JPH07120072A - Solar light converter - Google Patents

Solar light converter

Info

Publication number
JPH07120072A
JPH07120072A JP6169683A JP16968394A JPH07120072A JP H07120072 A JPH07120072 A JP H07120072A JP 6169683 A JP6169683 A JP 6169683A JP 16968394 A JP16968394 A JP 16968394A JP H07120072 A JPH07120072 A JP H07120072A
Authority
JP
Japan
Prior art keywords
heat
light
conversion system
solar
working medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6169683A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Tsuji
信 義 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUYOSHI KK
Original Assignee
MARUYOSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUYOSHI KK filed Critical MARUYOSHI KK
Priority to JP6169683A priority Critical patent/JPH07120072A/en
Publication of JPH07120072A publication Critical patent/JPH07120072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To perform a thin solar light converter which efficiently convert a light of energy of a wide spectrum of visible light and infrared ray into heat by condensing the light and converting it. CONSTITUTION:The solar light converter comprises a photoelectric conversion system for photoelectrically converting a solar light and a photothermal conversion system for converting the light into heat, wherein the photoelectric conversion system has condensing means having a transparent lens 1 for condensing and transmitting the light, and a solar cell layer 3 formed of a p-n junction formed between transparent electrodes to generate in response to an incident light amount. The photothermal conversion system has a heat receiver for applying heat received from the light passed through the photoelectric system to an operating medium to be expanded, a drive pump and a circulating pump having a capacity difference, a circulation system of the medium containing a heat dissipating unit for deriving heat from the medium expanded by the receiver 4 to be condensed, and a generator connected to the drive pump and the circulating pump to generate in response to an incident light amount by the circulation of the medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽光エネルギの変換
装置に係り、とくに太陽光を電気変換するとともに熱を
取り出すものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for converting solar energy, and more particularly to converting sunlight into electricity and extracting heat.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】シリ
コン単結晶やアモルファス・シリコン等のpn接合によ
る半導体セルは、太陽エネルギを直接電気エネルギに変
換できるという利点があり、太陽電池として汎用されて
いる。
2. Description of the Related Art A semiconductor cell having a pn junction such as silicon single crystal or amorphous silicon has the advantage that it can directly convert solar energy into electric energy and is widely used as a solar cell. .

【0003】一般の太陽電池の変換効率は、シリコン単
結晶で15%、アモルファス・シリコンでは10%など
であり、クリーンなソーラー・システムとして、電子産
業分野から宇宙産業分野まで電力源としてそれなりに利
用されている。
The conversion efficiency of a general solar cell is 15% for silicon single crystal and 10% for amorphous silicon, and it can be used as a power source from the electronic industry field to the space industry field as a clean solar system. Has been done.

【0004】しかし、さらに変換効率を高めようとして
も、太陽光のスペクトルが0.3ミクロンから数ミクロ
ンと広域に分布しているため、吸収できない長波長フォ
トン、利用されない短波長フォトン、禁止帯幅と開放電
圧の差、などの損失因子で約75%のエネルギが失わ
れ、単純に高い変換効率を期待することは難しい。
However, even if an attempt is made to further improve the conversion efficiency, the long-wavelength photon that cannot be absorbed, the short-wavelength photon that is not used, and the forbidden band width because the spectrum of sunlight is widely distributed from 0.3 to several microns. About 75% of energy is lost due to loss factors such as the difference between the open circuit voltage and the open circuit voltage, and it is difficult to simply expect high conversion efficiency.

【0005】このように低変換効率の太陽電池を用いて
構成したソーラー・システムを工業用、商業用、住宅用
などに適用するとき、大きな電力を得るためには、広い
面積に多数の太陽電池の素子を配置する必要がある。
When a solar system constructed by using solar cells having low conversion efficiency is applied to industrial, commercial, residential, etc. purposes, in order to obtain a large amount of electric power, a large number of solar cells are spread over a large area. It is necessary to arrange the element of.

【0006】しかし、太陽電池を用いて発電すると、商
用電源の電力料金に比べてはるかにコスト高になる問題
がある。
[0006] However, there is a problem that the power generation using the solar cell is much more expensive than the power charge of the commercial power source.

【0007】この改善策として、太陽光による発電と太
陽熱の集熱とを行う装置が提供されている。これは、真
空管の内部にアモルファス・シリコン集積型太陽電池を
配するとともに、この電池の背後に太陽熱集熱管を配
し、所定面積の領域への入射光から太陽光による発電と
太陽熱の集熱とを行うハイブリッド・パネルとして構成
される。そして、このハイブリッド・パネルを建物に適
用するには、外装材のように構成すると都合がよい。
As a measure for improving this, there is provided a device for generating electricity by sunlight and collecting solar heat. This is because an amorphous silicon integrated solar cell is placed inside the vacuum tube, and a solar heat collector tube is placed behind this cell to generate electricity from the incident light to the area of a predetermined area and collect solar heat. It is configured as a hybrid panel that does. In order to apply this hybrid panel to a building, it is convenient to construct it like an exterior material.

【0008】しかし、外装材とするにも、集積型太陽電
池の生産コストは高く、従来の真空管型の構造を建物に
適用し易くするために、外装材などの板材として構成す
るまでには様々な問題がある。しかも、集熱温度も低い
ためヒートポンプ等で加温して熱エネルギを利用するこ
とになる。
However, even if it is used as an exterior material, the production cost of the integrated solar cell is high, and in order to make it easy to apply the conventional vacuum tube type structure to a building, there are various ways to form it as a plate material such as an exterior material. There is a problem. Moreover, since the heat collecting temperature is low, the heat energy is used by heating with a heat pump or the like.

【0009】本発明は上述の点を考慮してなされたもの
で、広域スペクトルを持つ太陽光を高効率で電気に変換
し且つ熱としても取り出すことができる薄型の太陽光変
換装置を提供することを目的とする。
The present invention has been made in consideration of the above points, and provides a thin solar conversion device capable of converting sunlight having a wide spectrum into electricity with high efficiency and extracting it as heat. With the goal.

【0010】[0010]

【課題を解決するための手段】上記目的達成のため、本
発明は、太陽光の広域スペクトルのエネルギを得て光電
変換する光電変換系および光熱変換する光熱変換系を有
する太陽光変換装置において、前記光電変換系は、太陽
光を集光透過させる透明レンズにより構成される集光手
段と、透明電極間に形成されたpn接合により構成さ
れ、前記集光手段を介して太陽光が与えられ、入射光量
に応じて発電する太陽電池層とをそなえ、また前記光熱
変換系は、前記光電変換系を通過した光から受領した熱
を作動媒体に与えて膨張させる熱受領器、互いに容量差
のある駆動ポンプおよび循環ポンプ、ならびに前記熱受
領器により膨張した前記作動媒体から熱を奪って凝縮さ
せる熱放出器を含んだ作動媒体の循環系と、前記駆動ポ
ンプおよび循環ポンプに連結され、前記作動媒体の循環
動作により入射光量に応じて発電する発電機と、をそな
えたことを特徴とする太陽光変換装置、を提供するもの
である。
To achieve the above object, the present invention provides a solar light conversion device having a photoelectric conversion system for photoelectrically converting energy of a wide spectrum of sunlight and a photothermal conversion system for photothermal conversion, The photoelectric conversion system is composed of a condensing unit configured by a transparent lens that condenses and transmits sunlight, and a pn junction formed between transparent electrodes, and the sunlight is given through the condensing unit, A heat receiver that has a solar cell layer that generates power according to the amount of incident light, and that the photothermal conversion system applies heat received from the light that has passed through the photoelectric conversion system to a working medium to expand it, and has a capacity difference from each other. A working medium circulation system including a driving pump and a circulation pump, and a heat radiating unit that condenses heat by condensing the working medium expanded by the heat receiver, and the driving pump and the circulation pump. Is coupled to, and provides a photovoltaic conversion device, characterized in that is provided with a, a generator for power generation in accordance with the amount of incident light by the circulation operation of the working medium.

【0011】[0011]

【作用】光電変換系では、集光手段の透明レンズによっ
て集光して透明電極間に形成されたpn接合に与える。
これにより、太陽電池層は可視光の光量に対応した発電
を行う。光熱変換系では、循環系で熱受領器および熱放
出器と組み合わされた容量差のある駆動ポンプおよび循
環ポンプの作用により、光電変換系を通過した赤外光の
熱により作動媒体が膨張し、次いで圧縮を伴って循環
し、この循環作用によって両ポンプに連結された発電機
が駆動されることにより、赤外光の光量に応じた発電を
行う。
In the photoelectric conversion system, the light is condensed by the transparent lens of the light condensing means and given to the pn junction formed between the transparent electrodes.
As a result, the solar cell layer generates electricity according to the amount of visible light. In the photothermal conversion system, the working medium expands due to the heat of the infrared light that has passed through the photoelectric conversion system due to the action of the drive pump and the circulation pump with the capacity difference combined with the heat receiver and the heat emitter in the circulation system, Then, it circulates with compression, and the generator connected to both pumps is driven by this circulation action to generate power according to the amount of infrared light.

【0012】[0012]

【発明の効果】本発明では、パネルの変換系が可視光と
赤外光の広域スペクトルのエネルギを高効率で光電変換
および光熱変換できる。しかも、従来のこの種のパネル
に比べ強度に優れ、製造コストも安価で、一体化されて
いることやレンズ面に光アート性を持たせ得るため、屋
根材や外壁材などに適用して景観のよい建築物を可能に
するという利点もある。また、熱放出器が空冷方式でも
利用できるため、移動体たとえば車両や船舶などにも適
用できる。
According to the present invention, the conversion system of the panel can perform photoelectric conversion and photothermal conversion of energy in a wide spectrum of visible light and infrared light with high efficiency. Moreover, it is superior in strength to conventional panels of this type, is inexpensive to manufacture, and because it can be integrated and has optical artistic properties on the lens surface, it can be applied to roofing materials, outer wall materials, etc. It also has the advantage of enabling good buildings. Further, since the heat radiator can be used in the air cooling system, it can be applied to a moving body such as a vehicle or a ship.

【0013】[0013]

【実施例】図1は、本発明の一実施例の断面図であっ
て、この実施例は全体構造がパネル状であって、太陽光
を電力に変換する光電変換系と、この光電変換系を透過
した太陽光から熱を取り出す光熱変換系とをそなえる。
FIG. 1 is a cross-sectional view of an embodiment of the present invention, which has a panel-like overall structure and a photoelectric conversion system for converting sunlight into electric power, and this photoelectric conversion system. It is equipped with a photothermal conversion system that extracts heat from sunlight that has passed through.

【0014】光電変換系は、図1に示すように、3層タ
ンデム構成された太陽電池としての構成となっている。
また、光熱変換系は図2に示すように、光電変換系を透
過した太陽光を熱変換し、この熱により作動媒体を循環
させる構成を有する。
As shown in FIG. 1, the photoelectric conversion system is a solar cell having a three-layer tandem structure.
Further, the photothermal conversion system has a configuration in which the sunlight that has passed through the photoelectric conversion system is thermally converted and the working medium is circulated by this heat, as shown in FIG.

【0015】この光電および光熱変換系は、パネル状に
構成され、建物の屋根材として利用される。たとえばパ
ネル1枚の面積は、4800cm2 程度に構成され設置
される。そして、表層にはガラス部分が配され、このガ
ラス部分は直径が0.5ないし1cm程度の凸面レンズ
を蜂の巣状に敷き詰めたように構成されている。
This photoelectric and photothermal conversion system is constructed in the shape of a panel and is used as a roof material for buildings. For example, one panel has an area of about 4800 cm2 and is installed. Then, a glass portion is arranged on the surface layer, and this glass portion is configured such that convex lenses having a diameter of about 0.5 to 1 cm are spread like a honeycomb.

【0016】このようなガラス部分の構成により、透明
レンズ体1が形成され、50°程度までの入射角の太陽
光を集光し、太陽電池面に対して常時垂直またはほぼ垂
直に入射し得るように構成されている。
The transparent lens body 1 is formed by such a structure of the glass portion, and sunlight having an incident angle of up to about 50 ° can be condensed to be incident on the surface of the solar cell always or almost vertically. Is configured.

【0017】このパネルの製造工程および構成につき、
図1および図3を参照して説明する。図3に示すよう
に、球状レンズの集合体である透明レンズ体1の裏面
に、太陽電池層3を配する。上部の透明電極2を基板と
して、ポリマー(EP)層に電極線を介して、CVDに
より酸化スズ(SnO2 )膜が形成され構成される。透
明電極2には、モノシラン(SiH4 )あるいはジシラ
ン(Si2 H6 )ガスと不純物ガス(p型形成にはジボ
ランB2 H6 、n型形成にはフォスフィンPH3 )とを
導入し、RF電界を印加して連続分離プラズマCVDを
行うことによりpin型半導体構造層の3層を順次積層
形成する。
Regarding the manufacturing process and structure of this panel,
Description will be made with reference to FIGS. 1 and 3. As shown in FIG. 3, the solar cell layer 3 is arranged on the back surface of the transparent lens body 1 which is an assembly of spherical lenses. A tin oxide (SnO2) film is formed by CVD on the polymer (EP) layer through electrode lines using the upper transparent electrode 2 as a substrate. A monosilane (SiH4) or disilane (Si2 H6) gas and an impurity gas (diborane B2 H6 for p-type formation, phosphine PH3 for n-type formation) are introduced into the transparent electrode 2, and an RF electric field is applied to continue the electrode. By performing separation plasma CVD, three layers of the pin-type semiconductor structure layer are sequentially formed.

【0018】そしてこの後、酸化スズ(SnO2 )膜を
形成すると、太陽電池層3が構成され、これを透明レン
ズ体1に接合すると、主として可視光に応じた発電を行
う可視光変換手段が構成される。
After that, when a tin oxide (SnO2) film is formed, a solar cell layer 3 is formed, and when this is bonded to the transparent lens body 1, a visible light converting means for mainly generating power according to visible light is formed. To be done.

【0019】太陽電池層3の下部層の酸化スズ(SnO
2 )膜には、電極線を介してポリマー(EP)層を形成
すると同時に、ポリマー(EP)で太陽電池層3を封止
し、このポリマー(EP)層の裏面にはブラック・クロ
ム等の選択吸収材が被覆されたメタル4を接合すること
により、主として赤外光を熱に変換する赤外光変換手段
が構成される。この結果、透明電極の低抵抗化が行われ
て電力損失が軽減される。
Tin oxide (SnO) in the lower layer of the solar cell layer 3
2) A polymer (EP) layer is formed on the film through an electrode wire, and at the same time, the solar cell layer 3 is sealed with the polymer (EP), and the back surface of the polymer (EP) layer is made of black chrome or the like. By joining the metal 4 coated with the selective absorbing material, an infrared light converting means mainly for converting infrared light into heat is configured. As a result, the resistance of the transparent electrode is reduced and the power loss is reduced.

【0020】pin型半導体構造のi層には、高温集熱
の場合は上部層に炭化シリコン膜等を形成するpin型
半導体構造を1層だけ用い、また中・低温集熱の場合は
中間・下部層にゲルマニウム、アモルファスシリコンな
どの膜を形成するpin/pin型半導体構造の2層、
あるいはpin/pin/pin型半導体構造の3層を
採用すると、光選択吸収膜として変換効率のよい可視光
変換手段が実現できる。
For the i-layer of the pin-type semiconductor structure, only one layer of the pin-type semiconductor structure for forming a silicon carbide film on the upper layer is used in the case of high-temperature heat collection, and in the case of medium-low temperature heat collection, an intermediate-layer structure is used. Two layers of a pin / pin type semiconductor structure in which a film of germanium, amorphous silicon or the like is formed in the lower layer,
Alternatively, when three layers of a pin / pin / pin type semiconductor structure are adopted, a visible light conversion means having a high conversion efficiency can be realized as a light selective absorption film.

【0021】太陽電池層3で発電される主として可視光
による電力は、変換回路14を介してパネルの裏側に設
けられた膨張媒体用集合パイプ内にある加熱器15のヒ
ータに接続されている。このため、未膨張媒体を加熱し
瞬時に膨張させることができ、駆動ポンプ10の始動を
容易にしている。
Electric power generated by the solar cell layer 3 mainly by visible light is connected through a conversion circuit 14 to a heater of a heater 15 in an expansion medium collecting pipe provided on the back side of the panel. For this reason, the unexpanded medium can be heated and instantly expanded, and the drive pump 10 can be started easily.

【0022】メタル4の裏面のヒートパイプ5は、メタ
ル4の球状面を直線的に結ぶように配列されている。つ
まり、直径2〜3mm程度のステンレス製のU字形ルー
プ状に屈曲されたヒートパイプ5が並行に並べられてい
る。そして、この複数列のヒートパイプ5は、全て同様
にU字形ループ状に形成された管の2端が、パネルの裏
側に設けられる凝縮媒体用配給パイプと膨張媒体用集合
パイプとに各別に接続されている。このため、メタル4
が赤外光による熱を伝導して、ヒートパイプ5内に封入
された作動媒体を加温する。このようにして赤外光変換
手段が効率よく変換動作を行う。
The heat pipe 5 on the back surface of the metal 4 is arranged so as to linearly connect the spherical surfaces of the metal 4. That is, the heat pipes 5 bent into a U-shaped loop made of stainless steel having a diameter of about 2 to 3 mm are arranged in parallel. In the heat pipes 5 in a plurality of rows, the two ends of the tubes, which are all formed in a U-shaped loop shape, are separately connected to the condensing medium supply pipe and the expansion medium collecting pipe provided on the back side of the panel. Has been done. For this reason, metal 4
Conducts heat from infrared light to heat the working medium enclosed in the heat pipe 5. In this way, the infrared light conversion means efficiently performs the conversion operation.

【0023】メタル4の裏面は、高分子繊維材と樹脂な
どとの混合物で覆われている。このため、パネルの軽量
化とともに断熱層6の固化形成がなされて衝撃に対する
強度が増す。建築物の屋根側の取り付け台に接続する固
定部に、周囲に備えた金属フレームでパネルが支持され
取り付けられている。
The back surface of the metal 4 is covered with a mixture of polymer fiber material and resin. Therefore, the weight of the panel is reduced and the heat insulating layer 6 is solidified to increase the strength against impact. A panel is supported and attached to a fixed portion connected to a mounting base on the roof side of a building by a metal frame provided around the panel.

【0024】そして、排液量が大きい駆動ポンプ10と
排液量が少ない循環ポンプ11とが、ロータ側面に複数
の可動翼が負荷による起伏方向が互いに逆になるよう
に、取り付けられている。これらポンプは、発電機12
とともに同一の回転軸で連結される。そして両ポンプ1
0、11および発電機12は、密閉容器内に組み込ま
れ、太陽光変換装置の裏面に取付けられる。
A drive pump 10 with a large amount of drainage and a circulation pump 11 with a small amount of drainage are attached to the rotor side face so that the undulating directions due to the loads are opposite to each other. These pumps are generators 12
Together with the same rotary shaft. And both pumps 1
0, 11 and the generator 12 are assembled in a closed container and attached to the back surface of the solar conversion device.

【0025】駆動ポンプ10の入液側は膨張媒体用集合
パイプに、また排液側は熱放出器20の入口側に接続さ
れ、循環ポンプ11の入液側は熱放出器20の出口側
に、また排液側は凝縮媒体用配給パイプに接続されてい
る。この構成により、膨張媒体の圧力は、駆動ポンプ1
0と循環ポンプ11との容量差によって生じる駆動ポン
プ10の回転トルクに基づき、駆動ポンプ10および循
環ポンプ11を作動させる。気密性をよくするには、ポ
ンプ、発電機などをユニット化するとよい。ポンプは、
ベーン式など種々のものを用いることができる。
The liquid inlet side of the drive pump 10 is connected to the expansion medium collecting pipe, the liquid outlet side is connected to the inlet side of the heat radiator 20, and the liquid inlet side of the circulation pump 11 is connected to the outlet side of the heat radiator 20. The drain side is connected to the condensing medium distribution pipe. With this configuration, the pressure of the expansion medium is controlled by the drive pump 1.
The drive pump 10 and the circulation pump 11 are operated based on the rotation torque of the drive pump 10 caused by the capacity difference between 0 and the circulation pump 11. To improve the airtightness, a pump, a generator, etc. may be unitized. Pump
Various types such as vane type can be used.

【0026】装置が未作動でも、リザーブタンク25内
には十分な気体を残留させる。この気体は作動媒体が気
化したものではなく、作動媒体の封入後に作動媒体が外
気温程度で凝縮できるように、ヘリウムなど低沸点媒体
を加圧残留させたものであり、作動媒体の膨張時にリザ
ーブタンク25内の残留気体の体積が変化することで駆
動ポンプの作動環境をつくる。図示されていないが、2
つのリザーブタンク間に、一方向弁を持った流通管を設
けて、媒体を適宜逆流させ循環する作動媒体量の自動調
節を行う。
A sufficient amount of gas remains in the reserve tank 25 even when the apparatus is not in operation. This gas is not a vaporized working medium, but is a low boiling point medium such as helium that remains under pressure so that the working medium can condense at around ambient temperature after it has been enclosed, and is reserved when the working medium expands. A change in the volume of residual gas in the tank 25 creates an operating environment for the drive pump. 2 not shown
A flow pipe with a one-way valve is installed between two reserve tanks to automatically reverse the flow of the medium and automatically adjust the amount of working medium circulated.

【0027】駆動ポンプ10の所要トルクは膨縮変化に
比例的であるから、駆動ポンプ10による作動媒体の循
環が加圧気体の膨縮変化に応じて行われる。これによ
り、ヒートパイプ5を流通する作動媒体によって行われ
る太陽電池の冷却が安定化する。
Since the required torque of the drive pump 10 is proportional to the expansion / contraction change, the working medium is circulated by the drive pump 10 according to the expansion / contraction change of the pressurized gas. Thereby, the cooling of the solar cell performed by the working medium flowing through the heat pipe 5 is stabilized.

【0028】この実施例のパネルは、透明レンズ体1、
透明電極2を含む太陽電池層3が接合されているので熱
損失が少ない。すなわち集光体と太陽電池の間に空間が
あると、この空間での光の散乱の結果、光の到達率が低
くなり、それに応じて太陽電池の発電量が減ることにな
るが、本発明ではその原因となる透明レンズと太陽電池
層との間の空間がないのである。
The panel of this embodiment has a transparent lens body 1,
Since the solar cell layer 3 including the transparent electrode 2 is joined, heat loss is small. That is, if there is a space between the concentrator and the solar cell, the light arrival rate becomes low as a result of the scattering of light in this space, and the amount of power generated by the solar cell decreases accordingly. Then, there is no space between the transparent lens and the solar cell layer that causes it.

【0029】図4は、本発明の他の実施例を示したもの
である。この実施例は、透明レンズ体1、太陽電池層
3、熱受領器、断熱層6を各々板状に形成したのち、そ
れらを接合して構成したものである。
FIG. 4 shows another embodiment of the present invention. In this embodiment, the transparent lens body 1, the solar cell layer 3, the heat receiver, and the heat insulating layer 6 are each formed into a plate shape and then joined together.

【0030】図5は、熱放出器20を水冷構造にしたも
のである。これにより冷却能力が高まる。この場合、熱
放出器20は、屋根側の取付け台と建築物との間隔を開
けて通風良好にして設置され、水の気化現象により膨張
媒体を冷却し凝縮させている。この凝縮のための熱を有
効利用するには、水を熱交換対象とすれば、放熱損失の
少ない熱放出器を設けて給湯などに利用する。
FIG. 5 shows the heat radiator 20 having a water cooling structure. This enhances the cooling capacity. In this case, the heat radiator 20 is installed with good ventilation by opening a space between the roof-side mount and the building, and cools and condenses the expansion medium by the vaporization phenomenon of water. In order to effectively use the heat for this condensation, if water is the object of heat exchange, a heat radiator with a small heat radiation loss is provided and used for hot water supply or the like.

【0031】図6は、本発明のさらに他の実施例を示し
たものである。この実施例では、コスト低減のために、
片面板ガラスによる凸レンズ体を用いて単層もしくは張
り合わせによる複層化を行っており、また硬質樹脂など
で放熱防止と軽量化を図ることもできる。
FIG. 6 shows still another embodiment of the present invention. In this embodiment, in order to reduce the cost,
The convex lens body made of single-sided glass is used to form a single layer or a multilayer structure by laminating, and it is also possible to prevent heat dissipation and reduce the weight by using a hard resin or the like.

【0032】そして、太陽電池層3の裏面にブラック・
クロムなどの選択吸収材8を被覆したヒートパイプ5と
メタル製の熱受領器4とを設ける。
On the back surface of the solar cell layer 3, black
A heat pipe 5 coated with a selective absorbing material 8 such as chromium and a heat receiver 4 made of metal are provided.

【0033】図7は、選択吸収材8による熱受領器4の
作動媒体への熱伝播の様子を示したものである。
FIG. 7 shows how heat is propagated to the working medium of the heat receiver 4 by the selective absorbing material 8.

【0034】図8は、図6の実施例に組み合わされる太
陽電池の構造を示したものである。この構造および製造
手順は次の通りである。
FIG. 8 shows the structure of a solar cell combined with the embodiment of FIG. The structure and manufacturing procedure are as follows.

【0035】上部透明電極2を形成するには、薄板状ま
たはフィルム状のポリマー(EP)に細線を網状に組ん
で構成した電極線を一部埋め込んで接合し、CVDによ
り透明電導膜(TCO)としての酸化錫膜を形成する。
To form the upper transparent electrode 2, a thin plate-shaped or film-shaped polymer (EP) is partially embedded with an electrode wire formed by assembling fine wires in a net shape and bonded, and a transparent conductive film (TCO) is formed by CVD. Forming a tin oxide film.

【0036】太陽電池層3の上部層を形成するには、透
明電極2を基板としてモノシラン・ガスまたはジシラン
・ガスと不純物ガスとしてのジボランを導入してRF電
界の作用下でp型アモルファス・シリコンを製膜する。
次いでi型炭化アモルファスシリコンを製膜しその後に
不純物ガスとしてのフォスフィンを導入しn型アモルフ
ァスシリコン膜を形成する。
To form the upper layer of the solar cell layer 3, monosilane gas or disilane gas and diborane as an impurity gas are introduced using the transparent electrode 2 as a substrate to introduce p-type amorphous silicon under the action of an RF electric field. To form a film.
Then, i-type amorphous silicon carbide is formed into a film, and then phosphine as an impurity gas is introduced to form an n-type amorphous silicon film.

【0037】太陽電池層3のうち、太陽電池層3の中間
層と下部層とを形成するには、i型層にアモルファス・
ゲルマニウムを用いるpin型層を製膜形成する。ま
た、下部透明電極2を形成するには、n型の膜裏面にT
COの酸化錫膜を成膜し、細線を網状に組んで構成した
電極線を配しポリマー(EP)で圧着すると同時に太陽
電池層3を封止する。
In order to form the intermediate layer and the lower layer of the solar cell layer 3 in the solar cell layer 3, an amorphous
A pin type layer using germanium is formed into a film. Further, in order to form the lower transparent electrode 2, a T-type film is formed on the back surface of the n-type film.
A tin oxide film of CO is formed, an electrode wire formed by assembling fine wires in a net shape is arranged, and the solar cell layer 3 is sealed at the same time as pressure bonding with a polymer (EP).

【0038】ポリマー層の裏面にブラック・クロムなど
の選択吸収材を被覆してヒートパイプを接合した、メタ
ル4を接合する。
The back surface of the polymer layer is covered with a selective absorbing material such as black chrome, and a heat pipe is joined thereto.

【0039】これら3層の構成は、高温集熱には、高温
域の温度特性がよい上部層のみによるシングル・セルと
し、中低温集熱には上層から波長順に光を選択吸収でき
るアモルファス・シリコンの特性を考慮し上部、中間2
層による構造または上部、中間、下部3層構造とする。
The structure of these three layers is a single cell consisting of only the upper layer having good temperature characteristics in the high temperature region for high temperature heat collection, and amorphous silicon capable of selectively absorbing light from the upper layer in the middle and low temperature heat collection. Considering the characteristics of the upper, middle 2
A layer structure or an upper, middle, and lower three-layer structure is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の断面構造を示した図。FIG. 1 is a diagram showing a cross-sectional structure of an embodiment of the present invention.

【図2】図1の実施例における作動媒体の循環構造を示
した概略説明図。
FIG. 2 is a schematic explanatory view showing a working medium circulation structure in the embodiment of FIG.

【図3】図1の実施例における太陽電池層の構造を示す
部分断面図。
FIG. 3 is a partial cross-sectional view showing the structure of a solar cell layer in the example of FIG.

【図4】本発明の他の実施例の断面構造を示した図。FIG. 4 is a diagram showing a cross-sectional structure of another embodiment of the present invention.

【図5】図4の実施例と組み合わされる作動媒体の循環
構造を示した概略説明図。
5 is a schematic explanatory view showing a working medium circulation structure combined with the embodiment of FIG. 4. FIG.

【図6】本発明のその他の実施例の断面構造を示した
図。
FIG. 6 is a diagram showing a sectional structure of another embodiment of the present invention.

【図7】図6の実施例における作動媒体の循環構造を示
した概略説明図。
FIG. 7 is a schematic explanatory view showing a circulating structure of a working medium in the embodiment of FIG.

【図8】図6の実施例における太陽電池層の構造を示す
部分断面図。
FIG. 8 is a partial cross-sectional view showing the structure of the solar cell layer in the example of FIG.

【符号の説明】[Explanation of symbols]

1 透明レンズ体 2 透明電極 3 太陽電池層 4 メタル 5 ヒートパイプ 6 断熱層 10 駆動ポンプ 11 循環ポンプ 12 発電機 14 変換回路 15 加熱器 20 熱放出器 25 リザーブタンク DESCRIPTION OF SYMBOLS 1 Transparent lens body 2 Transparent electrode 3 Solar cell layer 4 Metal 5 Heat pipe 6 Thermal insulation layer 10 Drive pump 11 Circulation pump 12 Generator 14 Conversion circuit 15 Heater 20 Heat emitter 25 Reserve tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F24J 2/42 H F28D 15/02 X G02B 27/00 H01L 31/042 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F24J 2/42 H F28D 15/02 X G02B 27/00 H01L 31/042

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】太陽光の広域スペクトルのエネルギを得て
光電変換する光電変換系および光熱変換する光熱変換系
を有する太陽光変換装置において、 前記光電変換系は、 太陽光を集光透過させる透明レンズにより構成される集
光手段と、 前記透明電極間に形成されたpn接合により構成され、
前記集光手段を介して太陽光が与えられ、入射光量に応
じて発電する太陽電池層とをそなえ、 また前記光熱変換系は、 前記光電変換系を通過した光から受領した熱を作動媒体
に与えて膨張させる熱受領器、互いに容量差のある駆動
ポンプおよび循環ポンプ、ならびに前記熱受領器により
膨張した前記作動媒体から熱を奪って凝縮させる熱放出
器を含んだ作動媒体の循環系と、 前記駆動ポンプおよび循環ポンプに連結され、前記作動
媒体の循環動作により入射光量に応じて発電する発電機
と、 をそなえたことを特徴とする太陽光変換装置。
1. A solar light conversion device having a photoelectric conversion system for photoelectrically converting energy in a broad spectrum of sunlight and a photothermal conversion system for photothermal conversion, wherein the photoelectric conversion system is transparent for collecting and transmitting sunlight. A condensing means composed of a lens, and a pn junction formed between the transparent electrodes,
Sunlight is given through the condensing means, and a solar cell layer that generates power according to the amount of incident light is provided, and the photothermal conversion system is the working medium that receives the heat received from the light that has passed through the photoelectric conversion system. A working medium circulation system including a heat receiver for giving expansion, a drive pump and a circulation pump having different capacities from each other, and a heat discharger for taking heat from the working medium expanded by the heat receiver to condense it; A solar power conversion device comprising: a generator connected to the drive pump and the circulation pump to generate power according to an amount of incident light by a circulating operation of the working medium.
【請求項2】請求項1記載の太陽光変換装置において、 前記光熱変換系が、太陽電池層の発電する電力が与えら
れるヒータを有し、このヒータの発生熱により前記作動
媒体を加熱する太陽光変換装置。
2. The solar conversion device according to claim 1, wherein the photothermal conversion system has a heater to which electric power generated by the solar cell layer is applied, and the heat generated by the heater heats the working medium. Light conversion device.
【請求項3】請求項1記載の太陽光変換装置において、 前記光電変換系における前記透明電極が、高分子層と導
電膜との間に電極線を配して形成された太陽光変換装
置。
3. The solar conversion device according to claim 1, wherein the transparent electrode in the photoelectric conversion system is formed by disposing an electrode wire between a polymer layer and a conductive film.
JP6169683A 1993-09-03 1994-07-21 Solar light converter Pending JPH07120072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6169683A JPH07120072A (en) 1993-09-03 1994-07-21 Solar light converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-253551 1993-09-03
JP25355193 1993-09-03
JP6169683A JPH07120072A (en) 1993-09-03 1994-07-21 Solar light converter

Publications (1)

Publication Number Publication Date
JPH07120072A true JPH07120072A (en) 1995-05-12

Family

ID=26492938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6169683A Pending JPH07120072A (en) 1993-09-03 1994-07-21 Solar light converter

Country Status (1)

Country Link
JP (1) JPH07120072A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062017A (en) * 1996-08-23 1998-03-06 Sekisui Chem Co Ltd Photoelectric-power generating-heat collecting hybrid panel, roof panel and roof unit provided with the photoelectric power generating-heat collecting hybrid panel, solar system and solar system building
KR100661046B1 (en) * 2004-11-10 2006-12-26 이상종 System for generating electricity and hot water using light beams
WO2008020462A1 (en) * 2006-08-16 2008-02-21 Maurizio De Nardis Solar roof tile with solar and photovoltaic production of hot water and electrical energy
WO2009114905A1 (en) * 2008-03-18 2009-09-24 Sotek Australia Pty Ltd Tile unit
DE102009038400A1 (en) * 2009-08-24 2011-03-03 Peter Faust Solar module has thermally insulating internal space, which is limited by radiation-permeable wall and laminar absorber element arranged inside thermally insulating internal space
JP2012094596A (en) * 2010-10-25 2012-05-17 Kanai Educational Institution Light condensing power generator
JP2013175746A (en) * 2006-03-18 2013-09-05 Solyndra Inc Elongated photovoltaic cells in casings
RU2617041C1 (en) * 2015-12-25 2017-04-19 Открытое акционерное общество "Нефтяная компания "Роснефть" Solar pv module with stationary concentrator (versions)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062017A (en) * 1996-08-23 1998-03-06 Sekisui Chem Co Ltd Photoelectric-power generating-heat collecting hybrid panel, roof panel and roof unit provided with the photoelectric power generating-heat collecting hybrid panel, solar system and solar system building
KR100661046B1 (en) * 2004-11-10 2006-12-26 이상종 System for generating electricity and hot water using light beams
JP2013175746A (en) * 2006-03-18 2013-09-05 Solyndra Inc Elongated photovoltaic cells in casings
US8742252B2 (en) 2006-03-18 2014-06-03 Solyndra, Llc Elongated photovoltaic cells in casings with a filling layer
WO2008020462A1 (en) * 2006-08-16 2008-02-21 Maurizio De Nardis Solar roof tile with solar and photovoltaic production of hot water and electrical energy
WO2009114905A1 (en) * 2008-03-18 2009-09-24 Sotek Australia Pty Ltd Tile unit
DE102009038400A1 (en) * 2009-08-24 2011-03-03 Peter Faust Solar module has thermally insulating internal space, which is limited by radiation-permeable wall and laminar absorber element arranged inside thermally insulating internal space
DE102009038400A8 (en) * 2009-08-24 2011-06-01 Peter Faust solar module
JP2012094596A (en) * 2010-10-25 2012-05-17 Kanai Educational Institution Light condensing power generator
RU2617041C1 (en) * 2015-12-25 2017-04-19 Открытое акционерное общество "Нефтяная компания "Роснефть" Solar pv module with stationary concentrator (versions)

Similar Documents

Publication Publication Date Title
Prakash Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water
US6374614B2 (en) Solar power generation and energy storage system
Tyagi et al. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology
CN1773190B (en) Solar energy thermoelectric co-supply system
CN102646742B (en) Plate heat tube type solar photovoltaic-photothermal composite heat collector and production process thereof
US20040055631A1 (en) Hybrid solar energy collector
US20090223550A1 (en) Roof tile or tiled solar thermal collector
WO1999010934A1 (en) A panel-shaped, hybrid photovoltaic/thermal device
CN101728996A (en) Composite power source device based on solar battery and thermobattery
JPH07120072A (en) Solar light converter
JP2001153470A (en) Solar heat power generating system
CN109945512A (en) A kind of efficient photovoltaic and photothermal integrated system
CN113241385B (en) Photovoltaic thermal-arrest cooling composite set
CN103262261A (en) Combined heat and power solar system
JPH09210472A (en) Solar energy collection panel and passive solar system
JP2786826B2 (en) Solar cell equipment
WO2018191757A1 (en) Combined heat and electricity solar collector with wide angle concentrator
JP2004317117A (en) Solar heat collector with solar power generation function
CN101442281B (en) Method and apparatus for using solar through photoelectric photo-thermal homobody synchronous transition
CN205481865U (en) Integrative device of solar thermal energy electricity
JP2001033107A (en) Solar energy converter, method of production and solar energy utilization system
Supekar et al. Solar PVT Technology and Its Commercial Applications: A Review
CN107388596A (en) A kind of tower surface heat dump tube panel of vacuum heat-preserving
Matsuoka et al. Design and evaluation of thermal-photovoltaic hybrid power generation module for more efficient use of solar energy
CN2529157Y (en) Device for using solar battery as heating collection device