表面に形
成することによって、センサ部2を半導体チップで構成
したものであり、それによって放射温度計を小型化する
ことができるのである。なお、本実施例においては、セ
ンサ部2をより小型化するために第1及び第2の基準感
熱抵抗体6,7の形状を実施例2のものと異ならせてお
り、第1及び第2の基準感熱抵抗体6,7と感熱抵抗体
5との抵抗温度特性が略同一であれば各抵抗体5〜7を
どのような形状に形成してもよい。
(Embodiment 3) In this embodiment, as shown in FIG. 3, the thermosensitive resistor 5 and the first and second reference thermosensitive resistors 6 and 7 are mounted on the semiconductor substrate 9 as in the second embodiment. By forming the fixed resistor 8 on the surface and the fixed resistor 8 on the surface of the same semiconductor substrate 9, the sensor portion 2 is configured by a semiconductor chip, and thereby the radiation thermometer can be downsized. . In this embodiment, the first and second reference thermosensitive resistors 6 and 7 have different shapes from those of the second embodiment in order to make the sensor unit 2 smaller. If the resistance temperature characteristics of the reference thermosensitive resistors 6 and 7 and the thermosensitive resistor 5 are substantially the same, the resistors 5 to 7 may be formed in any shape.

【0028】[0028]

【発明の効果】請求項1の発明は、被測定物から輻射さ
れる赤外線の輻射エネルギと周囲温度とに感応して抵抗
値が変化する感熱抵抗体と、感熱抵抗体と略同一の抵抗
温度特性を有し周囲温度のみに感応する第1及び第2の
基準感熱抵抗体と、固定抵抗とを備え、感熱抵抗体と第
1の基準感熱抵抗体との直列回路と、第2の基準感熱抵
抗体と固定抵抗との直列回路とを互いに並列に接続して
成るセンサ部に電源を接続し、感熱抵抗体と第1の基準
感熱抵抗体との接続点から赤外線の輻射エネルギに応じ
た出力を取り出すとともに、第2の基準感熱抵抗体と固
定抵抗との接続点から周囲温度に応じた出力を取り出す
ので、感熱抵抗体と第1の基準感熱抵抗体との接続点か
ら取り出した出力と、第2の基準感熱抵抗体と固定抵抗
との接続点から取り出した出力とによって被測定物の表
面温度を非接触で測定することができ、また、第2の基
準感熱抵抗体と固定抵抗との接続点から取り出した出力
によって、被測定物の表面温度の測定と独立して周囲温
度を非接触で測定することができるため、被測定物の表
面温度と周囲温度とを簡単な構成で精度よく測定するこ
とができるという効果がある。
According to the invention of claim 1, a heat-sensitive resistor whose resistance value changes in response to radiant energy of infrared rays radiated from an object to be measured and ambient temperature, and a resistance temperature substantially the same as that of the heat-sensitive resistor. A first and a second reference thermosensitive resistors that have characteristics and are sensitive only to the ambient temperature, and a fixed resistor, a series circuit of the thermosensitive resistor and the first reference thermosensitive resistor, and a second reference thermosensitive resistor. A power source is connected to a sensor unit formed by connecting a series circuit of a resistor and a fixed resistor in parallel to each other, and an output corresponding to radiant energy of infrared rays is output from a connection point between the thermosensitive resistor and the first reference thermosensitive resistor. And the output according to the ambient temperature is taken out from the connection point between the second reference thermosensitive resistor and the fixed resistor, the output taken out from the connection point between the thermosensitive resistor and the first reference thermosensitive resistor, Taken from the connection point between the second reference thermal resistor and the fixed resistor. The surface temperature of the object to be measured can be measured in a non-contact manner by the output, and the surface temperature of the object to be measured can be determined by the output taken from the connection point between the second reference thermosensitive resistor and the fixed resistor. Since the ambient temperature can be measured in a contactless manner independently of the measurement, there is an effect that the surface temperature of the object to be measured and the ambient temperature can be accurately measured with a simple configuration.

【0029】請求項2の発明は、被測定物から輻射され
る赤外線の輻射エネルギと周囲温度とに感応して抵抗値
が変化する感熱抵抗体と、感熱抵抗体と略同一の抵抗温
度特性を有し周囲温度のみに感応する第1及び第2の基
準感熱抵抗体とを半導体基板の表面に形成し、各抵抗体
の下部の半導体基板を除去して各抵抗体と半導体基板と
を熱分離する熱分離空間を設け、感熱抵抗体と第1の基
準感熱抵抗体とを直列に接続するとともに第2の基準感
熱抵抗体と固定抵抗とを直列に接続し上記2つの直列回
路を並列に接続し上記2つの直列回路を並列に接続して
成るセンサ部に電源を接続し、感熱抵抗体と第1の基準
感熱抵抗体との接続点から赤外線の輻射エネルギに応じ
た出力を取り出すとともに、第2の基準感熱抵抗体と固
定抵抗との接続点から周囲温度に応じた出力を取り出す
ので、被測定物の表面温度と周囲温度とを独立して非接
触で測定することができるため、被測定物の表面温度と
周囲温度とを簡単な構成で精度よく測定することができ
るという効果がある。しかも、半導体基板の表面に感熱
抵抗体と第1及び第2の基準感熱抵抗体とを形成してセ
ンサ部を構成しているため、略同一の抵抗温度特性を有
する上記各抵抗体を安価に、かつ小さく形成することが
でき、センサ部の小型化が図れるという効果がある。ま
た、各抵抗体と半導体基板とを熱分離空間で熱分離する
ことにより、断熱効果を高めて測定精度を向上させるこ
とができるという効果がある。
According to a second aspect of the present invention, a heat-sensitive resistor whose resistance value changes in response to radiant energy of infrared rays radiated from an object to be measured and ambient temperature, and resistance temperature characteristics which are substantially the same as those of the heat-sensitive resistor. First and second reference thermosensitive resistors having sensitivity only to ambient temperature are formed on the surface of the semiconductor substrate, and the semiconductor substrate under each resistor is removed to thermally separate the resistors from the semiconductor substrate. A heat separation space is provided to connect the thermosensitive resistor and the first reference thermosensitive resistor in series, and also connect the second reference thermosensitive resistor and fixed resistor in series to connect the two series circuits in parallel. Then, a power source is connected to the sensor unit formed by connecting the above two series circuits in parallel, and an output corresponding to the radiant energy of infrared rays is taken out from the connection point between the heat sensitive resistor and the first reference heat sensitive resistor. Connection point between the standard thermal resistor of 2 and the fixed resistor Since the output corresponding to the ambient temperature is taken out, it is possible to measure the surface temperature and the ambient temperature of the DUT independently and in a non-contact manner. There is an effect that the measurement can be performed accurately. Moreover, since the sensor portion is formed by forming the thermosensitive resistor and the first and second reference thermosensitive resistors on the surface of the semiconductor substrate, the above-mentioned resistors having substantially the same resistance temperature characteristics can be inexpensively manufactured. In addition, it is possible to form the sensor unit in a small size, and the size of the sensor unit can be reduced. Further, by thermally separating each resistor and the semiconductor substrate in the heat separation space, there is an effect that the heat insulating effect can be enhanced and the measurement accuracy can be improved.

【0030】請求項3の発明は、被測定物から輻射され
る赤外線の輻射エネルギと周囲温度とに感応して抵抗値
が変化する感熱抵抗体と、感熱抵抗体と略同一の抵抗温
度特性を有し周囲温度のみに感応する第1及び第2の基
準感熱抵抗体と、固定抵抗とを半導体基板の表面に形成
し、各抵抗体の下部の半導体基板を除去して各抵抗体と
半導体基板とを熱分離する熱分離空間を設け、感熱抵抗
体と第1の基準感熱抵抗体とを直列に接続するとともに
第2の基準感熱抵抗体と固定抵抗とを直列に接続し上記
2つの直列回路を並列に接続して成るセンサ部に電源を
接続し、感熱抵抗体と第1の基準感熱抵抗体との接続点
から赤外線の輻射エネルギに応じた出力を取り出し、第
2の基準感熱抵抗体と固定抵抗との接続点から周囲温度
に応じた出力を取り出して被測定物の温度と周囲温度と
を測定するので、被測定物の表面温度と周囲温度とを独
立して非接触で測定することができるため、被測定物の
表面温度と周囲温度とを簡単な構成で精度よく測定する
ことができるという効果がある。しかも、感熱抵抗体と
第1及び第2の基準感熱抵抗体と固定抵抗とを半導体基
板の表面に形成してセンサ部を構成しているため、セン
サ部を小型化できるだけでなく、放射温度計自体の小型
化も図ることができるという効果がある。
According to a third aspect of the present invention, a heat-sensitive resistor whose resistance value changes in response to the radiant energy of infrared rays radiated from an object to be measured and the ambient temperature, and a resistance temperature characteristic which is substantially the same as that of the heat-sensitive resistor. First and second reference thermosensitive resistors having sensitivity only to ambient temperature and a fixed resistor are formed on the surface of the semiconductor substrate, and the semiconductor substrate under each resistor is removed to form each resistor and the semiconductor substrate. A heat separation space for thermally separating the two is connected, the heat-sensitive resistor and the first reference heat-sensitive resistor are connected in series, and the second reference heat-sensitive resistor and the fixed resistor are connected in series. A power source is connected to a sensor section formed by connecting in parallel with each other, and an output corresponding to the radiant energy of infrared rays is taken out from a connection point between the heat-sensitive resistor and the first reference heat-sensitive resistor to obtain a second reference heat-sensitive resistor. Take the output according to the ambient temperature from the connection point with the fixed resistor. Since the temperature of the DUT is measured and the ambient temperature is measured, the surface temperature and the ambient temperature of the DUT can be independently measured in a non-contact manner. There is an effect that can be accurately measured with a simple configuration. Moreover, since the sensor portion is formed by forming the thermosensitive resistor, the first and second reference thermosensitive resistors, and the fixed resistor on the surface of the semiconductor substrate, not only can the sensor portion be downsized, but also the radiation thermometer. There is an effect that the size of the device itself can be reduced.

【0031】請求項4の発明は、第1及び第2の基準感
熱抵抗体の表面に赤外線を遮光するための赤外線反射膜
が形成されているので、基準感熱抵抗体に入射する赤外
線を簡単な構成で遮光することができ、センサ部の構成
を簡略化するとともにセンサ部の小型化を図ることがで
きるという効果がある。
According to the fourth aspect of the present invention, since the infrared reflecting film for blocking infrared rays is formed on the surfaces of the first and second reference thermosensitive resistors, the infrared rays incident on the reference thermosensitive resistor can be made simple. With the configuration, it is possible to shield light, and it is possible to simplify the configuration of the sensor unit and to reduce the size of the sensor unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示す概略回路構成図である。FIG. 1 is a schematic circuit configuration diagram showing a first embodiment.

【図2】実施例2のセンサ部を示すものであり、(a)
は平面図、(b)は側面図である。
FIG. 2 illustrates a sensor unit according to a second embodiment, which includes (a)
Is a plan view and (b) is a side view.

【図3】実施例3のセンサ部を示すものであり、(a)
は平面図、(b)は側面図である。
FIG. 3 illustrates a sensor unit according to a third embodiment (a).
Is a plan view and (b) is a side view.

【図4】従来例を示す概略ブロック図である。FIG. 4 is a schematic block diagram showing a conventional example.

【図5】他の従来例を示す概略回路構成図である。FIG. 5 is a schematic circuit configuration diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

1a,1b 直流電源 2 センサ部 3 第1の増幅器 4 第2の増幅器 5 感熱抵抗体 6 第1の基準感熱抵抗体 7 第2の基準感熱抵抗体 8 固定抵抗 1a, 1b DC power supply 2 Sensor section 3 First amplifier 4 Second amplifier 5 Thermal resistor 6 First reference thermal resistor 7 Second reference thermal resistor 8 Fixed resistance

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定物から輻射される赤外線の輻射エ
ネルギと周囲温度とに感応して抵抗値が変化する感熱抵
抗体と、感熱抵抗体と略同一の抵抗温度特性を有し周囲
温度のみに感応する第1及び第2の基準感熱抵抗体と、
固定抵抗とを備え、感熱抵抗体と第1の基準感熱抵抗体
との直列回路と、第2の基準感熱抵抗体と固定抵抗との
直列回路とを互いに並列に接続して成るセンサ部に電源
を接続し、感熱抵抗体と第1の基準感熱抵抗体との接続
点から赤外線の輻射エネルギに応じた出力を取り出すと
ともに、第2の基準感熱抵抗体と固定抵抗との接続点か
ら周囲温度に応じた出力を取り出すことを特徴とする放
射温度計。
1. A heat-sensitive resistor whose resistance value changes in response to radiant energy of infrared rays radiated from an object to be measured and ambient temperature, and a resistance temperature characteristic which is substantially the same as that of the heat-sensitive resistor and has only an ambient temperature. First and second reference thermal resistors sensitive to
A power supply is provided to a sensor unit that includes a fixed resistor and that is formed by connecting a series circuit of a thermosensitive resistor and a first reference thermosensitive resistor and a series circuit of a second reference thermosensitive resistor and a fixed resistor in parallel to each other. Is connected to extract the output corresponding to the radiant energy of infrared rays from the connection point between the heat-sensitive resistor and the first reference heat-sensitive resistor, and from the connection point between the second reference heat-sensitive resistor and the fixed resistor to the ambient temperature. A radiation thermometer, which is characterized by taking out an output corresponding to it.
【請求項2】 被測定物から輻射される赤外線の輻射エ
ネルギと周囲温度とに感応して抵抗値が変化する感熱抵
抗体と、感熱抵抗体と略同一の抵抗温度特性を有し周囲
温度のみに感応する第1及び第2の基準感熱抵抗体とを
半導体基板の表面に形成し、各抵抗体の下部の半導体基
板を除去して各抵抗体と半導体基板とを熱分離する熱分
離空間を設け、感熱抵抗体と第1の基準感熱抵抗体とを
直列に接続するとともに第2の基準感熱抵抗体と固定抵
抗とを直列に接続し上記2つの直列回路を並列に接続し
て成るセンサ部に電源を接続し、感熱抵抗体と第1の基
準感熱抵抗体との接続点から赤外線の輻射エネルギに応
じた出力を取り出すとともに、第2の基準感熱抵抗体と
固定抵抗との接続点から周囲温度に応じた出力を取り出
すことを特徴とする放射温度計。
2. A heat-sensitive resistor whose resistance value changes in response to radiant energy of infrared rays radiated from an object to be measured and ambient temperature, and has substantially the same resistance temperature characteristic as that of the heat-sensitive resistor and has only ambient temperature. A first and a second reference thermosensitive resistor which are sensitive to the above, are formed on the surface of the semiconductor substrate, and the semiconductor substrate under each resistor is removed to form a thermal separation space for thermally separating each resistor and the semiconductor substrate. A sensor unit provided by connecting the thermosensitive resistor and the first reference thermosensitive resistor in series, connecting the second reference thermosensitive resistor and the fixed resistor in series, and connecting the two series circuits in parallel. The power source is connected to, and the output corresponding to the radiant energy of the infrared rays is taken out from the connection point between the heat-sensitive resistor and the first reference heat-sensitive resistor, and the surroundings from the connection point between the second reference heat-sensitive resistor and the fixed resistor. Characterized by taking out the output according to the temperature Radiation thermometer.
【請求項3】 被測定物から輻射される赤外線の輻射エ
ネルギと周囲温度とに感応して抵抗値が変化する感熱抵
抗体と、感熱抵抗体と略同一の抵抗温度特性を有し周囲
温度のみに感応する第1及び第2の基準感熱抵抗体と、
固定抵抗とを半導体基板の表面に形成し、各抵抗体の下
部の半導体基板を除去して各抵抗体と半導体基板とを熱
分離する熱分離空間を設け、感熱抵抗体と第1の基準感
熱抵抗体とを直列に接続するとともに第2の基準感熱抵
抗体と固定抵抗とを直列に接続し上記2つの直列回路を
並列に接続して成るセンサ部に電源を接続し、感熱抵抗
体と第1の基準感熱抵抗体との接続点から赤外線の輻射
エネルギに応じた出力を取り出すとともに、第2の基準
感熱抵抗体と固定抵抗との接続点から周囲温度に応じた
出力を取り出すことを特徴とする放射温度計。
3. A heat-sensitive resistor whose resistance value changes in response to radiant energy of infrared rays radiated from an object to be measured and ambient temperature, and has substantially the same resistance temperature characteristic as the heat-sensitive resistor and has only ambient temperature. First and second reference thermal resistors sensitive to
A fixed resistor is formed on the surface of the semiconductor substrate, and the semiconductor substrate under each resistor is removed to provide a heat separation space for thermally separating each resistor from the semiconductor substrate. A resistor is connected in series, a second reference thermosensitive resistor and a fixed resistor are connected in series, and a power source is connected to a sensor unit formed by connecting the above two series circuits in parallel. The output corresponding to the radiant energy of infrared rays is taken out from the connection point with the first reference thermal resistor and the output according to the ambient temperature is taken out from the connection point between the second reference thermal resistor and the fixed resistor. Radiation thermometer.
【請求項4】 第1及び第2の基準感熱抵抗体の表面に
赤外線を遮光するための赤外線反射膜が形成されている
ことを特徴とする請求項1乃至請求項3記載の放射温度
計。
4. The radiation thermometer according to claim 1, wherein an infrared reflecting film for blocking infrared rays is formed on the surfaces of the first and second reference thermosensitive resistors.
JP28531293A 1993-11-15 1993-11-15 Radiation thermometer Withdrawn JPH07140008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28531293A JPH07140008A (en) 1993-11-15 1993-11-15 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28531293A JPH07140008A (en) 1993-11-15 1993-11-15 Radiation thermometer

Publications (1)

Publication Number Publication Date
JPH07140008A true JPH07140008A (en) 1995-06-02

Family

ID=17689905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28531293A Withdrawn JPH07140008A (en) 1993-11-15 1993-11-15 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPH07140008A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787938B2 (en) 1998-09-11 2010-08-31 Exergen Corporation Temporal artery temperature detector
JP2011214927A (en) * 2010-03-31 2011-10-27 Tdk Corp Infrared temperature sensor
JP2012119389A (en) * 2010-11-29 2012-06-21 Tdk Corp Thermistor, temperature sensor and gas sensor
JP2013003014A (en) * 2011-06-17 2013-01-07 Tdk Corp Infrared sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787938B2 (en) 1998-09-11 2010-08-31 Exergen Corporation Temporal artery temperature detector
JP2011214927A (en) * 2010-03-31 2011-10-27 Tdk Corp Infrared temperature sensor
JP2012119389A (en) * 2010-11-29 2012-06-21 Tdk Corp Thermistor, temperature sensor and gas sensor
JP2013003014A (en) * 2011-06-17 2013-01-07 Tdk Corp Infrared sensor

Similar Documents

Publication Publication Date Title
US6300554B1 (en) Method of fabricating thermoelectric sensor and thermoelectric sensor device
US7385199B2 (en) Microbolometer IR focal plane array (FPA) with in-situ mirco vacuum sensor and method of fabrication
JP2826337B2 (en) Radiation thermometer
US8483991B2 (en) Method and system for measuring thermal radiation to determine temperature and emissivity of an object
JPH09257587A (en) Non-contact type temperature meter
US8215831B2 (en) Sensor element
JPH09329499A (en) Infrared sensor and infrared detector
US4472594A (en) Method of increasing the sensitivity of thermopile
JPH07140008A (en) Radiation thermometer
JPS5852529A (en) Temperature compensating method of thermopile
JP2001309122A (en) Infrared ray image sensor
US4061917A (en) Bolometer
JP2003294526A (en) Laser power detection device
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
JPH07301679A (en) Human body detecting device
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
JPH028717A (en) Flame sensor
JPS61259580A (en) Thermopile
JPH0634448A (en) Radiation thermometer
JPH04299225A (en) Clinical thermometer
JPH0394127A (en) Infrared ray sensor
JP3733846B2 (en) Correction system control method, thermometer and correction device
JPH0763617A (en) Radiation thermometer
JP2001091360A (en) Radiation temperature detecting element
JP3176798B2 (en) Radiant heat sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130