JPH07131400A - Transmission method for digital mobile communication - Google Patents

Transmission method for digital mobile communication

Info

Publication number
JPH07131400A
JPH07131400A JP5270482A JP27048293A JPH07131400A JP H07131400 A JPH07131400 A JP H07131400A JP 5270482 A JP5270482 A JP 5270482A JP 27048293 A JP27048293 A JP 27048293A JP H07131400 A JPH07131400 A JP H07131400A
Authority
JP
Japan
Prior art keywords
station
base station
error correction
transmission
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5270482A
Other languages
Japanese (ja)
Inventor
Takaaki Sato
隆明 佐藤
Atsushi Murase
淳 村瀬
Masami Sasaki
正美 笹木
Yutaka Oto
豊 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5270482A priority Critical patent/JPH07131400A/en
Publication of JPH07131400A publication Critical patent/JPH07131400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE:To improve the multiplicity of the TDMA(time division multiplex system) between a base station and an exchange station by not adopting a part of correction and detection for transmission line encoding in the transmission section between the base station and the exchange station. CONSTITUTION:In a transmission line 15 between a base station 14 and an exchange station 26, a part of or whole error correction and detection is not used for transmission line encoding. In short, a part of or whole error correction/detection code is decoded on the information sent from a mobile station 11 to the exchange station 26 by the mobile station 11. The remaining error correction and detection codes are decoded by the exchange station 26. On the information to be sent from the exchange station 26 to the mobile station 11, a part of or whole error correction/detection encoding is not performed and the remaining error correction/detection encoding is performed by the base station 14 and the redundant addition information is given. As the result, the transmission speed on the transmission line 15 between the base station 14 and the exchange station 26 is reduced and the TDMA multiplicity in the transmission section between both stations 14 and 26 can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、デジタル移動通信方
式における移動局−基地局間の無線伝送区間、および基
地局−交換局間の伝送区間のTDM(時分割)多重化伝
送方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a TDM (time division) multiplex transmission method for a wireless transmission section between a mobile station and a base station and a transmission section between a base station and a switching station in a digital mobile communication system. is there.

【0002】[0002]

【従来の技術】図5Aはデジタル移動通信方式における
基地局−交換局間の音声伝送系の構成を示す。日本標準
規格(財団法人電波システム開発センター「デジタル方
式自動車電話システム標準規格」)における伝送路符号
化方式を以下で説明する。移動局11で入力された音声
は、移動局11内の音声符号化器12において音声符号
化され、引き続き伝送路符号化されて無線伝送路13を
通じて基地局14へ送信され、更に基地局14から局間
伝送路15を通じて交換局内の音声復号化器16へ送信
され、音声復号化器16において伝送路復号化され、引
き続き音声復号化されて公衆網17へ送信される。
2. Description of the Related Art FIG. 5A shows a configuration of a voice transmission system between a base station and a switching center in a digital mobile communication system. The transmission path coding method in the Japanese standard (Radio System Development Center "Digital Car Telephone System Standard") is described below. The voice input by the mobile station 11 is voice-encoded by the voice encoder 12 in the mobile station 11, is subsequently transmission line-encoded, and is transmitted to the base station 14 through the wireless transmission line 13, and further transmitted from the base station 14. It is transmitted to the voice decoder 16 in the exchange through the inter-station transmission line 15, is subjected to the transmission line decoding in the voice decoder 16, is subsequently voice-decoded, and is transmitted to the public network 17.

【0003】逆に、公衆網17から交換局に入力された
音声は、その交換局内の音声符号化器18において音声
符号化され、引き続き伝送路符号化されて局間伝送路1
5を通じて基地局14へ送信され、更に基地局14から
無線伝送路13を通じて移動局11へ送信され、移動局
11内の音声復号化器19において伝送路復号化され、
引き続き音声復号化されて出力される。
On the contrary, the voice input from the public network 17 to the exchange station is voice-encoded by the voice encoder 18 in the exchange station, and is subsequently channel-coded to form the inter-station transmission line 1.
5 to the base station 14 and further from the base station 14 to the mobile station 11 via the wireless transmission path 13 and transmission channel decoding is performed in the voice decoder 19 in the mobile station 11,
Then, the sound is decoded and output.

【0004】伝送路符号化には3つの手法が用いられ、
第1に、聴覚上最も重要なビットをCRC(cyclic red
undancy check : 巡回冗長検査)を用いて保護する。受
信側では誤り訂正が行われた後、これらのCRCビット
を用いて最重要ビットが正しく受信されたかどうかをチ
ェックする。第2に、音声符号化データ列中の誤りに弱
いビットを保護するために畳み込み符号化する。第3
に、各々の音声符号化フレームの送信したデータを2タ
イムスロットにわたりインタリーブし、レイリーフェー
ジングの影響を低減する。
Three techniques are used for channel coding,
First, the most important bit for hearing is set to CRC (cyclic red).
undancy check: Protect using a cyclic redundancy check. After error correction is performed on the receiving side, these CRC bits are used to check whether the most significant bits have been correctly received. Second, convolutional coding is performed in order to protect bits that are vulnerable to errors in the speech coded data sequence. Third
First, the transmitted data of each voice coded frame is interleaved over two time slots to reduce the influence of Rayleigh fading.

【0005】図5Bは音声符号化器の誤り訂正処理であ
る。誤り訂正処理における第1ステップは、音声符号化
フレームの、例えば134ビットの情報を例えば75ビ
ットのクラス1と、54ビットのクラス2に分割するこ
とである。クラス1の75ビットは、音声データストリ
ーム上で、畳み込み符号化が適用される部分を表す。各
々のフレームにおけるクラス1ビット中の聴覚的に最重
要な、例えは44ビットについてCRCのための演算結
果を行って7ビットのCRCビットを付加する。クラス
2の54ビットは誤り保護しないまゝ送信する。CRC
の目的は、誤り訂正が聴覚的に最重要なビットの伝送中
に発生する伝送路誤りを訂正できなかった時を検出する
ためである。誤り訂正ができず、誤りが検出されると、
このフレームの受信データを前フレームデータで置き換
える。
FIG. 5B shows an error correction process of the speech coder. The first step in the error correction processing is to divide, for example, 134-bit information of a speech coded frame into, for example, 75-bit class 1 and 54-bit class 2. The 75 bits of class 1 represent the part on the audio data stream to which convolutional coding is applied. The operation result for CRC is performed on the most acoustically important, for example, 44 bits in the class 1 bit in each frame, and 7 CRC bits are added. 54 bits of class 2 are transmitted without error protection. CRC
The purpose of is to detect when the error correction fails to correct the transmission path error that occurs during the transmission of the auditory most important bit. If the error cannot be corrected and an error is detected,
The received data of this frame is replaced with the previous frame data.

【0006】第2ステップとして、前方誤り訂正(FE
C)をし、その前方誤り訂正は、例えばメモリ長5で9
/17レートの畳み込み符号化である。この畳み込み符
号は音声符号化の出力134ビットのうちクラス1の7
5ビットと、CRC7ビットと、復号器により要求され
るオーバーヘッド5ビットとに適用する。これらの87
ビットはこの畳み込み処理により165ビットに符号化
される。この冗長付加は伝送速度を6.7Kbps(134ビ
ット/20ms)から11.2Kbps(224ビット/20m
s)に音声符号化フレームの情報伝送速度を引き上げる
ことになる。
As a second step, forward error correction (FE
C), and the forward error correction is performed with a memory length of 5 for 9
/ 17 rate convolutional coding. This convolutional code is 7 of class 1 out of the output 134 bits of speech coding.
Applies to 5 bits, CRC 7 bits, and overhead 5 bits required by the decoder. These 87
The bits are encoded into 165 bits by this convolution process. This redundant addition increases the transmission speed from 6.7 Kbps (134 bits / 20 ms) to 11.2 Kbps (224 bits / 20 m).
s) will increase the information transmission rate of the voice coded frame.

【0007】第3ステップとして、インタリーブにより
1フレーム(20ms)のデータを2つの隣接するタイム
スロットに多重化する。つまり1フレームの224ビッ
トの半分を第1タイムスロットで送り、残りのフレーム
ビットは続くタイムスロットで送る。よって移動局11
−基地局14間の無線伝送路13と、基地局14−交換
局26間の局間伝送路15とは共に11.2Kbps(224
ビット/20ms)の伝送速度となる。前記各数値例は日
本標準規格におけるフルレートの伝送符号化方式の場合
である。
As a third step, one frame (20 ms) of data is multiplexed into two adjacent time slots by interleaving. That is, half of the 224 bits of one frame are sent in the first time slot and the remaining frame bits are sent in the following time slot. Therefore, mobile station 11
-The wireless transmission line 13 between the base stations 14 and the inter-station transmission line 15 between the base station 14 and the exchange 26 are both 11.2 Kbps (224
The bit rate is 20 ms). The above numerical examples are for the case of the full-rate transmission coding method in the Japanese standard.

【0008】図6に示すように従来の音声符号化/復号
化、伝送路符号化/復号化は移動局内、交換局内のそれ
ぞれの音声符号化器内において処理されている。つま
り、移動局11内で音声符号化/復号化処理22と、C
RC演算/チェック23と、畳み込み符号化/復号化2
4と、スロットインタリーブ/デインタリーブ25とが
なされ、同様に交換局26でスロットインタリーブ/デ
インタリーブ27と、畳み込み符号化/復号化28と、
CRC演算/チェック29と、音声符号化/復号化31
とがなされている。
As shown in FIG. 6, conventional voice coding / decoding and transmission line coding / decoding are processed in the respective voice encoders in the mobile station and the switching center. That is, in the mobile station 11, the voice encoding / decoding process 22 and C
RC operation / check 23 and convolutional encoding / decoding 2
4 and slot interleave / deinterleave 25 are performed, and similarly, the exchange 26 also performs slot interleave / deinterleave 27, convolutional encoding / decoding 28,
CRC calculation / check 29 and voice encoding / decoding 31
Has been done.

【0009】[0009]

【発明が解決しようとする課題】従来技術においては、
移動局11内の音声符号化器12と交換局26内の音声
符号化器16とのそれぞれにおいて、符号化された音声
情報に複数の誤り訂正/検出方式を適用して冗長付加情
報を加えることにより、移動局11−交換局26間では
チャネル当たりの伝送情報速度は全て同じとしていた。
このため、移動局11−基地局14間の無線伝送路13
と比較して、伝送誤りが十分に低い基地局14−交換局
26間の局間伝送路15上の情報量が冗長的に長くな
り、伝送路内多重数が必要以上に制限されてしまうとい
う欠点が生じた。この発明は、基地局−交換局間の伝送
路内多重化におけるこの欠点を改善するデジタル移動通
信の伝送路多重化方法を提供することにある。
DISCLOSURE OF THE INVENTION In the prior art,
In each of the speech coder 12 in the mobile station 11 and the speech coder 16 in the exchange 26, a plurality of error correction / detection schemes are applied to the encoded speech information to add redundant additional information. Therefore, the transmission information rates per channel are the same between the mobile station 11 and the exchange 26.
Therefore, the wireless transmission path 13 between the mobile station 11 and the base station 14
Compared with the above, the amount of information on the inter-station transmission line 15 between the base station 14 and the switching center 26 where the transmission error is sufficiently low is lengthened redundantly, and the number of multiplexes in the transmission line is limited more than necessary. A flaw has arisen. An object of the present invention is to provide a transmission line multiplexing method for digital mobile communication, which solves this drawback in the intra-transmission line multiplexing between a base station and a switching center.

【0010】[0010]

【課題を解決するための手段】この発明は基地局−交換
局間の伝送区間では上記伝送路符号化のうち少なくとも
一部の誤り訂正/検出を適用しないことを最も主要な特
徴とする。
The main feature of the present invention is that the error correction / detection of at least a part of the above-mentioned channel coding is not applied in the transmission section between the base station and the exchange.

【0011】[0011]

【作用】基地局−交換局間の伝送区間では、上記伝送路
符号化のうち少なくとも一部の誤り訂正/検出を適用し
ないことにより、符号化による冗長付加情報が削減さ
れ、基地局−交換局間の伝送区間のTDMA多重度を、
移動局−基地局間の伝送区間の多重度より増加させるこ
とができる。
In the transmission section between the base station and the switching station, the error correction / detection of at least a part of the above-mentioned channel coding is not applied, so that redundant additional information due to the coding is reduced, and the base station-switching station. The TDMA multiplicity of the transmission section between
It can be increased from the multiplicity of the transmission section between the mobile station and the base station.

【0012】[0012]

【実施例】図1,2にこの発明の実施例を示し、図5
A,6と対応する部分に同一符号を付けてある。この発
明では基地局14−交換局26間の伝送路15では従来
の伝送路符号化のうち一部または全ての誤り訂正/検出
を適用しない。つまり、移動局11−交換局26へ送信
される情報については、一部または全ての誤り訂正/検
出符号を基地局11において復号化し、交換局26にお
いて残りの誤り訂正/検出符号を復号化する。また、交
換局26から移動局11へ送信される情報については、
音声信号を交換局26において一部または全ての誤り訂
正/検出符号化をせず、基地局14において残りの誤り
訂正/検出符号化をし冗長付加情報を付与する。
1 and 2, an embodiment of the present invention is shown in FIG.
The same reference numerals are given to the portions corresponding to A and 6. In the present invention, the transmission line 15 between the base station 14 and the switching center 26 does not apply some or all of the error correction / detection of the conventional transmission line coding. That is, for information transmitted from the mobile station 11 to the exchange 26, some or all of the error correction / detection codes are decoded by the base station 11 and the remaining error correction / detection codes are decoded by the exchange 26. . Further, regarding the information transmitted from the exchange 26 to the mobile station 11,
The voice signal is not partially or completely error-corrected / detected and encoded in the exchange 26, but the remaining error-correction / detection-encoding is performed in the base station 14 to add redundant additional information.

【0013】図1では、従来交換局26で行ったスロッ
ト(デ)インタリーブ27と、畳み込み符号化/復号化
28とを基地局14において実施する例である。図2で
は、スロット(デ)インタリーブ27と、畳み込み符号
化/復号化28と、CRC演算/チェック29とを基地
局14において実施する例である。図3Aに図1に示し
た実施例の基地局14における上り音声(交換局24へ
の音声信号)に対する復号化処理の例を示す。
FIG. 1 shows an example in which the base station 14 performs the slot (de) interleaving 27 and the convolutional encoding / decoding 28 performed by the conventional exchange 26. In FIG. 2, the slot (de) interleave 27, the convolutional encoding / decoding 28, and the CRC calculation / check 29 are implemented in the base station 14. FIG. 3A shows an example of a decoding process for upstream voice (voice signal to the exchange 24) in the base station 14 of the embodiment shown in FIG.

【0014】第1ステップとして、インタリーブにより
20msフレームのデータが2つの隣接するタイムスロッ
トに多重化された移動局11からのデータをデインタリ
ーブする。第2ステップとして、畳み込み処理により1
65ビットに符号化されたクラス1の情報を復号化す
る。よって局間伝送路15へ送る信号量はクラス1の音
声符号化信号75ビットと、CRC7ビットと、クラス
2音声符号化信号59ビットとの計141ビットであ
る。つまり畳み込み符号における冗長付加情報の83ビ
ットが取り除かれ、局間伝送路15の伝送速度は従来の
11.2Kbps(224ビット/20ms)から7.05Kbps
(141ビット/20ms)に引き下げられる。
As a first step, data from the mobile station 11 in which 20 ms frame data is multiplexed into two adjacent time slots by deinterleaving is deinterleaved. As a second step, 1
The class 1 information encoded in 65 bits is decoded. Therefore, the amount of signal to be transmitted to the inter-station transmission line 15 is a total of 141 bits including 75 bits of class 1 speech coded signal, 7 bits of CRC and 59 bits of class 2 speech coded signal. That is, 83 bits of the redundant additional information in the convolutional code are removed, and the transmission speed of the inter-station transmission line 15 is 7.05 Kbps from the conventional 11.2 Kbps (224 bits / 20 ms).
(141 bits / 20ms).

【0015】図3Bに、図2に示した実施例の基地局1
4における上り音声に対する復号化処理の例を示す。第
1ステップとして、インタリーブにより20msフレーム
のデータが2つの隣接するタイムスロットに多重化され
た移動局11からのデータをデインタリーブする。
FIG. 3B shows the base station 1 of the embodiment shown in FIG.
4 shows an example of a decoding process for upstream voice in FIG. As a first step, the data from the mobile station 11 in which the data of 20 ms frame is multiplexed into two adjacent time slots by deinterleaving is deinterleaved.

【0016】第2ステップとして、そのデインタリーブ
されたデータ、つまり畳み込み処理により165ビット
に符号化されたクラス1の情報を畳み込み復号化して、
クラス1の75ビットとCRC7ビットとを得る。第3
ステップとして、CRCチェックをする。よって、局間
伝送路15へ送る信号量はクラス1の音声符号化信号7
5ビットと、クラス2音声符号化信号59ビットとの計
134ビットである。つまり図1の場合より更にCRC
の7ビットが取り除かれ、伝送速度は従来の11.2Kbp
s(224ビット/20ms)から6.70Kbps(134ビッ
ト/20ms)に更に引き下げられる。
As a second step, the deinterleaved data, that is, the class 1 information encoded to 165 bits by the convolution process is convolutionally decoded,
Get 75 bits of class 1 and 7 bits of CRC. Third
As a step, CRC check is performed. Therefore, the amount of signal sent to the inter-station transmission line 15 is 7
There are a total of 134 bits of 5 bits and 59 bits of class 2 speech coded signal. In other words, CRC is more than in the case of FIG.
7 bits are removed and the transmission speed is 11.2Kbp
It is further reduced from s (224 bits / 20 ms) to 6.70 Kbps (134 bits / 20 ms).

【0017】基地局14−交換局26間の局間伝送路1
5におけるこの発明方法、従来方法における各伝送速度
を比較したものを図4に示す。この発明により、従来の
方法に比べ伝送速度を引き下げることができ、基地局−
交換局間の局間伝送路15におけるTDMA多重度を、
例えば64Kbps において、従来の5チャネルから、図
1の方法で8チャネルに、図2の方法で9チャネルにそ
れぞれ増加させることができる。
Inter-station transmission line 1 between the base station 14 and the exchange 26
FIG. 4 shows a comparison of the transmission rates of the method of the present invention in FIG. According to the present invention, the transmission speed can be reduced as compared with the conventional method, and the base station-
The TDMA multiplicity in the inter-station transmission line 15 between the exchanges is
For example, at 64 Kbps, the conventional 5 channels can be increased to 8 channels by the method of FIG. 1 and 9 channels by the method of FIG.

【0018】[0018]

【発明の効果】以上述べたように、この発明により従来
交換局で行っていた誤り訂正/検出の一部または全部を
基地局で行わせることにより、基地局−交換局間の伝送
路の伝送速度が引き下げられ、よって基地局−交換局間
の伝送区間におけるTDMA多重度を増加させることが
できる。基地局−交換局間では誤りに対する保護が、無
線区間よりも薄いが、伝送路誤りが無線区間よりも十分
低いため、問題はない。
As described above, according to the present invention, a part or all of the error correction / detection conventionally performed by the exchange station is performed by the base station, so that the transmission line transmission between the base station and the exchange station is performed. The speed is reduced, and thus the TDMA multiplicity in the transmission section between the base station and the switching center can be increased. Although the error protection between the base station and the switching center is weaker than in the wireless section, there is no problem because the transmission path error is sufficiently lower than in the wireless section.

【0019】なお、上述ではフルレートにこの発明を適
用したが、無線区間のレートを制限するものではないも
のとする。
Although the present invention is applied to the full rate in the above description, the rate in the wireless section is not limited.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】この発明の他の実施例を示すブロック図。FIG. 2 is a block diagram showing another embodiment of the present invention.

【図3】Aは図1中の基地局における上り音声に対する
復号化処理を示すブロック図、Bは図2中の基地局にお
ける上り音声に対する復号化処理を示すブロック図であ
る。
3A is a block diagram showing a decoding process for upstream voice in the base station in FIG. 1, and FIG. 3B is a block diagram showing a decoding process for upstream voice in the base station in FIG.

【図4】従来法、この発明の方法における基地局−交換
局間の伝送速度多重度数の例を示す図。
FIG. 4 is a diagram showing an example of a transmission rate multiplicity between a base station and a switching center in the conventional method and the method of the present invention.

【図5】移動局11での音声符号化器の誤り訂正処理を
示すブロック図。
FIG. 5 is a block diagram showing an error correction process of the voice encoder in the mobile station 11.

【図6】従来法における音声符号化、誤り訂正の処理を
示すブロック図。
FIG. 6 is a block diagram showing speech encoding and error correction processing in the conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大戸 豊 東京都港区虎ノ門二丁目10番1号 エヌ・ ティ・ティ移動通信網株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yutaka Oto 2-10-1 Toranomon, Minato-ku, Tokyo NTT Mobile Communication Network Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 音声符号化/復号化機能を有する移動局
と、その移動局と無線で通信路を構成する基地局と、そ
の基地局と局間伝送路で接続され、音声符号化/復号化
機能を有する交換局とで構成され、符号化された音声情
報を、移動局と基地局間の無線伝送区間および基地局と
交換局間の伝送区間でそれぞれ時分割多重を行うデジタ
ル移動通信の伝送方法において、 上記移動局と基地局間の無線伝送区間では符号化された
音声情報に複数の誤り訂正/検出方法を適用して冗長付
加情報を加え、 上記基地局と交換局間の伝送区間では上記複数の誤り訂
正/検出方法のうち少なくとも一部の誤り訂正/検出を
適用しないことを特徴とするデジタル移動通信の伝送方
法。
1. A mobile station having a voice encoding / decoding function, a base station forming a wireless communication path with the mobile station, and a voice encoding / decoding connected to the base station via an inter-station transmission line. Of digital mobile communication, which is composed of an exchange station having a digitalization function and performs time-division multiplexing of encoded voice information in a radio transmission section between the mobile station and the base station and a transmission section between the base station and the exchange station. In the transmission method, in the wireless transmission section between the mobile station and the base station, a plurality of error correction / detection methods are applied to the encoded voice information to add redundant additional information, and the transmission section between the base station and the switching station is added. Then, a transmission method of digital mobile communication, wherein at least part of the error correction / detection methods is not applied.
JP5270482A 1993-10-28 1993-10-28 Transmission method for digital mobile communication Pending JPH07131400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270482A JPH07131400A (en) 1993-10-28 1993-10-28 Transmission method for digital mobile communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270482A JPH07131400A (en) 1993-10-28 1993-10-28 Transmission method for digital mobile communication

Publications (1)

Publication Number Publication Date
JPH07131400A true JPH07131400A (en) 1995-05-19

Family

ID=17486915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270482A Pending JPH07131400A (en) 1993-10-28 1993-10-28 Transmission method for digital mobile communication

Country Status (1)

Country Link
JP (1) JPH07131400A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018273A1 (en) * 1996-10-18 1998-04-30 Matsushita Electric Industrial Co., Ltd. Radio communication system
US6442176B1 (en) 1998-02-10 2002-08-27 Nec Corporation Signal transmission system in a mobile communication network
US6711704B1 (en) 1999-06-16 2004-03-23 Nec Corporation Transmission method using error correction processing
US6876869B1 (en) 1999-07-29 2005-04-05 Fujitsu Limited Coding assisting equipment, decoding assisting equipment, radio transmitter, and radio receiver
WO2006009240A1 (en) * 2004-07-22 2006-01-26 Tamura Corporation Transmitter, voice transmission method and program, receiver, voice reception method and program, wireless microphone system, voice transmission/reception method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018273A1 (en) * 1996-10-18 1998-04-30 Matsushita Electric Industrial Co., Ltd. Radio communication system
US6275711B1 (en) 1996-10-18 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method and apparatus for selecting a base station in CDMA diversity handover
US6442176B1 (en) 1998-02-10 2002-08-27 Nec Corporation Signal transmission system in a mobile communication network
US6711704B1 (en) 1999-06-16 2004-03-23 Nec Corporation Transmission method using error correction processing
US6876869B1 (en) 1999-07-29 2005-04-05 Fujitsu Limited Coding assisting equipment, decoding assisting equipment, radio transmitter, and radio receiver
WO2006009240A1 (en) * 2004-07-22 2006-01-26 Tamura Corporation Transmitter, voice transmission method and program, receiver, voice reception method and program, wireless microphone system, voice transmission/reception method

Similar Documents

Publication Publication Date Title
CA2090284C (en) Method for detecting and masking bad frames in coded speech signals
JP3394119B2 (en) Error correction encoding device, error correction decoding device, and communication system
US6430721B2 (en) Method for decreasing the frame error rate in data transmission in the form of data frames
US20030033571A1 (en) Encoding apparatus and encoding method for multidimensionally coding and encoding method and decoding apparatus for iterative decoding of multidimensionally coded information
JP4493335B2 (en) Receiving apparatus and receiving method in CDMA communication system
US6396423B1 (en) Method for coding or decoding and device for coding or decoding
JP3195665B2 (en) Detection Method of Channel Recognition Values of Multiple Channels in Mobile Radio System
EP0782277A2 (en) Speech frame disabling circuitry for protection against burst errors of interleaved TDMA frames
AU1251895A (en) Soft error correction in a TDMA radio system
NZ319215A (en) Confidence and frame signal quality detection in a soft decision convolutional decoder
EP1287618B1 (en) Method and apparatus for recovery of particular bits of received frame
KR100603909B1 (en) A method and a system for transferring AMR signaling frames on halfrate channels
WO1999020015A2 (en) Adaptable overlays for forward error correction schemes based on trellis codes
JP3265339B2 (en) Audio decoding device
JPH07131400A (en) Transmission method for digital mobile communication
EP1330887B1 (en) Method and arrangement for providing optimal bit protection against transmission errors
GB2305085A (en) A CDMA terminal using a DSP for channel encode/decode and interleave/de-interleave functions
EP0612166B1 (en) A method and apparatus for error-control coding in a digital data communications system
JP3566651B2 (en) Signal coding
US6532564B1 (en) Encoder for multiplexing blocks of error protected bits with blocks of unprotected bits
EP1538770A2 (en) Rate matching method and apparatus for multiplexing channels having different transmission time intervals in a mobile communication system
JP2955175B2 (en) Transmission method between stations
KR100880630B1 (en) Transmission chain in communication system and method for transmitting and detecting physical channel format uging the same
EP1059775A1 (en) Error correction based on headers
KR100286537B1 (en) Device for compensating packet data error of wired period at vocode bypass