JPH07134060A - Method and device for detecting fracture by using ae sound - Google Patents

Method and device for detecting fracture by using ae sound

Info

Publication number
JPH07134060A
JPH07134060A JP28273593A JP28273593A JPH07134060A JP H07134060 A JPH07134060 A JP H07134060A JP 28273593 A JP28273593 A JP 28273593A JP 28273593 A JP28273593 A JP 28273593A JP H07134060 A JPH07134060 A JP H07134060A
Authority
JP
Japan
Prior art keywords
sound
amplitude
internal
value
destruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28273593A
Other languages
Japanese (ja)
Other versions
JP2839831B2 (en
Inventor
Tomomoto Shiotani
智基 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP28273593A priority Critical patent/JP2839831B2/en
Publication of JPH07134060A publication Critical patent/JPH07134060A/en
Application granted granted Critical
Publication of JP2839831B2 publication Critical patent/JP2839831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To accurately predict the internal fracture of an object to be inspected in real time by finding an internal fracture estimating value from the upper and lower limit values of the amplitude of acoustic emission (AE) sounds and the number of amplitudes exceeding the upper and lower limits within an arbitrary amplitude range of the AE sounds. CONSTITUTION:AE sound data are detected by vertically burying one of AE sound measuring tools 3 respectively constituted by fitting AE sensors 2 to both ends of waveguide rods 1 in an object 9 to be inspected having a slope and horizontally burying the other tool 3 in the object 9 and analyzing 21 and 22 the state and position of a fracture in the object 9. Namely, the upper and lower limit values of the amplitude of the AE sounds are calculated by deciding several tens to several hundreds evaluation data at a prescribed time from the amplitude frequency distribution of the AE sounds and finding a mean value and standard deviation of the amplitude. Thereafter, the number of the amplitudes exceeding the lower and upper limit values within an arbitrary amplitude range is found and the internal fracture is estimated at the prescribed time from the upper and lower limit values and the number of amplitude exceeding the limits. In addition, the level, time, and position of the internal fracture of the object 9 are discriminated in real time by continuously finding the estimating value at certain prescribed time with time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アコースティック・エ
ミッション音(以下AE音という)を用いて調査対象物
の内部破壊を検知するAE音による破壊検知方法及び破
壊検知装置に関するものである。たとえば岩すべりにお
いて、破壊兆候がその表面に現れてから破壊に至るまで
の時間は短く、表面に変状が発生した段階では対策が実
施できず、安全対策上の問題も生じる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AE sound destruction detection method and an destruction detection device for detecting internal destruction of an object to be investigated using acoustic emission sound (hereinafter referred to as AE sound). For example, in a rock slide, the time from the appearance of a failure sign to the surface of the rock until the failure is short, no countermeasure can be taken at the stage when the surface is deformed, and there is a safety problem.

【0002】しかして、このような破壊の監視にはAE
法が有効と考えられる。ここで、AE音とは、物体内部
より発せられる音を意味し、取得されるAE音(AE音
波)の特徴を利用し、AEを発生させた物体の破壊状態
が判断できる。
However, AE is used for monitoring such destruction.
The law is considered effective. Here, the AE sound means a sound emitted from the inside of the object, and the characteristic of the acquired AE sound (AE sound wave) can be used to determine the destruction state of the object that has generated the AE.

【0003】[0003]

【従来の技術】従来、AE法によって調査すべき対象物
の内部破壊予知を行う場合、一般には取得AE音の発生
頻度をカウンタ100で求め、この求められた発生頻度
から調査対象物の内部破壊を監視するAE音の監視シス
テムが提案されている(図12参照)。
2. Description of the Related Art Conventionally, when predicting the internal destruction of an object to be investigated by the AE method, generally, the occurrence frequency of the acquired AE sound is calculated by a counter 100, and the internal destruction of the investigation object is calculated from the obtained occurrence frequency. An AE sound monitoring system for monitoring the sound has been proposed (see FIG. 12).

【0004】しかし、AE音の発生頻度は調査対象物に
よって各々異なっており、単純にAE音の発生頻度のみ
の検出では正確な内部破壊の検知が出来なかった。そこ
で、AE音の振幅頻度分布より、所定の振幅の個数及び
振幅の範囲を算出し、該個数と範囲を用いて調査対象の
内部破壊を検知するAE音の監視システムが提案される
に至った。
However, the occurrence frequency of the AE sound differs depending on the object to be investigated, and it is not possible to accurately detect the internal destruction by simply detecting the occurrence frequency of the AE sound. Therefore, an AE sound monitoring system has been proposed which calculates the number of predetermined amplitudes and the range of amplitudes from the amplitude frequency distribution of the AE sounds and uses the number and the range to detect the internal destruction of the investigation target. .

【0005】ところで、算出に用いる振幅の個数または
振幅の範囲の設定の仕方により各種の検知方法が存在し
ている。まず、振幅の算出個数の決定については、累積
個数を用いる方法と時間固定個数を用いる方法とがあ
り、振幅の算出範囲の決定については、予め設定した2
点から算出する方法と最尤法あるいは最小自乗法によっ
て算出する方法と、さらに目見当による算出法とが考え
られる。
There are various detection methods depending on the number of amplitudes used for calculation or the setting of the amplitude range. First, there are a method of using a cumulative number and a method of using a fixed number of times to determine the number of amplitudes to be calculated.
The method of calculating from points, the method of calculating by the maximum likelihood method or the method of least squares, and the method of calculating by the eye register can be considered.

【0006】ここで、振幅の算出個数の決定において、
累積個数を用いる方法とは、勾配算出時までに取得した
全データを用いて算出する方法をいい、時間固定個数を
用いる方法とは、一定時間内に取得したデータを用いて
算出する方法を指標する。また、振幅の算出範囲の決定
において、予め設定した2点から算出する方法とは、予
め算出に用いる上限振幅値と下限振幅値を設定し、それ
らの頻度から勾配を計算する方法である。
Here, in determining the number of calculated amplitudes,
The method of using the cumulative number is a method of calculating using all the data acquired up to the time of calculating the gradient, and the method of using the fixed number of times is a method of calculating using the data acquired within a certain period of time. To do. Further, in the determination of the calculation range of the amplitude, the method of calculating from two preset points is a method of setting the upper limit amplitude value and the lower limit amplitude value used for the calculation in advance and calculating the gradient from those frequencies.

【0007】次に、最尤法あるいは最小自乗法によって
算出する方法とは、振幅規模別頻度分布が指数分布をな
していることを前提として最尤推定値より計算する方法
をいう。さらに、目見当による算出法とは、振幅規模別
頻度分布をグラフ上にプロットして目見当により直線を
描き勾配を計算する方法を指標する。
Next, the method of calculating by the maximum likelihood method or the least squares method means a method of calculating from the maximum likelihood estimated value on the assumption that the frequency distribution according to the amplitude scale has an exponential distribution. Further, the calculation method based on the register is a method of plotting a frequency distribution according to amplitude scale on a graph and drawing a straight line based on the register to calculate the gradient.

【0008】しかし、振幅の算出個数の決定について、
前記累積個数を用いる方法では、データ数の増加に伴
い、求めた値が一定値に収束するため、たとえばある調
査対象物における同規模の内部破壊を同様の値として表
現できないとの課題がある。また、振幅の算出個数の決
定について、時間固定個数を用いる方法では、時間毎の
AE音のデータ数は異なることから、時間毎に違うデー
タ数を用いて値を算出することになり、前記累積個数を
用いる方法と同様にデータ数の増加に伴い、求めた値が
一定値に収束するとの課題がある。
However, regarding the determination of the number of calculated amplitudes,
In the method using the cumulative number, the calculated value converges to a constant value as the number of data increases, so that there is a problem that, for example, internal destruction of the same scale in a certain investigation target cannot be expressed as a similar value. Further, in the method of using the fixed number of times for determining the number of calculated amplitudes, the number of data of the AE sound is different for each time, and therefore the value is calculated by using the number of different data for each time. Similar to the method using the number, there is a problem that the calculated value converges to a constant value as the number of data increases.

【0009】さらに、振幅の算出範囲の決定について、
予め設定した2点から算出する方法では、AE音測定前
に設定した振幅の範囲にAE音データが分布しない場合
には、非直線近似区間を含む振幅範囲で値を算出しなけ
ればならないという課題がある。また、最尤法あるいは
最小自乗法によって算出する方法では、算出振幅の下限
値が必要となるので、前記の予め設定した2点から算出
する方法と同様に、非直線近似区間を含む振幅範囲で値
を算出しなければならないという課題がある。
Further, regarding the determination of the amplitude calculation range,
In the method of calculating from two preset points, if the AE sound data is not distributed in the amplitude range set before the AE sound measurement, the value must be calculated in the amplitude range including the non-linear approximation section. There is. Further, in the method of calculating by the maximum likelihood method or the method of least squares, the lower limit value of the calculated amplitude is required. Therefore, like the above-mentioned method of calculating from two preset points, the amplitude range including the non-linear approximation section is used. There is a problem that the value has to be calculated.

【0010】さらに、目見当による算出法では、直線近
似区間のみを目見当で判断できるが、該算出方法はリア
ルタイムな算出法とはいえず、正確性に欠ける算出法で
あるとの課題がある。
Further, in the calculation method based on the register, only the linear approximation section can be judged by the register, but the calculation method cannot be said to be a real-time calculation method, and there is a problem that the calculation method lacks accuracy. .

【0011】[0011]

【発明が解決しようとする課題】本発明は前記従来のA
E法によって調査すべき対象物の内部破壊予知を行う方
法に存する各種課題を解決するために創案されたもので
あって、調査すべき対象物の物性に左右されず、かつ調
査対象の内部破壊予測が正確に、かつリアルタイムに行
えるAE音による破壊検知方法及び破壊検知装置を提供
することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention is based on the conventional A
It was created in order to solve various problems existing in the method of predicting the internal destruction of an object to be investigated by the E method, and is not affected by the physical properties of the object to be investigated, and the internal destruction of the object to be investigated. An object of the present invention is to provide a destruction detection method and a destruction detection device using an AE sound that can be predicted accurately and in real time.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、以下のように構成されている。すなわ
ち、第1発明にかかるAE音による破壊検知方法は、調
査対象物9の内部破壊挙動に伴って発生するAE音を取
得し、該AE音によって内部破壊の検知を行う方法であ
り、AE音の振幅頻度分布より、所定時刻における評価
データを、所定時刻以前評価データの数10個から数1
00個までと決定し、該条件から所定時刻における振幅
平均値μ及び振幅標準偏差値σを求め、さらに、求めら
れた該振幅平均値μ及び振幅標準偏差値σから振幅の下
限値al及び上限値auを算出し、かつ、前記任意の振
幅範囲内で、振幅が下限値al以上の度数Nal及び上
限値au以上の度数Nauを求め、前記求められた各値
al、au、Nal,Nauから所定時刻における内部
破壊予想値Sを求める様構成され、また第2発明にかか
るAE音による破壊検知方法は、第1発明において、経
過時間に沿って所定時刻における内部破壊予想値Sを継
続して逐次求める様構成されている。
In order to achieve the above-mentioned object, the present invention is constructed as follows. That is, the destruction detection method by the AE sound according to the first invention is a method of acquiring the AE sound generated along with the internal destruction behavior of the investigation target 9 and detecting the internal destruction by the AE sound. Based on the amplitude frequency distribution of, the evaluation data at a predetermined time is calculated from several tens to one of the evaluation data before the predetermined time.
It is determined to be up to 00, and the amplitude average value μ and the amplitude standard deviation value σ at a predetermined time are obtained from the condition, and further, the lower limit value al and the upper limit of the amplitude are calculated from the obtained amplitude average value μ and the amplitude standard deviation value σ. The value au is calculated, and within the arbitrary amplitude range, the frequency Nal whose amplitude is equal to or higher than the lower limit value al and the frequency Nau whose amplitude is equal to or higher than the upper limit value au are calculated, and from each of the calculated values al, au, Nal, Nau The destruction detection method by the AE sound according to the second aspect of the invention is configured to obtain the predicted internal breakdown value S at a predetermined time, and in the first aspect of the invention, the predicted internal breakdown value S at the predetermined time is continued along the elapsed time. It is constructed so that it can be obtained sequentially.

【0013】さらに、第3発明にかかるAE音による破
壊検知装置は、前記第1発明または第2発明において、
AE音の取得につき、導波棒1と、該導波棒1の両端に
取付られたAEセンサー2、2とを備えたAE音計測具
3を、調査対象物内部に交叉状態に取り付けて行う様に
構成され、また、第4発明にかかるAE音による破壊検
知装置は、調査対象物内部に交叉状態に取り付けられ
た、導波棒1と、該導波棒1の両端に取付られたAEセ
ンサー2、2とを備えたAE音計測具3と、AE音計測
具3により計測されたAE音から、調査対象物の内部破
壊位置を解析する破壊位置解析手段10と、AE音計測
具3により計測されたAE音から、調査対象物の内部破
壊状態を解析する破壊状態解析手段11と、解析された
内部破壊位置及び内部破壊状態を表示する表示手段12
と、解析された内部破壊位置及び内部破壊状態から、危
険状況の有無を判断する状況判断手段13と、危険な状
況であると判断されたときに、警告が発せられる警告手
段14と、を備えて構成されている。
Furthermore, the destruction detecting device by the AE sound according to the third invention is the device according to the first invention or the second invention,
The acquisition of the AE sound is performed by installing the AE sound measuring tool 3 including the waveguide rod 1 and the AE sensors 2 and 2 attached to both ends of the waveguide rod 1 in a crossed state inside the object to be investigated. The destruction detecting device by AE sound according to the fourth aspect of the invention has a waveguide rod 1 attached to the inside of an object to be examined in a crossed state and AE attached to both ends of the waveguide rod 1. An AE sound measuring tool 3 provided with sensors 2 and 2, a destruction position analyzing means 10 for analyzing the internal destruction position of the investigation target from the AE sound measured by the AE sound measuring tool 3, and an AE sound measuring tool 3 From the AE sound measured by, the destruction state analysis means 11 for analyzing the internal destruction state of the investigation target, and the display means 12 for displaying the analyzed internal destruction position and the internal destruction state.
And a situation determination means 13 for determining the presence or absence of a dangerous situation from the analyzed internal destruction position and the internal destruction state, and a warning means 14 for issuing a warning when the dangerous situation is determined. Is configured.

【0014】[0014]

【作用】本発明では、取得されたAE音のデータから調
査対象の内部破壊予知を行う場合に、いわゆる破壊監視
のパラメータのとしてAE音の発生頻度は参考程度とし
てある。そして、定性化、定量化した破壊監視のパラメ
ータを算出するために、AE音の振幅頻度分布より、所
定時刻における評価データを、所定時刻以前評価データ
の数10個から数100個までと決定する。
In the present invention, the frequency of occurrence of AE sound is used as a reference only as a parameter for so-called damage monitoring when predicting the internal damage of the investigation target from the acquired AE sound data. Then, in order to calculate the qualitatively and quantified parameters of the destruction monitoring, the evaluation data at a predetermined time is determined from several tens to several hundreds of the evaluation data before the predetermined time from the amplitude frequency distribution of the AE sound. .

【0015】ついでこれらから所定時刻における振幅平
均値μ及び振幅標準偏差値σを求める。さらに、求めら
れた該振幅平均値μ及び振幅標準偏差値σから振幅の下
限値al及び上限値auを算出する。前記任意の振幅範
囲内で、振幅が下限値al以上の度数Nal及び上限値
au以上の度数Nauを求め、前記求められた各値a
l、au、Nal,Nauから所定時刻における内部破
壊予想値Sを求める。
Then, the amplitude average value μ and the amplitude standard deviation value σ at a predetermined time are obtained from these. Further, the lower limit value al and the upper limit value au of the amplitude are calculated from the obtained amplitude average value μ and amplitude standard deviation value σ. Within the arbitrary amplitude range, the frequency Nal whose amplitude is equal to or higher than the lower limit value al and the frequency Nau whose amplitude is equal to or higher than the upper limit value au are obtained, and the obtained respective values a
From l, au, Nal, Nau, the predicted internal fracture value S at a predetermined time is obtained.

【0016】また、経過時間に沿って、ある所定時刻に
おける内部破壊予想値Sが継続して逐次求められる。そ
して、この逐次求められた内部破壊予想値Sを用いて、
リアルタイムに調査対象の内部破壊レベル、時間、位置
を判断できるAE音による内部破壊予知システムが構築
できる。
Further, along with the elapsed time, the predicted internal damage value S at a certain predetermined time is continuously and successively obtained. Then, using this sequentially obtained predicted internal damage value S,
It is possible to construct an internal breakdown prediction system using AE sound that can determine the internal breakdown level, time, and position of the investigation target in real time.

【0017】[0017]

【実施例】以下、本発明を図に示す好適な実施例に基づ
いて説明する。 (1)内部破壊予想値Sの算出方法 図2に示すような斜面を有する調査対象物9に、導波棒
1の両端にAEセンサ2、2が取り付けられたAE音計
測具3、3を取り付ける。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the preferred embodiments shown in the drawings. (1) Calculation method of predicted internal fracture value S The AE sound measuring tools 3 and 3 in which the AE sensors 2 and 2 are attached to both ends of the waveguide rod 1 are attached to the investigation target 9 having a slope as shown in FIG. Install.

【0018】その取り付けは、一方のAE音計測具3を
調査対象物9内に垂直に埋設し、他方のAE音計測具3
は調査対象物9内に水平に埋設して行う。このような構
成で、調査対象物9の傾斜崩壊監視が行なわれる。する
と、図3の表に示す様なAE音のデータが得られる(計
測時間はt1〜tn、振幅の単位はdBとする)。
For the attachment, one AE sound measuring tool 3 is vertically embedded in the object 9 to be investigated, and the other AE sound measuring tool 3 is attached.
Is embedded horizontally in the object 9 to be investigated. With such a configuration, the slope collapse monitoring of the investigation target 9 is performed. Then, the AE sound data as shown in the table of FIG. 3 is obtained (measurement time is t1 to tn, and the unit of amplitude is dB).

【0019】ここで、時刻t1における内部破壊予想値
Siの算出方法を以下に示す。(ただし、算出個数はα
個とする。)このとき、上下限振幅値を設定するため
に、まず、振幅平均値、振幅標準偏差値を求める(図
4、図5参照)。そして、振幅平均値、振幅標準偏差値
は図6のように算出される。
Here, a method of calculating the predicted internal fracture value Si at time t1 will be described below. (However, the calculated number is α
To be individual. At this time, in order to set the upper and lower limit amplitude values, first, the amplitude average value and the amplitude standard deviation value are obtained (see FIGS. 4 and 5). Then, the amplitude average value and the amplitude standard deviation value are calculated as shown in FIG.

【0020】次に、振幅がaL以上の度数NaL及び振幅
がaU以上の度数NaUを求める。これら度数は図7によ
り求められる。そして、以上から内部破壊予想値Si
は、図8のように算出される。ここで、この逐次求めら
れた内部破壊予想値Siを利用すると、図9の様な内部
破壊予想値Siの経時変化が得られる。
Next, a frequency NaL having an amplitude of aL or more and a frequency NaU having an amplitude of aU or more are obtained. These frequencies are obtained from FIG. And from the above, the estimated internal breakdown value Si
Is calculated as shown in FIG. Here, by using the sequentially determined internal fracture expected value Si, the temporal change of the internal fracture expected value Si as shown in FIG. 9 can be obtained.

【0021】そして、この内部破壊予想値Siの最大値
あるいは急激な低下時期を監視すれば、従来判断できな
かった調査対象内部の大規模破壊が判断できることとな
る。なお、ここで内部破壊予想値Siの上昇は、規模の
大きな破壊(ミクロ破壊)が大規模な破壊(マクロ破
壊)に比して多く発生していることを表し、反対に内部
破壊予想値Siの低下は大規模な破壊が卓越しているこ
とを表わしている。
Then, by monitoring the maximum value of this internal destruction predicted value Si or the time of abrupt decrease, it becomes possible to determine the large-scale destruction inside the investigation target which could not be determined conventionally. It should be noted that the increase in the internal fracture expected value Si means that the large-scale fracture (micro fracture) occurs more frequently than the large-scale fracture (macro fracture), and conversely, the internal fracture expected value Si. A drop in the number indicates that major destruction is predominant.

【0022】次に本発明による装置の構成を図10に示
す構成説明図に基づいて説明する。AEセンサー2から
取得したAE音はアンプ20により増幅され、該AE音
は破壊位置解析部21に入力される。破壊位置解析部2
1では入力されたAE音より、調査対象物9内の破壊位
置が解析される。
Next, the structure of the apparatus according to the present invention will be described with reference to the structure explanatory view shown in FIG. The AE sound acquired from the AE sensor 2 is amplified by the amplifier 20, and the AE sound is input to the destruction position analysis unit 21. Fracture position analysis unit 2
In 1, the destruction position in the investigation target 9 is analyzed from the input AE sound.

【0023】すなわち、図11から理解されるように、
調査対象物9の破壊面推定位置は垂直方向に設置された
AE音計測具3及び、水平方向に設置されたAE音計測
具3の各導波棒1、1上の位置標定点の頻度分布より得
られるものである。そして、図11では、破壊位置は水
平方向の導波棒1上ではA点、垂直方向の導波棒1上で
はB点と推定される。
That is, as understood from FIG.
The estimated fracture surface position of the investigation target 9 is the frequency distribution of the position control points on the respective waveguide rods 1 and 1 of the AE sound measuring tool 3 installed vertically and the AE sound measuring tool 3 installed horizontally. You can get more. Then, in FIG. 11, the breaking position is estimated to be point A on the horizontal waveguide rod 1 and point B on the vertical waveguide rod 1.

【0024】さらに、AE音は破壊状態解析部22にも
入力される。そして、破壊状態解析部22では前記入力
されたAE音より、調査対象物9内の破壊状態が解析さ
れるのである。この破壊状態の解析は前記内部破壊予想
値Sをリアルタイムに継続して逐次算出することにより
行われる。
Further, the AE sound is also input to the destruction state analysis unit 22. Then, the breakdown state analysis unit 22 analyzes the breakdown state in the investigation target 9 from the input AE sound. This breakdown state analysis is performed by continuously and successively calculating the internal breakdown predicted value S in real time.

【0025】ここで、解析された内部破壊位置並びに内
部破壊状態はCRT23上に表示され、該CRT23を
監視することにより、リアルタイムな調査対象物9の内
部破壊の監視が行える。また、解析された内部破壊位置
並びに内部破壊状態は、随時危険状況判断部24へ送出
されており、該危険状況判断部24が解析された内部破
壊位置並びに内部破壊状態から危険な状況であると判断
されたときには、警告部25に警告を発し、速やかに危
険状況が周知されるよう構成されている。
Here, the analyzed internal breakdown position and internal breakdown state are displayed on the CRT 23, and by monitoring the CRT 23, the internal breakdown of the investigation target 9 can be monitored in real time. Further, the analyzed internal destruction position and internal destruction state are sent to the dangerous situation determination unit 24 at any time, and the dangerous situation determination unit 24 determines that there is a dangerous situation from the analyzed internal destruction position and internal destruction state. When the determination is made, a warning is issued to the warning unit 25, and the dangerous situation is promptly known.

【0026】[0026]

【発明の効果】本発明は以上の構成よりなる。そして本
発明によるAE音による内部破壊検知方法及び内部破壊
検知装置であれば、調査すべき対象物の物性に左右され
ずに調査対象物の内部破壊予測が正確に、かつリアルタ
イムに行えることとなる。
The present invention has the above construction. With the method and apparatus for detecting internal destruction by AE sound according to the present invention, it is possible to accurately and in real time predict the internal destruction of the object to be investigated without being affected by the physical properties of the object to be investigated. .

【0027】また、本発明により求められた内部破壊予
想値Sは、計測時間に左右されないパラメータであるこ
とから、構造物の長期的監視においても定量値が把握で
き、破壊が確実に予測できるさらに、本発明によれば幾
数種、複数もの内部破壊を含む調査対象物の一連の破壊
監視が可能となる。
Further, since the predicted internal fracture value S obtained by the present invention is a parameter that does not depend on the measurement time, the quantitative value can be grasped even in the long-term monitoring of the structure, and the fracture can be predicted reliably. According to the present invention, it is possible to monitor a series of damages of an object to be investigated including internal damages of several kinds and plural kinds.

【0028】また、逐次求められた内部破壊予想値Sの
変化傾向を監視し、さらにAE音源位置を把握すること
により、破壊までの時間、破壊位置をも判断することが
できる。
Further, by monitoring the change tendency of the internal fracture expected value S obtained successively and further grasping the position of the AE sound source, the time until the fracture and the fracture position can be judged.

【図面の簡単な説明】[Brief description of drawings]

【図1】第4発明の原理説明図であるFIG. 1 is a diagram illustrating the principle of a fourth invention.

【図2】本発明によるAE音計測具の設置状態説明図で
ある。
FIG. 2 is an explanatory view of an installation state of the AE sound measuring tool according to the present invention.

【図3】本発明により得られたAE音データを示す説明
図である。
FIG. 3 is an explanatory diagram showing AE sound data obtained by the present invention.

【図4】振幅平均値及び振幅標準偏差値を算出するため
に参酌される説明図である。
FIG. 4 is an explanatory diagram referred to in order to calculate an average amplitude value and an amplitude standard deviation value.

【図5】振幅平均値及び振幅標準偏差値を算出するため
に参酌される説明図である。
FIG. 5 is an explanatory diagram referred to in order to calculate an average amplitude value and an amplitude standard deviation value.

【図6】振幅平均値及び振幅標準偏差値の算出方法を示
す説明図である。
FIG. 6 is an explanatory diagram showing a method of calculating an amplitude average value and an amplitude standard deviation value.

【図7】振幅が上限値及び下限値以上の度数を算出する
算出方法を示す説明図である。
FIG. 7 is an explanatory diagram showing a calculation method for calculating a frequency whose amplitude is equal to or higher than an upper limit value and a lower limit value.

【図8】内部破壊予想値Sの算出方法を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing a method of calculating an internal fracture expected value S.

【図9】内部破壊予想値Sの経年変化を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a secular change of an internal fracture expected value S.

【図10】第4発明における一実施例の概略構成を示す
構成説明図である。
FIG. 10 is a structural explanatory view showing the schematic structure of an embodiment of the fourth invention.

【図11】破壊面位置の推定を行う説明図である。FIG. 11 is an explanatory diagram for estimating a fracture surface position.

【図12】従来の内部破壊検知装置を示す説明図であ
る。
FIG. 12 is an explanatory diagram showing a conventional internal damage detection device.

【符号の説明】[Explanation of symbols]

1 導波棒 2 AEセンサ 3 AE音計測具 9 調査対象物 10 破壊位置解析手段 11 破壊状態解析手段 12 表示手段 13 状況判断手段 14 警告手段 DESCRIPTION OF SYMBOLS 1 Waveguide rod 2 AE sensor 3 AE sound measuring tool 9 Investigation object 10 Breakage position analysis means 11 Breakage state analysis means 12 Display means 13 Situation determination means 14 Warning means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 調査対象物(9)の内部破壊挙動に伴っ
て発生するAE音を取得し、該AE音によって内部破壊
の検知を行う方法であり、 AE音の振幅頻度分布より、所定時刻における評価デー
タを、所定時刻以前評価データの数10個から数100
個までと決定し、該条件から所定時刻における振幅平均
値μ及び振幅標準偏差値σを求め、 さらに、求められた該振幅平均値μ及び振幅標準偏差値
σから振幅の下限値al及び上限値auを算出し、 かつ、前記任意の振幅範囲内で、振幅が下限値al以上
の度数Nal及び上限値au以上の度数Nauを求め、 前記求められた各値al、au、Nal,Nauから所
定時刻における内部破壊予想値Sを求めることを特徴と
するAE音による破壊検知方法。
1. A method for acquiring an AE sound that accompanies the internal destruction behavior of an object to be investigated (9) and detecting the internal destruction by the AE sound, which is obtained at a predetermined time from the amplitude frequency distribution of the AE sound. The evaluation data in 10 to several hundreds of evaluation data before the predetermined time
The amplitude average value μ and the amplitude standard deviation value σ at a predetermined time are determined from the conditions, and the amplitude lower limit value al and the upper limit value of the amplitude are calculated from the obtained amplitude average value μ and the amplitude standard deviation value σ. au is calculated, and within a given amplitude range, a frequency Nal whose amplitude is equal to or higher than a lower limit value al and a frequency Nau whose amplitude is equal to or higher than an upper limit value au are obtained, and a predetermined value is obtained from each of the obtained values al, au, Nal, Nau. A method for detecting destruction by an AE sound, characterized in that an expected internal destruction value S at a time is obtained.
【請求項2】 前記請求項1において、経過時間に沿っ
て所定時刻における内部破壊予想値Sを継続して逐次求
めることを特徴とするAE音による破壊検知方法。
2. The method for detecting damage by an AE sound according to claim 1, wherein the predicted internal damage value S at a predetermined time is continuously and sequentially obtained along the elapsed time.
【請求項3】 前記請求項1または請求項2において、
AE音の取得は、導波棒(1)と、該導波棒(1)の両
端に取付られたAEセンサー(2、2)とを備えたAE
音計測具(3)を、調査対象物内部に交叉状態に取り付
けて行うことを特徴とするAE音による破壊検知装置。
3. The method according to claim 1 or 2,
AE sound is acquired by using an AE equipped with a waveguide rod (1) and AE sensors (2, 2) attached to both ends of the waveguide rod (1).
A device for detecting breakage by AE sound, characterized in that the sound measuring tool (3) is installed inside the object to be examined in a crossed state.
【請求項4】調査対象物(9)の内部に交叉状態に取り
付けられた、導波棒(1)と、該導波棒(1)の両端に
取付られたAEセンサー(2、2)とを備えたAE音計
測具(3)と、 AE音計測具(3)により計測されたAE音から、調査
対象物の内部破壊位置を解析する破壊位置解析手段(1
0)と、 AE音計測具(3)により計測されたAE音から、調査
対象物の内部破壊状態を解析する破壊状態解析手段(1
1)と、 解析された内部破壊位置及び内部破壊状態を表示する表
示手段(12)と、 解析された内部破壊位置及び内部破壊状態から、危険状
況の有無を判断する状況判断手段(13)と、 危険な状況であると判断されたときに、警告が発せられ
る警告手段(14)と、 を備えたAE音による破壊検
知装置。
4. A waveguide rod (1) mounted in a crossed state inside an object (9) to be investigated, and AE sensors (2, 2) attached to both ends of the waveguide rod (1). An AE sound measuring tool (3) provided with the AE sound measuring tool (3), and an AE sound measured by the AE sound measuring tool (3).
0) and the AE sound measured by the AE sound measuring tool (3), the failure state analysis means (1) for analyzing the internal failure state of the investigation target.
1), display means (12) for displaying the analyzed internal breakdown position and internal breakdown state, and status determination means (13) for determining the presence or absence of a dangerous situation from the analyzed internal breakdown position and internal breakdown state. An AE sound destruction detection device comprising: warning means (14) for issuing a warning when it is determined that a dangerous situation exists.
JP28273593A 1993-11-11 1993-11-11 Destruction detection method and destruction detection device by AE sound Expired - Fee Related JP2839831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28273593A JP2839831B2 (en) 1993-11-11 1993-11-11 Destruction detection method and destruction detection device by AE sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28273593A JP2839831B2 (en) 1993-11-11 1993-11-11 Destruction detection method and destruction detection device by AE sound

Publications (2)

Publication Number Publication Date
JPH07134060A true JPH07134060A (en) 1995-05-23
JP2839831B2 JP2839831B2 (en) 1998-12-16

Family

ID=17656371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28273593A Expired - Fee Related JP2839831B2 (en) 1993-11-11 1993-11-11 Destruction detection method and destruction detection device by AE sound

Country Status (1)

Country Link
JP (1) JP2839831B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355050B1 (en) * 1999-09-22 2002-10-05 김영진 Acoustic Emission Detector Using Digital Encoding
US8316712B2 (en) 2010-11-19 2012-11-27 Margan Physical Diagnostics Ltd. Quantitative acoustic emission non-destructive inspection for revealing, typifying and assessing fracture hazards
CN105421326A (en) * 2015-12-15 2016-03-23 东南大学 Soil slope stability monitoring instrument characterized by utilization of acoustic emission technology
WO2021070243A1 (en) * 2019-10-08 2021-04-15 三菱電機エンジニアリング株式会社 State monitoring device, state monitoring system, and state monitoring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355050B1 (en) * 1999-09-22 2002-10-05 김영진 Acoustic Emission Detector Using Digital Encoding
US8316712B2 (en) 2010-11-19 2012-11-27 Margan Physical Diagnostics Ltd. Quantitative acoustic emission non-destructive inspection for revealing, typifying and assessing fracture hazards
CN105421326A (en) * 2015-12-15 2016-03-23 东南大学 Soil slope stability monitoring instrument characterized by utilization of acoustic emission technology
WO2021070243A1 (en) * 2019-10-08 2021-04-15 三菱電機エンジニアリング株式会社 State monitoring device, state monitoring system, and state monitoring method
JPWO2021070243A1 (en) * 2019-10-08 2021-04-15

Also Published As

Publication number Publication date
JP2839831B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
TWI449883B (en) Method for analyzing structure safety
JPH02212734A (en) Apparatus and method for detecting change in structual integrity of structural member
US8015876B2 (en) Method and apparatus for measuring the structural integrity of a safe-life aircraft component
Mevel et al. Application of a subspace-based fault detection method to industrial structures
US20100206078A1 (en) Method for Predicting Failure of Geotechnical Structures
EP2937689A1 (en) Adaptive baseline damage detection system and method
KR100360114B1 (en) Diagnosis system for isolation deterioration of electric apparatus
JP2002333437A (en) Impact inspection device
JP2839831B2 (en) Destruction detection method and destruction detection device by AE sound
KR100444269B1 (en) A non-destructive tap test system and its test method
JP2002131291A (en) Method and device for inspecting structure
JP6664776B1 (en) Abnormality determination method and abnormality determination system for structure
JP4553459B2 (en) Structure diagnosis method and structure diagnosis apparatus
CA2164315C (en) Continuous monitoring of reinforcements in structures
CN113567242B (en) Method for detecting resistance of reinforced concrete or prestressed concrete beam
JPH0616030B2 (en) Method and apparatus for diagnosing deterioration of article
KR101931686B1 (en) System for monitoring wall-thinning of pipe and method thereof
JP5612535B2 (en) Material judgment method of laying cast iron pipe and laying cast iron pipe material judgment system
KR102121811B1 (en) Concrete conveying pipe monitoring system and method thereof
JP6777228B2 (en) Control devices, communication systems, and control methods
KR102492667B1 (en) Apparatus and method for detecting micro-crack using orthogonality analysis of mode shape vector and principal plane in resonance frequency
KR102642156B1 (en) A reference block for nondestructive testing and the sensitivity calibration method of using the same
JPH07209263A (en) Method and apparatus for diagnosing deterioration of pipe holder
JP7489638B2 (en) Non-destructive testing equipment
JP7489637B2 (en) Non-destructive testing equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees