JPH07120789A - Liquid crystal display device and its production - Google Patents

Liquid crystal display device and its production

Info

Publication number
JPH07120789A
JPH07120789A JP27026593A JP27026593A JPH07120789A JP H07120789 A JPH07120789 A JP H07120789A JP 27026593 A JP27026593 A JP 27026593A JP 27026593 A JP27026593 A JP 27026593A JP H07120789 A JPH07120789 A JP H07120789A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
display device
crystal display
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27026593A
Other languages
Japanese (ja)
Inventor
Koichi Abu
恒一 阿武
Genshirou Kawachi
玄士朗 河内
Katsumi Kondo
克己 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27026593A priority Critical patent/JPH07120789A/en
Publication of JPH07120789A publication Critical patent/JPH07120789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent corrosion of terminals and to obtain an active matrix substrate having terminals of high reliability by laminating a conductive oxide film or conductive nitride film on a conductive oxide film, conductive nitride film or at least one layer of metal film and forming terminals for wiring with using the same mask. CONSTITUTION:An Al film is deposited on a glass substrate 1 and a resist mask is formed to etch the film and then removed to obtain a scanning electrode wiring 2. Then a silicon nitride film, an amorphous silicon (a-Si) film, and an a-Si containing P (n+a-Si) film are deposited on the substrate. A resist mask is formed to etch the a-Si film and the semiconductor film containing impurities into an inland shape to obtain a-Si layer 4 and a n+a-Si layer 5. Then the silicon nitride film is etched to obtain the pattern of a gate insulating film 3. Further, laminated films of ITO and Cr are etched in a wet state to form a source electrode 7, electrode wiring 6 for picture signals, and counter electrode wiring 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示装置に係り、特
に、非線形素子を用いたアクティブマトリクス基板とそ
の製造方法、及びアクティブマトリクス基板を用いて駆
動される液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to an active matrix substrate using a non-linear element, a method of manufacturing the same, and a liquid crystal display device driven using the active matrix substrate.

【0002】[0002]

【従来の技術】特公昭63−21907 号公報には、液晶分子
を駆動する際に薄膜トランジスタ基板に平行な方向に電
界を印加することにより、必ずしもITO等の透明導電
膜を電極として画素中に用いる必要のない液晶表示装置
が示されている。
2. Description of the Related Art JP-B-63-21907 discloses that a transparent conductive film such as ITO is always used as an electrode in a pixel by applying an electric field in a direction parallel to a thin film transistor substrate when driving liquid crystal molecules. A liquid crystal display device is shown that does not require it.

【0003】特開平3−58019号公報に開示されている基
板に垂直に駆動用電界を印加する方式の液晶表示装置で
は、画素電極を透過した光を見るため、画素電極は透明
導電膜により形成する必要がある。しかし特公昭63−21
907 号公報の方式の液晶表示装置では、駆動用電界を印
加している一対の電極の間隙を通過した光を見るため、
電極は透光性である必要がない。
In the liquid crystal display device of the type disclosed in Japanese Patent Application Laid-Open No. 3-58019 in which a driving electric field is applied vertically to a substrate, the pixel electrode is formed of a transparent conductive film in order to see the light transmitted through the pixel electrode. There is a need to. However, Japanese Examiner's Sho 63-21
In the liquid crystal display device of the method of the 907 publication, since the light passing through the gap between the pair of electrodes applying the driving electric field is seen,
The electrodes need not be translucent.

【0004】[0004]

【発明が解決しようとする課題】特公昭63−21907 号公
報の構造の液晶表示装置では、マトリクス状に配置され
た電極の端子の構造が明らかにされていない。この構造
ではITO等の透明導電酸化膜を使う必然性がないた
め、外部駆動回路との接続端子を配線と同じ金属で形成
すると、プロセス中の薬液に侵され端子の金属が腐食し
信頼性を下げることが懸念される。腐食に強い金属を用
いて別工程で端子を形成することもできるが、腐食に強
い金属は加工が困難、かつ高価という問題がある。
In the liquid crystal display device having the structure of JP-B-63-21907, the structure of the terminals of the electrodes arranged in a matrix has not been clarified. With this structure, there is no need to use a transparent conductive oxide film such as ITO, so if the connection terminal with the external drive circuit is made of the same metal as the wiring, it will be corroded by the chemical solution during the process and the metal of the terminal will corrode and reduce reliability. Is concerned. Although the terminal can be formed in a separate step by using a metal resistant to corrosion, there is a problem that the metal resistant to corrosion is difficult to process and expensive.

【0005】特開平3−58019号公報には、保護膜内の配
線部にAlを有し、Ta,Cr,Tiのいずれか一つと
ITOとの積層、もしくはITO単層の構造を含む端子
が開示されている。しかし金属単層では、プロセス中の
薬液による腐食の発生、またはプロセス中の熱処理時に
生成された高抵抗の表面酸化膜による外部の周辺回路と
の接続抵抗増大という問題がある。積層構造を用いた場
合、端子金属を被覆する導電酸化物は画素電極の形成に
も用いられるため、配線及び端子部の形成にはTa,C
r,Tiのいずれか一つと、Alと、ITOの合計3回
の加工が必要となり、工程が長く複雑になるという問題
がある。
Japanese Unexamined Patent Publication (Kokai) No. 3-58019 discloses a terminal which has Al in a wiring portion in a protective film and has a laminated structure of any one of Ta, Cr and Ti and ITO, or an ITO single layer structure. It is disclosed. However, the metal single layer has a problem that corrosion occurs due to a chemical solution during the process, or a connection resistance with an external peripheral circuit increases due to a high resistance surface oxide film generated during heat treatment during the process. When the laminated structure is used, the conductive oxide covering the terminal metal is also used for forming the pixel electrode, and therefore Ta and C are used for forming the wiring and the terminal portion.
There is a problem that one of r and Ti, Al, and ITO must be processed a total of three times, which makes the process long and complicated.

【0006】また、ITO単層で端子を形成した場合、
ITOは画素電極の形成にも用いられるため、透光性で
なくてはならない。液晶表示装置に備えられるカラーフ
ィルタ等を透過する際に、可視光は50%以下の明るさ
に減衰するため画素電極の可視光透過率は高いほど好ま
しく、85%以上が望ましい。しかし、透過率を高める
ためには、成膜条件を厳密に管理した上で薄い膜厚にし
なければならない。一般に広く使われているITOで
は、図2に示すように透過率85%以上の領域ではシー
ト抵抗が急激に高くなる。そのため、画素電極に用いる
ITO等の透明導電膜を用いて端子を形成した場合、端
子抵抗が増大し画質が低下するという問題がある。
When the terminals are formed of a single layer of ITO,
Since ITO is also used for forming a pixel electrode, it must be transparent. Visible light is attenuated to a brightness of 50% or less when transmitted through a color filter or the like provided in the liquid crystal display device, and thus the visible light transmittance of the pixel electrode is preferably as high as possible, and more preferably 85% or more. However, in order to increase the transmittance, it is necessary to strictly control the film forming conditions and make the film thickness thin. In the generally widely used ITO, as shown in FIG. 2, the sheet resistance rapidly increases in the region where the transmittance is 85% or more. Therefore, when a terminal is formed using a transparent conductive film such as ITO used for the pixel electrode, there is a problem that the terminal resistance increases and the image quality deteriorates.

【0007】本発明の目的は、信頼性の高い端子を有し
たアクティブマトリクス基板を備えた液晶表示装置の構
造と、その製造方法を提供することにある。
An object of the present invention is to provide a structure of a liquid crystal display device provided with an active matrix substrate having highly reliable terminals and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】前項の目的は、アクティ
ブマトリクス基板に平行な成分を持つ電界を印加し液晶
を駆動する従来の液晶表示装置において、図1に示すよ
うに導電性酸化膜または導電性窒化膜を加工する、もし
くは少なくとも一層以上の金属膜の上に導電性酸化膜ま
たは導電性窒化膜を積層して同一のマスクで加工し、電
極及び配線と端子もしくは端子のみを形成することによ
り達成される。
In the conventional liquid crystal display device for driving a liquid crystal by applying an electric field having a component parallel to the active matrix substrate, the object of the above paragraph is to provide a conductive oxide film or a conductive oxide film as shown in FIG. By forming a conductive nitride film or by laminating a conductive oxide film or a conductive nitride film on at least one or more metal films and processing them with the same mask to form electrodes and wirings and terminals or only terminals. To be achieved.

【0009】[0009]

【作用】腐食に強い導電性酸化物または導電性窒化物を
用いて端子の最上層を形成することにより、プロセス中
の薬液による腐食を防ぎ、端子の信頼性を向上する。
By forming the uppermost layer of the terminal by using a conductive oxide or conductive nitride that is resistant to corrosion, corrosion due to the chemical solution during the process is prevented and the reliability of the terminal is improved.

【0010】また導電性酸化物として透過率は85%未
満であるが、抵抗の低い膜を用いることにより、配線抵
抗または端子抵抗を小さくできる。または不透明ではあ
るが抵抗の低い、酸化モリブデンまたは窒化チタン等の
ように異なる組成の導電性酸化膜もしくは導電性窒化膜
を用いることにより、同様に配線抵抗または端子抵抗を
小さくできる。
Although the transmittance of the conductive oxide is less than 85%, the wiring resistance or the terminal resistance can be reduced by using a film having a low resistance. Alternatively, the wiring resistance or the terminal resistance can be similarly reduced by using a conductive oxide film or a conductive nitride film having a different composition such as molybdenum oxide or titanium nitride which is opaque but has low resistance.

【0011】[0011]

【実施例】以下、本発明を適用したアクティブマトリク
ス基板の製造プロセスを図を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A manufacturing process of an active matrix substrate to which the present invention is applied will be described below with reference to the drawings.

【0012】(実施例1)図3は、アクティブマトリク
ス基板を示した平面図である。図4から図7は、図3中
のA−A′の断面を用い、アクティブマトリクス基板に
設けられた薄膜トランジスタの製造プロセスを示した図
である。図8から図11は、図3中のB−B′の縦断面
を用い、アクティブマトリクス基板の走査電極配線(以
下ゲート電極配線)の端子の製造プロセスを示した図で
ある。図12は、図3中のC−C′のアクティブマトリ
クス基板の画像信号電極配線及び対向電極配線の端子の
構造を示した断面図である。
(Embodiment 1) FIG. 3 is a plan view showing an active matrix substrate. 4 to 7 are views showing the manufacturing process of the thin film transistor provided on the active matrix substrate, using the cross section taken along the line AA 'in FIG. 8 to 11 are views showing a manufacturing process of terminals of scan electrode wirings (hereinafter referred to as gate electrode wirings) of the active matrix substrate by using the vertical section taken along line BB 'in FIG. FIG. 12 is a cross-sectional view showing the structure of the terminals of the image signal electrode wiring and the counter electrode wiring of the CC ′ active matrix substrate in FIG.

【0013】(1)(図4参照)ガラス基板1上に、スパ
ッタ法によりAl膜を300nm堆積する。通常のホト
リソグラフィ技術を用いてレジストマスクを作成しエッ
チングを行なった後、レジストマスクを除去して、Al
膜から構成される走査電極配線2を作成する。
(1) (See FIG. 4) An Al film having a thickness of 300 nm is deposited on the glass substrate 1 by a sputtering method. A resist mask is formed by using a normal photolithography technique, etching is performed, and then the resist mask is removed.
The scan electrode wiring 2 made of a film is created.

【0014】(2)(図5参照)基板上に、窒化シリコン
膜を200nmと非晶質シリコン(以下a−Siと略)
膜を100nm、及びPを1%含んだa−Si(以下n
+a−Siと略記)膜を50nmを、化学気相成長法
(以下CVD法と略記)により堆積する。次に、ホトリ
ソグラフィ技術を用いてレジストマスクを形成し、a−
Si膜及び不純物含有半導体膜をエッチングして島状に
加工しa−Si層4とn+a−Si層5を得る。レジス
トを除去した後、ホトリソグラフィ技術によりレジスト
マスクを形成し、窒化シリコン膜をエッチングしてレジ
ストを除去しゲート絶縁膜3のパターンを得る。
(2) (See FIG. 5) A silicon nitride film having a thickness of 200 nm and amorphous silicon (hereinafter abbreviated as a-Si) is formed on a substrate.
A-Si containing 100 nm of film and 1% P (hereinafter n
A + a-Si film is deposited to a thickness of 50 nm by a chemical vapor deposition method (hereinafter abbreviated as a CVD method). Next, a resist mask is formed using the photolithography technique, and a-
The Si film and the impurity-containing semiconductor film are etched and processed into an island shape to obtain an a-Si layer 4 and an n + a-Si layer 5. After removing the resist, a resist mask is formed by the photolithography technique, the silicon nitride film is etched to remove the resist, and the pattern of the gate insulating film 3 is obtained.

【0015】(3)(図6参照)基板上にスパッタ法によ
り、Crを50nm堆積し、続いてITOを100nm
堆積する。ホトリソグラフィ技術を用いてレジストマス
クを形成して、ITOとCrの積層膜をウェットエッチ
ングし、次にレジストマスクを除去してソース電極7と
画像信号電極配線6と対向電極配線8を形成する。
(3) (See FIG. 6) Cr is deposited to a thickness of 50 nm on the substrate by sputtering, and then ITO is deposited to a thickness of 100 nm.
accumulate. A resist mask is formed by using the photolithography technique, the laminated film of ITO and Cr is wet-etched, and then the resist mask is removed to form the source electrode 7, the image signal electrode wiring 6, and the counter electrode wiring 8.

【0016】(4)(図7参照)基板上にCVD法により
窒化シリコン膜を500nm堆積し、ホトリソグラフィ
技術を用いて所定のパターンのレジストマスクを形成し
エッチングして、レジストパターンを除去し、絶縁保護
膜9のパターンを形成する。
(4) (See FIG. 7) A silicon nitride film is deposited to a thickness of 500 nm on a substrate by a CVD method, a resist mask having a predetermined pattern is formed by using a photolithography technique, and etching is performed to remove the resist pattern. The pattern of the insulating protective film 9 is formed.

【0017】走査電極配線端子部の製造プロセス (5)(図8参照)工程(1)の走査電極配線の形成時に、
端子の形成領域の少なくとも一部が重なるように、走査
電極配線2を形成する。
Manufacturing process of the scanning electrode wiring terminal portion (5) (see FIG. 8) When forming the scanning electrode wiring in the step (1),
The scanning electrode wiring 2 is formed so that at least a part of the terminal formation region overlaps.

【0018】(6)(図9参照)工程(2)のゲート絶縁膜
3形成の際に、走査電極配線の端の一部が露出するパタ
ーンに、ゲート絶縁膜3を形成する。
(6) (See FIG. 9) When the gate insulating film 3 is formed in the step (2), the gate insulating film 3 is formed in a pattern in which a part of the end of the scanning electrode wiring is exposed.

【0019】(7)(図10参照)工程(3)のCrとIT
Oの積層膜によるソース電極7と画像信号電極配線6と
対向電極配線8形成の際に、工程(5)において形成した
走査電極配線2に少なくとも一部が重なるように、走査
電極配線端子10を形成する。
(7) Cr and IT in step (3) (see FIG. 10)
When forming the source electrode 7, the image signal electrode wiring 6, and the counter electrode wiring 8 by the laminated film of O, the scanning electrode wiring terminal 10 is formed so as to at least partially overlap the scanning electrode wiring 2 formed in the step (5). Form.

【0020】(図11参照)工程(4)の絶縁保護膜9の
形成の際に、少なくともゲート絶縁膜3に重なり、端子
10のすべては覆わないように絶縁保護膜9を形成す
る。
(See FIG. 11) When the insulating protective film 9 is formed in the step (4), the insulating protective film 9 is formed so as to overlap at least the gate insulating film 3 and not cover all the terminals 10.

【0021】この後、配向膜などを形成して液晶表示装
置となる。
After that, an alignment film and the like are formed to complete the liquid crystal display device.

【0022】画像信号電極配線および対向電極配線(図
12参照)は、ITOとCrの積層膜を用いて形成する
ため、各配線と端子を同じ工程内で連続したパターンに
形成する。
Since the image signal electrode wiring and the counter electrode wiring (see FIG. 12) are formed by using a laminated film of ITO and Cr, each wiring and terminal are formed in a continuous pattern in the same process.

【0023】本実施例では、ソース電極と画像信号電極
配線と対向電極配線をITO/Cr積層膜を用いて形成
するため、各配線自身の端子を別工程で形成する必要が
無い。さらに、同時に走査電極配線の端子を形成でき
る。また、走査電極配線を構成する金属がAl等の酸化
されやすい金属である場合、ITOと配線金属間のバリ
アメタルを同一マスクで加工することにより、工程数を
増加させずに端子と配線の接触抵抗を低減できる。
In this embodiment, since the source electrode, the image signal electrode wiring and the counter electrode wiring are formed by using the ITO / Cr laminated film, it is not necessary to form the terminals of each wiring in a separate process. Further, at the same time, the terminals of the scanning electrode wiring can be formed. When the metal forming the scan electrode wiring is a metal such as Al that is easily oxidized, the barrier metal between the ITO and the wiring metal is processed by the same mask, so that the contact between the terminal and the wiring is increased without increasing the number of steps. The resistance can be reduced.

【0024】本発明はアクティブマトリクス基板に平行
な成分を持つ電界を印加し液晶を駆動する液晶表示装置
に適用するため、電界を印加する電極は透光性である必
要がない。したがって本実施例に示すように積層膜で配
線を形成すると、AlやCr等の金属と比べ10倍以上
抵抗の大きなITO膜のみを用いて配線を形成した場合
よりも、薄い膜厚で工程数を増やさずに配線抵抗を低減
できる。
Since the present invention is applied to a liquid crystal display device in which an electric field having a component parallel to the active matrix substrate is applied to drive the liquid crystal, the electrodes to which the electric field is applied need not be translucent. Therefore, when the wiring is formed by the laminated film as shown in this embodiment, the number of steps is smaller than that in the case where the wiring is formed only by using the ITO film having a resistance 10 times or more higher than that of the metal such as Al or Cr. The wiring resistance can be reduced without increasing the resistance.

【0025】(実施例2)図13は、アクティブマトリ
クス基板の走査電極配線の端子の断面図である。図14
は、アクティブマトリクス基板の画像信号電極配線およ
び対向電極配線の端子の断面図である。
(Embodiment 2) FIG. 13 is a sectional view of a terminal of a scan electrode wiring of an active matrix substrate. 14
FIG. 4 is a cross-sectional view of terminals of image signal electrode wirings and counter electrode wirings of an active matrix substrate.

【0026】本実施例は、実施例1と異なり端子上面に
コンタクトホール12を設ける。絶縁保護膜9を用い
て、Cr14の上にITO13を重ねた積層膜からなる
端子の側面を覆うことにより、プロセス中の薬液に端子
部の積層膜の金属が触れる事が無くなり、配線側面の金
属の腐食を防ぐ効果がある。
In this embodiment, unlike the first embodiment, the contact hole 12 is provided on the upper surface of the terminal. By covering the side surface of the terminal composed of the laminated film in which the ITO 13 is overlaid on the Cr 14 with the insulating protective film 9, it is possible to prevent the metal of the laminated film of the terminal portion from touching the chemical solution in the process, and the metal on the side surface of the wiring is prevented. It has the effect of preventing corrosion.

【0027】以上二つの実施例では、画像信号電極配線
及び対向電極配線を導電性酸化膜とCrの積層膜で形成
したが、走査電極配線を積層膜により形成しても同様の
効果が得られる。実施例中で用いたITOのかわりに酸
化インジウム,酸化スズ,酸化亜鉛,酸化チタン,酸化
ジルコニウム等の導電性酸化物,またはTa,Cr,M
o,Nb,V,Hf,Zrのうち少なくとも一つを母材
とする導電性窒化物を用いても同様の効果が得られる。
導電性酸化膜と金属の積層膜の代りにITO等の導電性
酸化物単層膜でも同様の効果が得られる。導電性窒化膜
と金属の積層膜の代りに、導電性窒化膜単層膜でも同様
の効果が得られる。実施例で用いた各配線の構成材料
は、実施例中で用いた以外の金属でも同様の効果が得ら
れる。
In the above two embodiments, the image signal electrode wiring and the counter electrode wiring are formed by the laminated film of the conductive oxide film and Cr, but the same effect can be obtained by forming the scanning electrode wiring by the laminated film. . Instead of ITO used in the examples, conductive oxides such as indium oxide, tin oxide, zinc oxide, titanium oxide and zirconium oxide, or Ta, Cr, M are used.
The same effect can be obtained by using a conductive nitride containing at least one of o, Nb, V, Hf, and Zr as a base material.
The same effect can be obtained by using a conductive oxide single layer film such as ITO instead of the conductive oxide film and the metal laminated film. A similar effect can be obtained by using a conductive nitride film single layer film instead of the conductive nitride film and the metal laminated film. The same effect can be obtained even if the constituent material of each wiring used in the embodiment is a metal other than that used in the embodiment.

【0028】また、実施例では逆スタガ型の薄膜トラン
ジスタをスイッチング素子として用いたが、スタガ型や
コプレーナ型等のトランジスタ、もしくはダイオード等
の非線形素子をスイッチング素子として用いた場合でも
同様の効果が得られる。
Further, although the inverted stagger type thin film transistor is used as a switching element in the embodiment, the same effect can be obtained when a stagger type or coplanar type transistor or a non-linear element such as a diode is used as a switching element. .

【0029】[0029]

【発明の効果】本発明によれば、ガラス基板表面に平行
な方向に液晶分子の駆動用電界が印加される液晶表示装
置において、配線の端子を導電性酸化膜または導電性窒
化膜、もしくは少なくとも一層の金属膜の上に導電性酸
化膜または導電性窒化膜を積層して同一マスクを用いて
加工された積層膜を用いて形成することにより、端子の
腐食を防ぐことができる。
According to the present invention, in a liquid crystal display device in which an electric field for driving liquid crystal molecules is applied in a direction parallel to the surface of a glass substrate, the wiring terminals are made of a conductive oxide film or a conductive nitride film, or at least Corrosion of the terminals can be prevented by forming a conductive oxide film or a conductive nitride film on one layer of the metal film and forming the stacked film using the same mask.

【0030】また、従来よりも可視光透過率は低いが、
抵抗の低い導電性酸化膜もしくは窒化膜を用いることが
できるため、端子抵抗を低減できる。
Although the visible light transmittance is lower than that of the conventional one,
Since a conductive oxide film or nitride film having low resistance can be used, the terminal resistance can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した走査電極配線端子断面図。FIG. 1 is a sectional view of a scanning electrode wiring terminal to which the present invention is applied.

【図2】ITOの膜厚と、可視光の透過率またはシート
抵抗の関係を示した説明図。
FIG. 2 is an explanatory diagram showing the relationship between the film thickness of ITO and the transmittance of visible light or sheet resistance.

【図3】本発明を適用したアクティブマトリクス基板を
示した平面図。
FIG. 3 is a plan view showing an active matrix substrate to which the present invention is applied.

【図4】本発明の実施例1の製造工程の薄膜トランジス
タを示した断面図。
FIG. 4 is a cross-sectional view showing the thin film transistor in the manufacturing process of the first embodiment of the present invention.

【図5】本発明の実施例1の製造工程の薄膜トランジス
タを示した断面図。
FIG. 5 is a cross-sectional view showing the thin film transistor in the manufacturing process of the first embodiment of the present invention.

【図6】本発明の実施例1の製造工程の薄膜トランジス
タを示した断面図。
FIG. 6 is a cross-sectional view showing the thin film transistor in the manufacturing process of the first embodiment of the present invention.

【図7】本発明の実施例1の製造工程の薄膜トランジス
タを示した断面図。
FIG. 7 is a cross-sectional view showing the thin film transistor in the manufacturing process of Embodiment 1 of the present invention.

【図8】本発明の実施例1の製造工程の走査電極配線端
子を示した断面図。
FIG. 8 is a cross-sectional view showing scan electrode wiring terminals in the manufacturing process of the first embodiment of the present invention.

【図9】本発明の実施例1の製造工程の走査電極配線端
子を示した断面図。
FIG. 9 is a cross-sectional view showing the scan electrode wiring terminal in the manufacturing process of the first embodiment of the present invention.

【図10】本発明の実施例1の製造工程の走査電極配線
端子を示した断面図。
FIG. 10 is a sectional view showing scan electrode wiring terminals in the manufacturing process of the first embodiment of the present invention.

【図11】本発明の実施例1の製造工程の走査電極配線
端子を示した断面図。
FIG. 11 is a cross-sectional view showing the scan electrode wiring terminal in the manufacturing process of the first embodiment of the present invention.

【図12】本発明の実施例1の製造工程の画像信号電極
配線端子および対向電極配線端子を示した断面図。
FIG. 12 is a sectional view showing the image signal electrode wiring terminal and the counter electrode wiring terminal in the manufacturing process of the first embodiment of the present invention.

【図13】本発明の実施例2の走査電極配線端子を示し
た断面図。
FIG. 13 is a sectional view showing a scan electrode wiring terminal according to a second embodiment of the present invention.

【図14】本発明の実施例2の画像信号電極配線端子お
よび対向電極配線端子を示した断面図。
FIG. 14 is a sectional view showing an image signal electrode wiring terminal and a counter electrode wiring terminal according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス基板、2…走査電極配線、3…ゲート絶縁
膜、4…a−Si層、5…n+a−Si層、6…画像信
号電極配線、7…ソース電極、8…対向電極配線、9…
絶縁保護膜、10…走査電極配線端子、11…画像信号
電極配線端子、12…コンタクトホール、13…IT
O、14…Cr。
DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Scan electrode wiring, 3 ... Gate insulating film, 4 ... a-Si layer, 5 ... n + a-Si layer, 6 ... Image signal electrode wiring, 7 ... Source electrode, 8 ... Counter electrode wiring, 9 …
Insulating protective film, 10 ... Scan electrode wiring terminal, 11 ... Image signal electrode wiring terminal, 12 ... Contact hole, 13 ... IT
O, 14 ... Cr.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】一対の基板間に挟持された液晶分子に印加
される駆動用電圧が基板に平行な成分を持ち、かつ片方
の基板上に複数の画像信号電極配線と非線形素子及び対
向電極配線を備えた液晶表示装置において、前記基板上
の各配線端子が導電性酸化膜を用いて形成されることを
特徴とする液晶表示装置。
1. A driving voltage applied to liquid crystal molecules sandwiched between a pair of substrates has a component parallel to the substrates, and a plurality of image signal electrode wirings, non-linear elements and counter electrode wirings are provided on one substrate. A liquid crystal display device comprising: a liquid crystal display device, wherein each wiring terminal on the substrate is formed using a conductive oxide film.
【請求項2】一対の基板間に挟持された液晶分子に印加
される駆動用電圧が基板に平行な成分を持ち、かつ片方
の基板上に複数の画像信号電極配線と非線形素子及び対
向電極配線を備えた液晶表示装置において、前記基板上
の各配線端子が少なくとも一層の導電膜の上に導電性酸
化膜を積層して同一マスクを用いて加工された積層膜か
ら形成されることを特徴とする液晶表示装置。
2. A driving voltage applied to liquid crystal molecules sandwiched between a pair of substrates has a component parallel to the substrates, and a plurality of image signal electrode wirings, non-linear elements and counter electrode wirings are provided on one substrate. In the liquid crystal display device including the above, each wiring terminal on the substrate is formed from a laminated film obtained by laminating a conductive oxide film on at least one conductive film and processing the same using the same mask. Liquid crystal display device.
【請求項3】一対の基板間に挟持された液晶分子に印加
される駆動用電圧が基板に平行な成分を持ち、かつ片方
の基板上に複数の画像信号電極配線と非線形素子及び対
向電極配線を備えた液晶表示装置において、前記基板上
の各配線端子が導電性窒化膜を用いて形成されることを
特徴とする液晶表示装置。
3. A driving voltage applied to liquid crystal molecules sandwiched between a pair of substrates has a component parallel to the substrates, and a plurality of image signal electrode wirings, non-linear elements and counter electrode wirings are provided on one substrate. A liquid crystal display device including: a liquid crystal display device, wherein each wiring terminal on the substrate is formed using a conductive nitride film.
【請求項4】一対の基板間に挟持された液晶分子に印加
される駆動用電圧が基板に平行な成分を持ち、かつ片方
の基板上に複数の画像信号電極配線と非線形素子及び対
向電極配線を備えた液晶表示装置において、前記基板上
の各配線端子が少なくとも一層の導電膜の上に導電性窒
化膜を積層して同一マスクを用いて加工された積層膜か
ら形成されることを特徴とする液晶表示装置。
4. A driving voltage applied to liquid crystal molecules sandwiched between a pair of substrates has a component parallel to the substrates, and a plurality of image signal electrode wirings, non-linear elements and counter electrode wirings are provided on one substrate. In the liquid crystal display device including the above, each wiring terminal on the substrate is formed from a laminated film obtained by laminating a conductive nitride film on at least one conductive film and processing the same using the same mask. Liquid crystal display device.
【請求項5】請求項1,2,3または4において、各配
線の端子部と配線部は別工程で製作されものである液晶
表示装置。
5. The liquid crystal display device according to claim 1, 2, 3 or 4, wherein the terminal portion of each wiring and the wiring portion are manufactured in different steps.
【請求項6】請求項1,2,3,4または5において、
各配線端子の少なくとも側面が、絶縁物,酸化物または
窒化物のうち少なくとも一つからなる膜により被覆され
ている液晶表示装置。
6. The method according to claim 1, 2, 3, 4 or 5.
A liquid crystal display device in which at least a side surface of each wiring terminal is covered with a film made of at least one of an insulator, an oxide, and a nitride.
【請求項7】請求項6において、前記端子を被覆する前
記絶縁膜の上面には、下層の導電性の膜と電気的に接続
するためのコンタクトホールが設けられている液晶表示
装置。
7. The liquid crystal display device according to claim 6, wherein a contact hole for electrically connecting to a lower conductive film is provided on an upper surface of the insulating film covering the terminal.
【請求項8】一対の基板間に挟持された液晶分子に印加
される駆動用電圧が基板に平行な成分を持ち、片方の基
板上に複数の画像信号電極配線と非線形素子及び対向電
極配線を備えた液晶表示装置の製造方法において、以下
の工程を含むことを特徴とする液晶表示装置の製造方
法。 画像信号電極配線と対向電極配線の各配線端子が形
成された基板上に、絶縁膜,酸化膜及び窒化膜のうち少
なくとも一つを堆積する工程。 前記膜を、前記各端子の少なくとも側面を被覆し、
上面の一部が開口したパターンに形成する工程。
8. A driving voltage applied to liquid crystal molecules sandwiched between a pair of substrates has a component parallel to the substrates, and a plurality of image signal electrode wirings, non-linear elements and counter electrode wirings are provided on one substrate. A method of manufacturing a liquid crystal display device, comprising the following steps. A step of depositing at least one of an insulating film, an oxide film, and a nitride film on the substrate on which the wiring terminals of the image signal electrode wiring and the counter electrode wiring are formed. The film covers at least the side surface of each of the terminals,
A step of forming a pattern in which a part of the upper surface is opened.
【請求項9】請求項1,2,5,6,7または8におい
て、前記導電性酸化膜の可視光に対する透過率が85%
未満である液晶表示装置。
9. The transmittance for visible light of the conductive oxide film according to claim 1, 2, 5, 6, 7 or 8, is 85%.
Liquid crystal display device which is less than.
【請求項10】請求項1,2,5,6,7,8または9
において、前記導電性酸化膜が酸化インジウム,酸化ス
ズ,酸化亜鉛,Indium-Tin-Oxide,酸化チタン,酸化ジ
ルコニウム,酸化モリブデンのうちの少なくとも一つか
らなる液晶表示装置。
10. Claims 1, 2, 5, 6, 7, 8 or 9
3. The liquid crystal display device according to, wherein the conductive oxide film is at least one of indium oxide, tin oxide, zinc oxide, Indium-Tin-Oxide, titanium oxide, zirconium oxide, and molybdenum oxide.
【請求項11】請求項3,4,5,6,7または8にお
いて、前記導電性窒化膜がTa,Cr,Mo,Nb,
V,Hf,Zrのうちの少なくとも一つを母材とする窒
化物からなる液晶表示装置。
11. The conductive nitride film according to claim 3, 4, 5, 6, 7 or 8, wherein Ta, Cr, Mo, Nb,
A liquid crystal display device comprising a nitride containing at least one of V, Hf, and Zr as a base material.
JP27026593A 1993-10-28 1993-10-28 Liquid crystal display device and its production Pending JPH07120789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27026593A JPH07120789A (en) 1993-10-28 1993-10-28 Liquid crystal display device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27026593A JPH07120789A (en) 1993-10-28 1993-10-28 Liquid crystal display device and its production

Publications (1)

Publication Number Publication Date
JPH07120789A true JPH07120789A (en) 1995-05-12

Family

ID=17483848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27026593A Pending JPH07120789A (en) 1993-10-28 1993-10-28 Liquid crystal display device and its production

Country Status (1)

Country Link
JP (1) JPH07120789A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161152A (en) * 1996-11-29 1998-06-19 Seiko Epson Corp Liquid crystal pannel substrate, liquid crystal pannel using the same and projection-type display device
JPH10293321A (en) * 1997-04-17 1998-11-04 Mitsubishi Electric Corp Liquid crystal display and its manufacture
US6043859A (en) * 1996-11-28 2000-03-28 Nec Corporation Active matrix base with reliable terminal connection for liquid crystal display device
JP2001242483A (en) * 2000-02-25 2001-09-07 Hitachi Ltd Liquid crystal display device and its wiring structure
KR100336890B1 (en) * 1998-12-15 2003-06-19 주식회사 현대 디스플레이 테크놀로지 Manufacturing Method of Thin Film Transistor Liquid Crystal Display Device
JP2004126597A (en) * 2003-10-06 2004-04-22 Seiko Epson Corp Substrate for liquid crystal panel and liquid crystal panel using the same and projection type display
JP2005159303A (en) * 2003-11-25 2005-06-16 Samsung Sdi Co Ltd Thin film transistor, its manufacturing method, and planar display device using it
US7317206B2 (en) 2003-03-12 2008-01-08 Samsung Sdi Co., Ltd. Conductive elements for thin film transistors used in a flat panel display
JP2008090310A (en) * 1999-03-16 2008-04-17 Lg Philips Lcd Co Ltd Method of manufacturing thin film transistor substrate
JP2009020199A (en) * 2007-07-10 2009-01-29 Mitsubishi Electric Corp Display panel and method of manufacturing the same
US8062937B2 (en) 2006-07-28 2011-11-22 Samsung Electronics Co., Ltd. Thin-film transistor substrate, method of manufacturing the same and display panel having the same
JP2013258419A (en) * 2006-04-28 2013-12-26 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2014130358A (en) * 2014-01-27 2014-07-10 Semiconductor Energy Lab Co Ltd Display device
US9059045B2 (en) 2000-03-08 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043859A (en) * 1996-11-28 2000-03-28 Nec Corporation Active matrix base with reliable terminal connection for liquid crystal display device
JPH10161152A (en) * 1996-11-29 1998-06-19 Seiko Epson Corp Liquid crystal pannel substrate, liquid crystal pannel using the same and projection-type display device
JPH10293321A (en) * 1997-04-17 1998-11-04 Mitsubishi Electric Corp Liquid crystal display and its manufacture
KR100336890B1 (en) * 1998-12-15 2003-06-19 주식회사 현대 디스플레이 테크놀로지 Manufacturing Method of Thin Film Transistor Liquid Crystal Display Device
JP4709816B2 (en) * 1999-03-16 2011-06-29 エルジー ディスプレイ カンパニー リミテッド Method for manufacturing thin film transistor substrate
JP2008090310A (en) * 1999-03-16 2008-04-17 Lg Philips Lcd Co Ltd Method of manufacturing thin film transistor substrate
JP2001242483A (en) * 2000-02-25 2001-09-07 Hitachi Ltd Liquid crystal display device and its wiring structure
US9786687B2 (en) 2000-03-08 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9368514B2 (en) 2000-03-08 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9059045B2 (en) 2000-03-08 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7317206B2 (en) 2003-03-12 2008-01-08 Samsung Sdi Co., Ltd. Conductive elements for thin film transistors used in a flat panel display
JP2004126597A (en) * 2003-10-06 2004-04-22 Seiko Epson Corp Substrate for liquid crystal panel and liquid crystal panel using the same and projection type display
US7842563B2 (en) 2003-11-25 2010-11-30 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, and flat panel display using thin film transistor
JP2005159303A (en) * 2003-11-25 2005-06-16 Samsung Sdi Co Ltd Thin film transistor, its manufacturing method, and planar display device using it
JP2013258419A (en) * 2006-04-28 2013-12-26 Semiconductor Energy Lab Co Ltd Semiconductor device
US8900970B2 (en) 2006-04-28 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using a flexible substrate
US8062937B2 (en) 2006-07-28 2011-11-22 Samsung Electronics Co., Ltd. Thin-film transistor substrate, method of manufacturing the same and display panel having the same
US8258516B2 (en) 2006-07-28 2012-09-04 Samsung Electronics Co., Ltd. Thin-film transistor substrate, method of manufacturing the same and display panel having the same
US7847910B2 (en) 2007-07-10 2010-12-07 Mitsubishi Electric Corporation Display panel and method of manufacturing the same
JP2009020199A (en) * 2007-07-10 2009-01-29 Mitsubishi Electric Corp Display panel and method of manufacturing the same
JP2014130358A (en) * 2014-01-27 2014-07-10 Semiconductor Energy Lab Co Ltd Display device

Similar Documents

Publication Publication Date Title
JP4354542B2 (en) Liquid crystal display device and manufacturing method thereof
KR100698950B1 (en) Manufacturing method of thin film transistor array substrate
US6480255B2 (en) Substrate of LCD device having external terminals covered with protective film and manufacturing method thereof
JP3119228B2 (en) Liquid crystal display panel and method of manufacturing the same
US6859252B2 (en) Active matrix substrate and manufacturing method thereof
JP2000089255A (en) Liquid crystal display device having high aperture ratio and high transmittance and its production
JPH07120789A (en) Liquid crystal display device and its production
US20030193639A1 (en) Liquid crystal display device and method of manufacturing the same
JP4166300B2 (en) Manufacturing method of liquid crystal display device
JP4170110B2 (en) Liquid crystal display device and manufacturing method thereof
JPH06250210A (en) Liquid crystal display device and its production
JPH04280231A (en) Thin film transistor array substrate and manufacture thereof
KR100632216B1 (en) Array substrate for liquid crystal display device and manufacturing method thereof
JP4072015B2 (en) LIQUID CRYSTAL DISPLAY DEVICE SUBSTRATE, ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE EQUIPPED WITH THE SAME
JPH06281956A (en) Active matrix wiring board
JPH05323375A (en) Liquid crystal display device
JP3169322B2 (en) Active matrix substrate and manufacturing method thereof
KR100368849B1 (en) Display
JPH08262491A (en) Liquid crystal display element and its production
JPH0990406A (en) Liquid crystal display device
JP3802092B2 (en) Liquid crystal display
JPH05265039A (en) Liquid crystal display device
JP2690404B2 (en) Active matrix substrate
JPH03212621A (en) Liquid crystal display device
JPH0618928A (en) Active matrix substrate