JPH07135165A - Scanning aligner - Google Patents

Scanning aligner

Info

Publication number
JPH07135165A
JPH07135165A JP5282307A JP28230793A JPH07135165A JP H07135165 A JPH07135165 A JP H07135165A JP 5282307 A JP5282307 A JP 5282307A JP 28230793 A JP28230793 A JP 28230793A JP H07135165 A JPH07135165 A JP H07135165A
Authority
JP
Japan
Prior art keywords
mask
projection optical
substrate
optical systems
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5282307A
Other languages
Japanese (ja)
Other versions
JP3339144B2 (en
Inventor
Susumu Mori
晋 森
Masamitsu Yanagihara
政光 柳原
Takeshi Naraki
剛 楢木
Kazuaki Saeki
和明 佐伯
Muneyasu Yokota
宗泰 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP28230793A priority Critical patent/JP3339144B2/en
Publication of JPH07135165A publication Critical patent/JPH07135165A/en
Application granted granted Critical
Publication of JP3339144B2 publication Critical patent/JP3339144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain large projecting regions using compact optical systems by a method wherein five erected magnification image formed projecting optical systems are arranged in the orthogonal direction to the scanning direction of a substrate while a mask and the substrate are synchronized with each other in the same direction to be scanned. CONSTITUTION:Within five lighting optical systems L1-L5, the parts 11a-11e in the pattern region of a mask 10 are irradiated with the light flux from a light source 1. On the other hand, the five projection optical systems 12a-12e are arranged in Y direction mutually dispacing in X direction while respective erected images 13a-13e of the same magnification formed by the light flux transmitting the mask 10 are projected on a sensing substrate 4. A scanning means synchronizes the mask 10 with the sensing substrate 14 to be scanned at the same rate thereby enabling the whole surface of a pattern region 10a to be transferred to the sensing substrate 14. Through these procedures, the large projecting regions 13a-13e can be obtained even if using the compact projection optical systems 12a-12e.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型露光装置に関し、
特に液晶ディスプレイパネル等の大型基板の露光に適し
た露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type exposure apparatus,
In particular, the present invention relates to an exposure apparatus suitable for exposing a large substrate such as a liquid crystal display panel.

【0002】[0002]

【従来の技術】液晶ディスプレイパネルは、その表示品
質が近年著しく向上し、しかも薄くて軽量である利点か
らCRTに替わり広く普及してきている。特にアクティ
ブマトリックス方式の直視型液晶パネルでは大画面化が
進み、その製造に用いられるガラス基板も大型化してい
る。
2. Description of the Related Art Liquid crystal display panels have been widely used in place of CRTs because of the advantages that their display quality has been remarkably improved and they are thin and lightweight. In particular, the screen size of the active matrix direct-view liquid crystal panel is increasing, and the glass substrate used for the manufacture is also increasing in size.

【0003】このような大型のガラス基板を露光するた
めの露光装置としては、マスクと基板とを近接させて一
括露光する所謂プロキシミティ方式、投影光学系として
転写面積の大きな等倍の屈折光学系を用いたステップア
ンドリピート方式、および投影光学系を等倍の反射光学
系とし、円弧状の照明光でマスクを照明してこのマスク
の像を円弧状に基板に形成するとともに、マスクと基板
とを投影光学系に対して走査するミラープロジェクショ
ン方式がある。
As an exposure apparatus for exposing such a large glass substrate, a so-called proximity system in which a mask and a substrate are brought into close proximity to each other and a batch exposure is carried out, and a projection optical system is a refracting optical system having a large transfer area and a unit magnification. Step-and-repeat method using, and the projection optical system is a reflection optical system of equal magnification, the mask is illuminated by arcuate illumination light to form an image of the mask on the arcuate substrate, and the mask and the substrate There is a mirror projection system that scans a projection optical system.

【0004】[0004]

【発明が解決しようとする課題】プロキシミティ方式で
大型基板の露光を行う場合、基板に応じた大型のマスク
と基板とを数十μmにまで近接させる必要がある。その
ためマスクや基板の平坦性、基板に塗布されたレジスト
の表面形状(凹凸)や表面に付着したゴミ等のためにマ
スクと基板とが接触し、マスクのパターンを基板全面に
渡って無欠陥で転写することは相当困難である。また、
マスクと基板との間隔が転写される像の解像度、線幅、
線の形状に大きく影響するため、この間隔が均一に設計
値に維持されないとアクティブマトリックス方式の液晶
パネルや高精細なSTN方式の液晶パネルを製造するに
は適さない。
When exposing a large substrate by the proximity method, it is necessary to bring a large mask corresponding to the substrate and the substrate close to each other by several tens of μm. Therefore, the mask and the substrate are in contact with each other due to the flatness of the mask and the substrate, the surface shape (unevenness) of the resist applied to the substrate, and dust adhering to the surface, so that the mask pattern is defect-free over the entire surface of the substrate. It is quite difficult to transfer. Also,
The distance between the mask and the substrate, the resolution of the transferred image, the line width,
Since this greatly affects the shape of the lines, it is not suitable for manufacturing an active matrix type liquid crystal panel or a high-definition STN type liquid crystal panel unless the spacing is uniformly maintained at a design value.

【0005】またステップアンドリピート方式は、基板
に比べて相対的に小さな6インチ程度のレチクルをマス
クとして用い、ステップアンドリピートにより大型基板
へ転写を行うものである。このステップアンドリピート
方式は半導体素子の製造に用いられているレチクルをマ
スクとして用いることができるため、その描画精度、パ
ターン寸法管理、ゴミ管理等、半導体素子製造で培われ
た技術を応用することができる。しかしながら、大型基
板への転写の際、投影光学系の有効投影領域(イメージ
サークル)を越えた面積のデバイスを露光するために
は、基板の被転写領域を小面積に分割してそれぞれに露
光を行う、所謂分割露光することが必要である。アクテ
ィブマトリックス液晶パネルの表示部においては、分割
露光によって形成されたパターンの境界部分に微小なず
れが生じた場合、この部分で素子の性能が変化し、完成
された液晶パネル上で濃度むらが起こることになる。こ
れは人間の視覚で差として認識されやすく、液晶パネル
の表示品質上の欠陥となる。また分割数が多くなると露
光回数が増加するほか、1枚の基板を露光する間に何度
もレチクルを交換する必要が生じることもあり、装置と
しての処理能力を低下させる原因となっていた。
The step-and-repeat method uses a reticle of about 6 inches, which is relatively small as compared with the substrate, as a mask, and transfers the image to a large substrate by step-and-repeat. Since this step-and-repeat method can use a reticle used in the manufacture of semiconductor elements as a mask, it is possible to apply the technology cultivated in the manufacture of semiconductor elements such as drawing accuracy, pattern size management, and dust management. it can. However, when transferring to a large substrate, in order to expose a device whose area exceeds the effective projection area (image circle) of the projection optical system, the transferred area of the substrate is divided into small areas and each area is exposed. It is necessary to perform so-called divided exposure. In the display part of the active matrix liquid crystal panel, when a minute deviation occurs at the boundary part of the pattern formed by the divided exposure, the performance of the element changes in this part and uneven density occurs on the completed liquid crystal panel. It will be. This is easily recognized as a difference by human eyes, and becomes a defect in the display quality of the liquid crystal panel. Further, as the number of divisions increases, the number of exposures increases, and it may be necessary to replace the reticle many times during the exposure of one substrate, which causes a reduction in the processing capability of the apparatus.

【0006】さらにミラープロジェクション方式は、マ
スクや基板の走査方向に直交する方向に伸びた円弧状の
スリットをマスクと基板に対して相対走査することによ
ってマスクの全面を基板上に転写するため、大型基板を
効率的に露光するためにはスリット長を基板の寸法と同
等に長くする必要がある。このため光学系をより大型化
する必要が生じ、装置が大型化して高価なものとならざ
るを得ないといった問題がある。
Further, in the mirror projection method, the entire surface of the mask is transferred onto the substrate by relatively scanning an arc-shaped slit extending in a direction orthogonal to the scanning direction of the mask or the substrate with respect to the mask and the substrate, so that a large size is achieved. In order to efficiently expose the substrate, it is necessary to make the slit length as long as the size of the substrate. For this reason, it becomes necessary to make the optical system larger, and there is a problem that the device becomes large and expensive.

【0007】本発明は上記問題点に鑑み、小型の投影光
学系を用いて効率よく大面積に露光を行うことができる
露光装置を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide an exposure apparatus which can efficiently perform exposure on a large area by using a small projection optical system.

【0008】[0008]

【課題を解決するための手段】上記目的のため本発明で
は、光源(1)からの光束をマスク(10)のパターン
領域の一部分(11a〜11e)に照射する5つの照明
光学系(L1〜L5)と;所定の方向(Y方向)に沿っ
て、且つ所定の方向と直交する方向(X方向)に互いに
変位して配置されるとともに、マスクを透過した光束に
よる一部分それぞれの等倍の正立像(13a〜13e)
を感光基板(14)上に投影する5つの投影光学系(2
a〜12e)と;投影光学系に対して所定の方向とほぼ
直交する方向に、マスクと感光基板とを同期して同一の
速度で走査する走査手段(16)とを備え、パターン領
域(10a)の全面を感光基板上に転写する走査型露光
装置とする。
In order to achieve the above object, the present invention provides five illumination optical systems (L1 to L1) for irradiating a part (11a to 11e) of a pattern area of a mask (10) with a light beam from a light source (1). L5); and are arranged so as to be displaced from each other along a predetermined direction (Y direction) and in a direction (X direction) orthogonal to the predetermined direction, and each part of the light flux transmitted through the mask has a positive magnification of 1 ×. Statues (13a-13e)
Of the five projection optical systems (2
a to 12e); scanning means (16) for scanning the mask and the photosensitive substrate at the same speed in synchronization with each other in a direction substantially orthogonal to a predetermined direction with respect to the projection optical system, and the pattern area (10a). (2) is a scanning type exposure apparatus that transfers the entire surface of (1) onto the photosensitive substrate.

【0009】[0009]

【作用】本発明では、等倍の正立像を結像する投影光学
系をマスクと基板の走査方向に直交する方向に沿って5
つ千鳥配置し、この5つの投影光学系に対してマスクと
基板とを一体に走査することとしたため、個々の投影光
学系のイメージサークルを大きくすることなく、走査方
向に直交する方向に長い投影領域を形成することができ
る。このため従来の小型の投影光学系を流用することが
できる。また走査方向は一定であるため、投影光学系の
数や走査距離を選択すれば基板のサイズに応じた従来よ
りも小型な露光装置が実現できる。
According to the present invention, the projection optical system for forming an erect image of the same size is provided along the direction orthogonal to the scanning direction of the mask and the substrate.
Since the mask and the substrate are integrally scanned with respect to these five projection optical systems in a zigzag arrangement, long projections in the direction orthogonal to the scanning direction can be performed without enlarging the image circle of each projection optical system. Regions can be formed. Therefore, the conventional small projection optical system can be used. Further, since the scanning direction is constant, by selecting the number of projection optical systems and the scanning distance, it is possible to realize an exposure apparatus which is smaller than the conventional one according to the size of the substrate.

【0010】[0010]

【実施例】図1は、本発明の実施例による投影露光装置
の概略的な構成を示す図である。超高圧水銀ランプ等の
光源1から射出した光束は、楕円鏡2で反射された後に
ダイクロイックミラー3に入射する。このダイクロイッ
クミラー3は露光に必要な波長の光束を反射し、その他
の波長の光束を透過する。ダイクロイックミラー3で反
射された光束は、光軸AX1に対して進退可能に配置さ
れたシャッター4によって投影光学系側への照射を選択
的に制限される。シャッター4が開放されることによっ
て、光束は波長選択フィルター5に入射し、投影光学系
11aが転写を行うのに適した波長(通常は、g,h,
i線のうち少なくとも1つの帯域)の光束となる。ま
た、この光束の強度分布は光軸近傍が最も高く、周辺に
なると低下するガウス分布状になるため、少なくとも投
影光学系11aの投影領域12a内で強度を均一にする
必要がある。このため、フライアイレンズ6とコンデン
サーレンズ8によって光束の強度を均一化する。尚、ミ
ラー7は配列上の折り曲げミラーである。
1 is a diagram showing a schematic construction of a projection exposure apparatus according to an embodiment of the present invention. A light beam emitted from a light source 1 such as an ultra-high pressure mercury lamp is reflected by an elliptical mirror 2 and then enters a dichroic mirror 3. The dichroic mirror 3 reflects a light beam having a wavelength necessary for exposure and transmits a light beam having another wavelength. The irradiation of the light beam reflected by the dichroic mirror 3 to the projection optical system side is selectively limited by the shutter 4 which is arranged so as to be able to move forward and backward with respect to the optical axis AX1. When the shutter 4 is opened, the light beam enters the wavelength selection filter 5, and the projection optical system 11a has a wavelength (usually g, h,
The luminous flux is in at least one band of the i-line. In addition, the intensity distribution of this light flux is highest near the optical axis and has a Gaussian distribution that decreases at the periphery, so it is necessary to make the intensity uniform at least within the projection area 12a of the projection optical system 11a. Therefore, the fly-eye lens 6 and the condenser lens 8 make the intensity of the light flux uniform. The mirror 7 is a bending mirror on the array.

【0011】強度を均一化された光束は、視野絞り9を
介してマスク10のパターン面上に照射される。この視
野絞り9は感光基板(プレート)14上の投影領域13
aを制限する開口を有する。尚、視野絞り9とマスク1
0との間にレンズ系を設けて視野絞り9とマスク10の
パターン面とプレート14の投影面とが互いに共役にな
るようにしてもよい。
The light flux whose intensity is made uniform is applied to the pattern surface of the mask 10 through the field stop 9. The field stop 9 is a projection area 13 on a photosensitive substrate (plate) 14.
It has an opening that limits a. The field stop 9 and the mask 1
A lens system may be provided between 0 and 0 so that the field stop 9, the pattern surface of the mask 10 and the projection surface of the plate 14 are conjugated with each other.

【0012】光源1から視野絞り9までの構成を投影光
学系12aに対する照明光学系L1とし、本実施例では
上記と同様の構成の照明光学系L2〜L5を設けてそれ
ぞれからの光束を投影光学系12b〜12eのそれぞれ
に供給する。複数の照明光学系L1〜L5のそれぞれか
ら射出された光束はマスク10上の異なる小領域(照明
領域)11a〜11eをそれぞれ照明する。マスクを透
過した複数の光束は、それぞれ異なる投影光学系12a
〜12eを介してプレート14上の異なる投影領域13
a〜13eにマスク10の照明領域11a〜11eのパ
ターン像を結像する。この場合、投影光学系12a〜1
2eはいずれも正立等倍実結像系とする。
The structure from the light source 1 to the field stop 9 is an illumination optical system L1 for the projection optical system 12a, and in this embodiment, the illumination optical systems L2 to L5 having the same structure as described above are provided to project the light flux from each. Supply to each of the systems 12b-12e. The light beams emitted from each of the plurality of illumination optical systems L1 to L5 illuminate different small areas (illumination areas) 11a to 11e on the mask 10, respectively. The plurality of light beams that have passed through the mask have different projection optical systems 12a.
~ 12e through different projection areas 13 on the plate 14
Pattern images of the illumination areas 11a to 11e of the mask 10 are formed on a to 13e. In this case, the projection optical systems 12a-1
2e is an erecting equal-magnification real image forming system.

【0013】ところでプレート14上の投影領域13a
〜13eは、図2に示すようにY方向に沿って、隣合う
領域どうし(例えば、13aと13b,13bと13
c)が図のX方向に所定量変位するように、且つ隣合う
領域の端部どうし(破線で示す範囲)がY方向に重複す
るように配置される。よって、上記複数の投影光学系1
2a〜12eも各投影領域13a〜13eの配置に応じ
てX方向に所定量変位するとともにY方向に重複して配
置されている。また、複数の照明光学系L1〜L5の配
置は、マスク10上の照明領域が上記投影領域13a〜
13eと同様の配置となるように配置される。そして、
マスク10とプレート14とを同期して、投影光学系1
2a〜12eに対してX方向に走査することによって、
マスク上のパターン領域10aの全面をプレート上の露
光領域14aに転写する。
By the way, the projection area 13a on the plate 14
2 to 13e are adjacent regions (for example, 13a and 13b, 13b and 13) along the Y direction as shown in FIG.
It is arranged so that c) is displaced by a predetermined amount in the X direction in the drawing, and the ends of adjacent regions (ranges indicated by broken lines) overlap in the Y direction. Therefore, the plurality of projection optical systems 1
2a to 12e are also displaced by a predetermined amount in the X direction according to the arrangement of the projection regions 13a to 13e, and are also arranged so as to overlap in the Y direction. Further, regarding the arrangement of the plurality of illumination optical systems L1 to L5, the illumination area on the mask 10 is the projection area 13a to
It is arranged so as to have the same arrangement as 13e. And
The projection optical system 1 is synchronized with the mask 10 and the plate 14.
By scanning in the X direction for 2a-12e,
The entire surface of the pattern area 10a on the mask is transferred to the exposure area 14a on the plate.

【0014】プレート14はプレートステージ15に載
置されており、プレートステージ15は一次元の走査露
光を行うべく走査方向(X方向)に長いストロークを持
った駆動装置16を有している。さらに、走査方向につ
いては高分解能および高精度の位置測定装置(例えばレ
ーザ干渉計)17を有する。また、マスク10は不図示
のマスクステージにより支持され、このマスクステージ
もプレートステージ15と同様に、駆動装置とステージ
の走査方向の位置を検出する位置測定装置とを有する。
The plate 14 is mounted on a plate stage 15, and the plate stage 15 has a driving device 16 having a long stroke in the scanning direction (X direction) for performing one-dimensional scanning exposure. Further, it has a high-resolution and high-accuracy position measuring device (for example, laser interferometer) 17 in the scanning direction. Further, the mask 10 is supported by a mask stage (not shown), and this mask stage also has, similarly to the plate stage 15, a driving device and a position measuring device that detects the position of the stage in the scanning direction.

【0015】ここで、本実施例による露光装置に適用さ
れる投影光学系の例について図3,図4,図5を用いて
説明する。本発明では、上述のように複数の投影光学系
を走査方向に対して直交する方向に沿って配置するた
め、投影光学系それぞれの像は正立像である必要があ
る。また、マスクとプレートの移動精度を高くしたり、
移動方向の違いによって装置が大型化することを防ぐ等
の目的で、マスクとプレートとを一体に移動することが
考えられる。そこで本発明ではマスクとプレートとを投
影光学系に対して同方向に同一量、相対的に走査するこ
ととし、投影光学系は正立等倍実結像系とする。各図と
も実線で示す矢印がマスク面のパターンおよびプレート
上の投影像に対応する。
Here, an example of the projection optical system applied to the exposure apparatus according to the present embodiment will be described with reference to FIGS. 3, 4 and 5. In the present invention, since the plurality of projection optical systems are arranged along the direction orthogonal to the scanning direction as described above, the image of each projection optical system needs to be an erect image. Also, increase the accuracy of movement of the mask and plate,
It is conceivable to move the mask and the plate integrally for the purpose of preventing the apparatus from becoming large due to the difference in the moving direction. Therefore, in the present invention, the mask and the plate are scanned in the same direction and in the same amount relative to the projection optical system, and the projection optical system is an erecting equal-magnification real imaging system. In each figure, the arrow shown by the solid line corresponds to the pattern on the mask surface and the projected image on the plate.

【0016】図3は、倒立実結像系21,22を装置の
光軸に沿って(各結像系の光軸が一致するように)直列
に配置した例である。この場合、結像系21と結像系2
2は同一のものが使用できる。また、結像系の1つに等
倍系を用いることも可能であり、拡大系と縮小系とを組
み合わせて用いることも可能である。結像系は図中の点
線で示す矢印の位置にできる中間像に関し対象になるよ
う配置することによって、マスクのパターンをプレート
上に正立等倍の投影像として結像することができる。
FIG. 3 shows an example in which the inverted real image forming systems 21 and 22 are arranged in series along the optical axis of the apparatus (so that the optical axes of the image forming systems coincide with each other). In this case, the imaging system 21 and the imaging system 2
The same 2 can be used. It is also possible to use a unity magnification system as one of the imaging systems, and it is also possible to use a combination of an enlargement system and a reduction system. By arranging the image forming system so as to be symmetrical with respect to the intermediate image formed at the position of the arrow shown by the dotted line in the figure, the mask pattern can be formed on the plate as an erecting equal-magnification projected image.

【0017】図4は、倒立実結像系にイメージローテー
ターを組み込んだ例である。図4でイメージローテータ
ー24が無ければレンズ系23,25で構成される結像
系は倒立実結像系となるものである。イメージローテー
ター24は、屋根型加工を施した梯型プリズムである。
図5は、分布屈折率ガラスを用いる例である。中心部分
の屈折率が高く、周辺に行くに従い低くなる、所謂分布
屈折率ガラスをある所望の長さにして用いると、図5に
示すように等倍実結像系となることが知られる。このと
き、分布屈折率ガラス26の端面は平面であっても、曲
面(所定曲率の球面、或いは非球面形状)であっても構
わない。
FIG. 4 shows an example in which an image rotator is incorporated in an inverted real image forming system. If the image rotator 24 is not provided in FIG. 4, the image forming system composed of the lens systems 23 and 25 is an inverted real image forming system. The image rotator 24 is a ladder prism that is roof-shaped.
FIG. 5 shows an example using a distributed index glass. It is known that when a so-called distributed index glass having a high refractive index in the central portion and a lower refractive index in the peripheral portion is used with a certain desired length, a 1 × real image forming system is obtained as shown in FIG. At this time, the end surface of the distributed index glass 26 may be a flat surface or a curved surface (a spherical surface having a predetermined curvature or an aspherical shape).

【0018】いずれの例においても、マスクやプレート
の面が光軸方向に変化したときの像の倍率変化を避ける
ため、投影光学系は物点側、像点側ともにテレセントリ
ックであることが望ましい。次に露光動作について述べ
る。アクティブマトリックス方式の液晶パネルは、その
アクティブ素子を形成するために製造工程で複数のパタ
ーン層を重ね合わせて露光することが必要になる。この
ため、原板となるマスク10も複数必要である。先ず、
投影光学系を保持している保持部材によって保持された
不図示のマスクアライメント系によって、マスク10を
露光装置に対して位置決めする。同様に、プレート14
も露光装置に対して位置決めする。このようにマスク1
0とプレート14が位置決めされた状態を保ち、マスク
とプレートとを同期して同速度で投影光学系に対して図
のX方向に走査することによって露光を行う。このと
き、距離Lx,Lyで示す露光領域14a内で同一の露
光条件(均一な露光量)とするためにX方向の走査範囲
のうち、Lx間の露光の走査は等速度で行わなければな
らない。このため、X方向の走査には投影光学系の結像
範囲にLxが達するまでに等速度となるよう助走を要す
る。露光中の走査速度をv(cm/s)、照明パワーをP
(W/cm2)、開口の幅をw(cm)としたとき、得られる
露光量D(J/cm2)は、
In any of the examples, it is desirable that the projection optical system be telecentric on both the object point side and the image point side in order to avoid a change in image magnification when the surface of the mask or plate changes in the optical axis direction. Next, the exposure operation will be described. An active matrix type liquid crystal panel requires a plurality of pattern layers to be overlapped and exposed in a manufacturing process in order to form the active element. For this reason, a plurality of masks 10 serving as original plates are required. First,
The mask 10 is positioned with respect to the exposure apparatus by a mask alignment system (not shown) held by a holding member that holds the projection optical system. Similarly, plate 14
Is also positioned with respect to the exposure apparatus. Mask 1 like this
The exposure is performed by keeping the 0 and the plate 14 positioned and scanning the projection optical system in the X direction in the figure at the same speed in synchronization with the mask and the plate. At this time, in order to obtain the same exposure condition (uniform exposure amount) within the exposure region 14a indicated by the distances Lx and Ly, the exposure scanning between Lx must be performed at a constant speed in the scanning range in the X direction. . Therefore, scanning in the X direction requires a run-up so that Lx reaches a constant speed until the image formation range of the projection optical system reaches Lx. Scanning speed during exposure is v (cm / s), illumination power is P
(W / cm 2 ) and the width of the opening is w (cm), the obtained exposure dose D (J / cm 2 ) is

【0019】[0019]

【数1】 [Equation 1]

【0020】によって与えられる。よって、プレート1
4に塗布された感光剤に必要な露光量に従ってそれぞれ
のパラメータを決定することができる。図1、図2に示
した実施例では、一回の走査でパターン全面の転写が行
われる例であった。しかしこれは複数回の走査によりプ
レート上の露光領域全面に転写を行うことも可能であ
る。図6は、例えば図1に示す投影光学系のうち12
a,12c,12eのみを用いるような場合である。こ
れは、3つの投影光学系を走査方向と直交する方向に所
定間隔をおいて配置し、プレート14上に投影領域13
a,13c,13eを形成する。そして、投影領域13
cの中心のプレート上での走査軌跡が破線61となるよ
うにX方向の走査、およびY方向のステップを行う例で
ある。またさらに、図7に示すように、例えば図1の投
影光学系12a,12bのみを用いて投影領域13a,
13bを形成し、投影領域13aの中心が破線62の軌
跡を辿るように走査、およびステップを行ってもよい。
Is given by Therefore, plate 1
Each parameter can be determined according to the exposure amount required for the photosensitizer applied to No. 4. The embodiment shown in FIGS. 1 and 2 is an example in which the entire surface of the pattern is transferred by one scanning. However, it is also possible to transfer to the entire exposure area on the plate by scanning a plurality of times. FIG. 6 shows, for example, 12 of the projection optical systems shown in FIG.
This is the case where only a, 12c, and 12e are used. This is because the three projection optical systems are arranged at a predetermined interval in the direction orthogonal to the scanning direction, and the projection area 13 is formed on the plate 14.
a, 13c, 13e are formed. Then, the projection area 13
This is an example in which scanning in the X direction and steps in the Y direction are performed so that the scanning locus on the plate at the center of c becomes the broken line 61. Furthermore, as shown in FIG. 7, for example, by using only the projection optical systems 12a and 12b of FIG.
13b may be formed, and scanning and step may be performed so that the center of the projection area 13a follows the locus of the broken line 62.

【0021】尚、上記実施例では投影光学系が一度に転
写できる範囲(投影領域)の形状を図2に示すような細
長六角形(13a〜13e)としたが、他の例として図
8〜図11に示すような形状であっても構わない。図9
は投影領域が正六角形、図10は等脚台形、図11は平
行四辺形の場合を示す。図8〜図10の外周円は投影光
学系のイメージサークルである。言うまでもなく、この
サークル内で視野絞り9の開口によって投影光学系の投
影領域が設定される。いずれの例においても、幅wの広
がり方向は走査方向(図2のX方向)と一致している。
またこの投影領域を、プレートに対する一度の走査中に
1つの投影光学系によってのみ投影される部分sと、複
数の走査または複数の投影光学系によって投影される部
分tとに分けて考えたとき、部分tのプレートに対する
露光量の総和が部分sの露光量に一致している必要を満
たす形状でなければならない。
In the above embodiment, the shape of the range (projection area) that the projection optical system can transfer at one time is the elongated hexagon (13a to 13e) as shown in FIG. 2, but as another example, as shown in FIG. The shape shown in FIG. 11 may be used. Figure 9
Shows a case where the projection area is a regular hexagon, FIG. 10 shows an isosceles trapezoid, and FIG. 11 shows a parallelogram. The outer circles of FIGS. 8 to 10 are image circles of the projection optical system. Needless to say, the projection area of the projection optical system is set by the aperture of the field stop 9 within this circle. In any of the examples, the spreading direction of the width w coincides with the scanning direction (X direction in FIG. 2).
When the projection area is divided into a portion s projected by only one projection optical system during one scanning of the plate and a portion t projected by a plurality of scanning or a plurality of projection optical systems, The shape must satisfy the requirement that the sum of the exposure amounts of the portion t with respect to the plate matches the exposure amount of the portion s.

【0022】[0022]

【発明の効果】以上のように本発明によれば、基板の走
査方向に直交する方向に沿って5つの正立等倍実結像系
の投影光学系を千鳥配置し、マスクと基板とを同方向に
同期して走査する構成としたため、小型の投影光学系を
用いながらも従来より大きな投影領域を得ることができ
る。そのため、コンパクトで低コストの露光装置の実現
が可能となる。
As described above, according to the present invention, five projection optical systems of an erecting equal-magnification real image forming system are arranged in a zigzag along a direction orthogonal to the scanning direction of the substrate, and the mask and the substrate are arranged in a zigzag manner. Since the scanning is performed in synchronism with each other in the same direction, it is possible to obtain a larger projection area than the conventional one while using a small projection optical system. Therefore, a compact and low-cost exposure apparatus can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による走査型露光装置の概略的
な構成を示す図
FIG. 1 is a diagram showing a schematic configuration of a scanning exposure apparatus according to an embodiment of the present invention.

【図2】プレート上での投影領域の様子を示す図FIG. 2 is a diagram showing a state of a projection area on a plate.

【図3】本発明の実施例による走査型露光装置に適用さ
れる投影光学系の例を示す図
FIG. 3 is a diagram showing an example of a projection optical system applied to a scanning exposure apparatus according to an embodiment of the present invention.

【図4】本発明の実施例による走査型露光装置に適用さ
れる投影光学系の例を示す図
FIG. 4 is a diagram showing an example of a projection optical system applied to a scanning exposure apparatus according to an embodiment of the present invention.

【図5】本発明の実施例による走査型露光装置に適用さ
れる投影光学系の例を示す図
FIG. 5 is a diagram showing an example of a projection optical system applied to a scanning exposure apparatus according to an embodiment of the present invention.

【図6】露光動作の他の例を示す図FIG. 6 is a diagram showing another example of the exposure operation.

【図7】露光動作の他の例を示す図FIG. 7 is a diagram showing another example of the exposure operation.

【図8】投影領域の形状の他の例を示す図FIG. 8 is a diagram showing another example of the shape of the projection area.

【図9】投影領域の形状の他の例を示す図FIG. 9 is a diagram showing another example of the shape of the projection area.

【図10】投影領域の形状の他の例を示す図FIG. 10 is a diagram showing another example of the shape of the projection area.

【符号の説明】[Explanation of symbols]

L1〜L5 照明光学系 10 マスク 11a〜11e 照明領域 12a〜12e 投影光学系 13a〜13e 投影領域 14 プレート 15 ステージ 16 駆動装置 L1 to L5 illumination optical system 10 masks 11a to 11e illumination area 12a to 12e projection optical system 13a to 13e projection area 14 plate 15 stage 16 driving device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/20 521 9122−2H (72)発明者 佐伯 和明 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 横田 宗泰 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location G03F 7/20 521 9122-2H (72) Inventor Kazuaki Saeki 3-2 Marunouchi, Chiyoda-ku, Tokyo No. 3 In stock company Nikon (72) Inventor Soyasu Yokota 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Inside Nikon company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束をマスクのパターン領域
の一部分に照射する5つの照明光学系と、 所定の方向に沿って、且つ該所定の方向と直交する方向
に互いに変位して配置されるとともに、前記マスクを透
過した前記光束による前記一部分それぞれの等倍の正立
像を感光基板上に投影する5つの投影光学系と、 前記投影光学系に対して前記所定の方向とほぼ直交する
方向に、前記マスクと前記感光基板とを同期して同一の
速度で走査する走査手段とを備え、 前記パターン領域の全面を前記感光基板上に転写するこ
とを特徴とする走査型露光装置。
1. An illumination optical system for irradiating a part of a pattern area of a mask with a light beam from a light source, and the illumination optical systems are arranged along a predetermined direction and displaced from each other in a direction orthogonal to the predetermined direction. At the same time, five projection optical systems that project erect images of the same size of each of the portions by the light flux that has passed through the mask onto a photosensitive substrate, and in a direction substantially orthogonal to the predetermined direction with respect to the projection optical system. A scanning type exposure apparatus comprising: a scanning unit that synchronously scans the mask and the photosensitive substrate at the same speed, and transfers the entire surface of the pattern region onto the photosensitive substrate.
JP28230793A 1993-11-11 1993-11-11 Scanning exposure apparatus and exposure method Expired - Lifetime JP3339144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28230793A JP3339144B2 (en) 1993-11-11 1993-11-11 Scanning exposure apparatus and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28230793A JP3339144B2 (en) 1993-11-11 1993-11-11 Scanning exposure apparatus and exposure method

Publications (2)

Publication Number Publication Date
JPH07135165A true JPH07135165A (en) 1995-05-23
JP3339144B2 JP3339144B2 (en) 2002-10-28

Family

ID=17650721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28230793A Expired - Lifetime JP3339144B2 (en) 1993-11-11 1993-11-11 Scanning exposure apparatus and exposure method

Country Status (1)

Country Link
JP (1) JP3339144B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183212A (en) * 1993-11-11 1995-07-21 Nikon Corp Scanning aligner and method therefor
US6288772B1 (en) 1999-02-12 2001-09-11 Nikon Corporation Scanning exposure method and scanning type exposure apparatus
US6512573B2 (en) 1997-12-20 2003-01-28 Carl-Zeiss-Stiftung Projection exposure apparatus and exposure method
JP2003031461A (en) * 2001-07-11 2003-01-31 Nikon Corp Exposure system and method of exposure
US6727979B2 (en) 2002-01-11 2004-04-27 Pentax Corporation Projection aligner
WO2004074934A1 (en) * 2003-01-28 2004-09-02 Ball Semiconductor Inc. Mask making method, mask making device, and mask drawing device
US6807013B2 (en) 2001-12-26 2004-10-19 Pentax Corporation Projection aligner
US6839124B2 (en) 2001-12-26 2005-01-04 Pentax Corporation Projection aligner
US6853441B2 (en) 2001-12-26 2005-02-08 Pentax Corporation Projection aligner
JP2007225886A (en) * 2006-02-23 2007-09-06 Nikon Corp Exposure apparatus and exposure method
JP2009295950A (en) * 2008-05-09 2009-12-17 Nsk Ltd Scan exposure equipment and scan exposure method
JP2011124500A (en) * 2009-12-14 2011-06-23 V Technology Co Ltd Exposure method and apparatus
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2015207566A (en) * 2015-07-23 2015-11-19 ウシオ電機株式会社 Polarized light irradiation method for optical orientation
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2017037332A (en) * 2016-10-06 2017-02-16 ウシオ電機株式会社 Polarization light irradiation device for optical orientation and polarization light irradiation method for optical orientation
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215266A (en) * 1975-07-25 1977-02-04 Canon Inc Pattern printing unit
JPS60109228A (en) * 1983-11-18 1985-06-14 Hitachi Ltd Projection exposing device
JPS61176118A (en) * 1985-01-31 1986-08-07 Canon Inc Exposing device
US4696889A (en) * 1985-08-23 1987-09-29 Yevick George J Method of photoforming optical patterns for VLSI devices
JPS6349218A (en) * 1986-08-19 1988-03-02 Shinryo Air Conditioning Co Ltd Air cleaner
US4769680A (en) * 1987-10-22 1988-09-06 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
JPH01101628A (en) * 1987-10-14 1989-04-19 Nec Corp Reducing stepper
JPH04196513A (en) * 1990-11-28 1992-07-16 Nikon Corp Projection aligner
JPH04251812A (en) * 1990-08-07 1992-09-08 Internatl Business Mach Corp <Ibm> Optical apparatus
JPH0757986A (en) * 1993-06-30 1995-03-03 Nikon Corp Aligner
JPH0786139A (en) * 1993-09-14 1995-03-31 Nikon Corp Aligner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215266A (en) * 1975-07-25 1977-02-04 Canon Inc Pattern printing unit
JPS60109228A (en) * 1983-11-18 1985-06-14 Hitachi Ltd Projection exposing device
JPS61176118A (en) * 1985-01-31 1986-08-07 Canon Inc Exposing device
US4696889A (en) * 1985-08-23 1987-09-29 Yevick George J Method of photoforming optical patterns for VLSI devices
JPS6349218A (en) * 1986-08-19 1988-03-02 Shinryo Air Conditioning Co Ltd Air cleaner
JPH01101628A (en) * 1987-10-14 1989-04-19 Nec Corp Reducing stepper
US4769680A (en) * 1987-10-22 1988-09-06 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
JPH04251812A (en) * 1990-08-07 1992-09-08 Internatl Business Mach Corp <Ibm> Optical apparatus
JPH04196513A (en) * 1990-11-28 1992-07-16 Nikon Corp Projection aligner
JPH0757986A (en) * 1993-06-30 1995-03-03 Nikon Corp Aligner
JPH0786139A (en) * 1993-09-14 1995-03-31 Nikon Corp Aligner

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183212A (en) * 1993-11-11 1995-07-21 Nikon Corp Scanning aligner and method therefor
US6512573B2 (en) 1997-12-20 2003-01-28 Carl-Zeiss-Stiftung Projection exposure apparatus and exposure method
US6288772B1 (en) 1999-02-12 2001-09-11 Nikon Corporation Scanning exposure method and scanning type exposure apparatus
JP2003031461A (en) * 2001-07-11 2003-01-31 Nikon Corp Exposure system and method of exposure
JP4617616B2 (en) * 2001-07-11 2011-01-26 株式会社ニコン Exposure apparatus and exposure method
US6807013B2 (en) 2001-12-26 2004-10-19 Pentax Corporation Projection aligner
US6839124B2 (en) 2001-12-26 2005-01-04 Pentax Corporation Projection aligner
US6853441B2 (en) 2001-12-26 2005-02-08 Pentax Corporation Projection aligner
US6727979B2 (en) 2002-01-11 2004-04-27 Pentax Corporation Projection aligner
WO2004074934A1 (en) * 2003-01-28 2004-09-02 Ball Semiconductor Inc. Mask making method, mask making device, and mask drawing device
US7474383B2 (en) 2003-01-28 2009-01-06 Tadahiro Ohmi Mask making method, mask making device, and mask drawing device
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007225886A (en) * 2006-02-23 2007-09-06 Nikon Corp Exposure apparatus and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009295950A (en) * 2008-05-09 2009-12-17 Nsk Ltd Scan exposure equipment and scan exposure method
US9207546B2 (en) 2009-12-14 2015-12-08 V Technology Co., Ltd. Exposure method and exposure apparatus
TWI497225B (en) * 2009-12-14 2015-08-21 V Technology Co Ltd Exposure method and exposure apparatus
WO2011074400A1 (en) * 2009-12-14 2011-06-23 株式会社ブイ・テクノロジー Exposure method and exposure apparatus
JP2011124500A (en) * 2009-12-14 2011-06-23 V Technology Co Ltd Exposure method and apparatus
JP2015207566A (en) * 2015-07-23 2015-11-19 ウシオ電機株式会社 Polarized light irradiation method for optical orientation
JP2017037332A (en) * 2016-10-06 2017-02-16 ウシオ電機株式会社 Polarization light irradiation device for optical orientation and polarization light irradiation method for optical orientation

Also Published As

Publication number Publication date
JP3339144B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
JP3339144B2 (en) Scanning exposure apparatus and exposure method
JP3339149B2 (en) Scanning exposure apparatus and exposure method
US8159649B2 (en) Exposure method, exposure apparatus, photomask and method for manufacturing photomask
US6512573B2 (en) Projection exposure apparatus and exposure method
JP4346586B2 (en) Lithographic apparatus with double telecentric illumination
JP5534176B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US8913227B2 (en) Illumination optical system, aligner, and process for fabricating device
US20030053217A1 (en) Illumination apparatus, exposure apparatus using the same, and device fabricating method
JPWO2007119292A1 (en) Catadioptric projection optical system, catadioptric optical apparatus, scanning exposure apparatus, and microdevice manufacturing method
WO1999036832A1 (en) Illuminating device and exposure apparatus
JPH09244254A (en) Exposure device for liquid crystal
JPH088169A (en) Exposure system
JP2000114160A (en) Optical system for circular-arcuate illumination and aligner using the same
JPH0684759A (en) Illuminator
JP5397748B2 (en) Exposure apparatus, scanning exposure method, and device manufacturing method
JP2015005676A (en) Illuminating optical system, illuminating optical device, exposure device, and device manufacturing method
JPH0685385B2 (en) Exposure method
JPH07335525A (en) Projection optical system, exposing device provided with it, and its adjusting method
JP2001337462A (en) Exposure device, method for manufacturing exposure device and method for manufacturing microdevice
JP3209220B2 (en) Exposure method and semiconductor element manufacturing method
JPH1064782A (en) Scanning aligner
JPH11231549A (en) Scanning exposure device and exposing method
JP2000277408A (en) Exposure system and exosing method
JP2000039505A (en) Optical filter and exposure method for manufacturing it
JP4438122B2 (en) Illumination optical system, peripheral exposure apparatus, exposure method, and device manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140816

Year of fee payment: 12

EXPY Cancellation because of completion of term