JPH07108053B2 - Filter device - Google Patents

Filter device

Info

Publication number
JPH07108053B2
JPH07108053B2 JP62153943A JP15394387A JPH07108053B2 JP H07108053 B2 JPH07108053 B2 JP H07108053B2 JP 62153943 A JP62153943 A JP 62153943A JP 15394387 A JP15394387 A JP 15394387A JP H07108053 B2 JPH07108053 B2 JP H07108053B2
Authority
JP
Japan
Prior art keywords
signal
transformer
resonance
frequency
resonance circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62153943A
Other languages
Japanese (ja)
Other versions
JPS641427A (en
JPH011427A (en
Inventor
幸雄 井上
貞男 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP62153943A priority Critical patent/JPH07108053B2/en
Publication of JPS641427A publication Critical patent/JPS641427A/en
Publication of JPH011427A publication Critical patent/JPH011427A/en
Publication of JPH07108053B2 publication Critical patent/JPH07108053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、配電系統の交流信号に、負荷側(信号発生器
側)の状態,状況を示す異なる2種類の周波数信号を重
畳するフィルタ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a filter device that superimposes two kinds of different frequency signals indicating the state and status of a load side (signal generator side) on an AC signal of a distribution system. Regarding

[従来の技術] 一般に、配電系統においては、各負荷に事故や故障が発
生した場合、これらの事故,故障の発生箇所を集中的に
管理し、早急に事故,故障に対処することが必要であ
り、従来は負荷毎に信号発生器を受け、配電線とは別
に、各信号発生器と管理装置との間に信号線を敷設し、
この信号線により系統の各負荷側の状態,状況を示す信
号を管理装置に伝送している。
[Prior Art] Generally, in a power distribution system, when an accident or a failure occurs in each load, it is necessary to centrally manage the location of the accident or the failure and to promptly deal with the accident or the failure. Yes, conventionally, receiving a signal generator for each load, laying a signal line between each signal generator and the management device separately from the distribution line,
Through this signal line, signals indicating the state and status of each load side of the system are transmitted to the management device.

この場合、配電線の他に多数の信号線を必要とするた
め、敷設すべき信号線の数が多く、高価になるととも
に、敷設に手間を要する。
In this case, since a large number of signal lines are required in addition to the distribution line, the number of signal lines to be laid is large, which is expensive, and laying is troublesome.

そこで、いわゆる周波数シフト通信(FSK通信)による
配電線搬送方式の信号伝送が考えられ、これは異なる2
種類の周波数信号を論理“1",“0"にそれぞれ対応付け
し、両周波数信号を組み合せてコード化した信号を配電
線を介して前記管理装置に伝送するものである。
Therefore, so-called frequency shift communication (FSK communication) may be used for signal transmission by the distribution line carrier method, which is different.
The frequency signals of different types are respectively associated with logic "1" and "0", and a signal obtained by combining both frequency signals and encoding is transmitted to the management device via a distribution line.

そして、このFSK通信の信号伝送においては、配電系統
の商用の交流信号に両周波数信号を重畳するため、従来
より種々のフィルタ装置が考えられている。
In the signal transmission of this FSK communication, since both frequency signals are superimposed on the commercial AC signal of the distribution system, various filter devices have been conventionally considered.

この従来のフィルタ装置は第3図又は第4図に示すよう
に構成される。
This conventional filter device is constructed as shown in FIG. 3 or FIG.

そして、第3図において、1は商用の交流信号を供給す
る変電所等の商用電力源、2a,2bは電力源1と各負荷と
を接続する配電系統の1対の配電線、3は異なる2種類
の周波数信号を一定周期で択一的に発生する信号発生器
である。
In FIG. 3, 1 is a commercial power source such as a substation for supplying a commercial AC signal, 2a and 2b are a pair of distribution lines of a power distribution system that connects the power source 1 and each load, and 3 are different. It is a signal generator that selectively generates two types of frequency signals in a constant cycle.

4a,4bは2個のスイッチであり、一端が共に発生器3の
一端に接続され、図外の制御手段により、一方のスイッ
チ4a又は4bのオン時に他方のスイッチ4b又は4aがオフす
るように制御され、当該制御手段は、発生器3の発振周
波数の切り換えに応じて動作するようになっている。
4a and 4b are two switches, one ends of which are both connected to one end of the generator 3 so that when one switch 4a or 4b is turned on, the other switch 4b or 4a is turned off by a control means (not shown). The control means is controlled and operates according to the switching of the oscillation frequency of the generator 3.

5a,5bは一端がスイッチ4a,4bの他端それぞれに接続され
た2個の共振用コンデンサ、6a,6bは2個の共振用リア
クトルであり、一端がコンデンサ5a,5bの他端それぞれ
に接続され、他端が共に一方の配電線2aに接続されてい
る。
5a and 5b are two resonance capacitors each having one end connected to the other end of each of the switches 4a and 4b, and 6a and 6b are two resonance reactors each having one end connected to each of the other ends of the capacitors 5a and 5b. And the other ends are both connected to one distribution line 2a.

7aはコンデンサ5a及びリアクトル6aが形成する直列共振
回路、7bはコンデンサ5b及びリアクトル6bが形成する直
列共振回路7bである。
Reference numeral 7a is a series resonance circuit formed by the capacitor 5a and the reactor 6a, and 7b is a series resonance circuit 7b formed by the capacitor 5b and the reactor 6b.

なお、発生器3の他端は他方の配電線2bに接続されてい
る。
The other end of the generator 3 is connected to the other distribution line 2b.

つぎに、第4図のフィルタ装置はJaumann回路と呼ばれ
る回路構成に形成され、同図において、8は1次コイル
8a及び2次コイル8bを有する結合用トランスであり、1
次コイル8aの両端が信号発生器3の両端に接続されてい
る。9a,9bは一端が2次コイル8bの一端,他端それぞれ
に接続された2個の共振用コンデンサ、10a、10bは2個
の共振用リアクトルであり、一端がコンデンサ9a,9bの
他端それぞれに接続され、他端が共に一方の配電線2aに
接続されている。
Next, the filter device shown in FIG. 4 is formed into a circuit configuration called a Jaumann circuit, and in FIG. 4, 8 is a primary coil.
A coupling transformer having 8a and a secondary coil 8b.
Both ends of the next coil 8a are connected to both ends of the signal generator 3. 9a and 9b are two resonance capacitors, one end of which is connected to one end and the other end of the secondary coil 8b, and 10a and 10b are two resonance reactors, one end of which is the other end of the capacitors 9a and 9b, respectively. And the other ends thereof are both connected to one of the distribution lines 2a.

11aはコンデンサ9a及びリアクトル10aが形成する直列共
振回路,11bはコンデンサ9a及びリアクトル10bが形成す
る直列共振回路である。
Reference numeral 11a is a series resonance circuit formed by the capacitor 9a and the reactor 10a, and 11b is a series resonance circuit formed by the capacitor 9a and the reactor 10b.

なお、2次コイル8bは中間タップtが他方の配電線2bに
接続されている。
The secondary coil 8b has an intermediate tap t connected to the other distribution line 2b.

また、第3図,第4図の各容量及びインダクタンスは、
直列共振回路7a,11aの共振周波数がf1になり、直列共振
回路7b,11bの共振周波数がf2になるように、設定されて
いる。
In addition, the capacitances and the inductances in FIGS. 3 and 4 are
The resonance frequencies of the series resonance circuits 7a and 11a are set to f1, and the resonance frequencies of the series resonance circuits 7b and 11b are set to f2.

そして、第5図(a)に示す電力源1からの商用交流信
号の1周期(=T)の1/2が発生器3の発振周波数の切
り換えの周期になる場合、例えば同図(b)に示すよう
に、発生器3から周波数f1の周波数信号S1及び周波数f2
(<f1)の周波数信号S2がT/2時間ずつ順に出力される
ケースを考えると、第3図の装置では、前半のT/2時間
に、前記制御手段によりスイッチ4aがオン,スイッチ4b
がオフに制御され、後半のT/2時間に、前記制御手段に
より両スイッチ4aがオフ,スイッチ4bがオンに制御され
る。
When 1/2 of one cycle (= T) of the commercial AC signal from the power source 1 shown in FIG. 5 (a) becomes the cycle of switching the oscillation frequency of the generator 3, for example, FIG. As shown in, the frequency signal S1 of the frequency f1 and the frequency f2 from the generator 3
Considering the case where the frequency signal S2 of (<f1) is sequentially output for each T / 2 time, in the device of FIG. 3, the switch 4a is turned on and the switch 4b is turned on by the control means in the first half of T / 2 time.
Is turned off, and both switches 4a are turned off and the switch 4b is turned on by the control means in the latter half of T / 2.

そのため、前半のT/2時間の周波数信号S1は、共振周波
数f1の直列共振回路7aを介して前記商用交流信号に重畳
され、後半のT/2時間の周波数信号S2は、共振周波数f2
の直列共振回路7bを介して前記商用の交流信号に重畳さ
れ、この結果、第5図(c)に示すような波形の信号が
配電線2a,2bを介して伝送される。
Therefore, the frequency signal S1 of the first half T / 2 time is superimposed on the commercial AC signal via the series resonance circuit 7a of the resonance frequency f1, and the frequency signal S2 of the second half T / 2 time is the resonance frequency f2.
Is superimposed on the commercial AC signal via the series resonance circuit 7b, and as a result, a signal having a waveform as shown in FIG. 5C is transmitted via the distribution lines 2a and 2b.

一方、前記と同じケースで、第4図の装置では、発生器
3からのT/2の周期で切り換わる周波数信号S1,S2は、共
振周波数f1の直列共振回路11a,共振周波数f2の直列共振
回路11bそれぞれを介して前記商用の交流信号に重畳さ
れ、第5図(c)に示す波形の信号が配電線2a,2bを介
して伝送される。
On the other hand, in the same case as described above, in the device of FIG. 4, the frequency signals S1 and S2 that switch from the generator 3 at the cycle of T / 2 are the series resonance circuit 11a having the resonance frequency f1 and the series resonance circuit having the resonance frequency f2. A signal having a waveform shown in FIG. 5 (c) is transmitted via the distribution lines 2a and 2b by being superimposed on the commercial AC signal via each of the circuits 11b.

このとき、周波数f1の周波数信号S1を論理“1",周波数f
2の周波数信号S2を論理“0"に対応させておき、周波数
信号S1,S2を組み合わせることにより、所定のビット内
容の信号を伝送することができ、前記管理装置におい
て,伝送された信号のビット内容を復調して読み取るこ
とにより、送信側(各負荷側)の状態,状況を知ること
ができる。
At this time, the frequency signal S1 of frequency f1 is set to logic "1", frequency f
It is possible to transmit a signal having a predetermined bit content by combining the frequency signal S2 of 2 with a logic "0" and combining the frequency signals S1 and S2. In the management device, the bit of the transmitted signal can be transmitted. By demodulating and reading the contents, the state and status of the transmitting side (each load side) can be known.

例えば、T/2の一定時間毎に信号S1,S2,S1,S2,S2,S1を順
に発生して伝送すると、前記管理装置により“101001
“という内容の信号が受信される。
For example, when the signals S1, S2, S1, S2, S2, S1 are sequentially generated and transmitted at a constant time of T / 2, the management device displays “101001
A signal with the content of "is received.

[発明が解決しようとする課題] 前記第3図のフィルタ装置の場合、周波数信号S1,S2に
応じて制御手段によりスイッチ4a,4bをスイッチング制
御し、フィルタの選択(切り換え)をするため、周波数
信号S1,S2を直列共振回路7a,7bそれぞれを介して確実に
伝送できる反面、2個のスイッチ4a,4b及びこれらのス
イッチング制御用の制御手段を要し、しかも、両スイッ
チ4a,4bとして応答性の優れたものが必要となり、構成
が複雑で,高価になり、さらに、スイッチ4a,4bの切り
換えの際にじよう乱が発生してノイズが多くなる問題点
がある。
[Problems to be Solved by the Invention] In the case of the filter device of FIG. 3, the control means performs switching control of the switches 4a and 4b in accordance with the frequency signals S1 and S2 to select (switch) the filter. Although the signals S1 and S2 can be reliably transmitted through the series resonance circuits 7a and 7b, respectively, two switches 4a and 4b and a control means for controlling these switching are required, and further, both switches 4a and 4b respond. However, there is a problem in that noise is increased due to the disturbance caused when the switches 4a and 4b are switched.

また、前記第4図のフィルタ装置の場合、コンデンサ9
a,9bの容量差による配電系統側からの漏れ成分が発生器
3側にまわり込み、前記の容量差による循環電流が両直
列共振回路11a,11bを流れ、配電線2a,2bに重畳される周
波数信号S1,S2の電流に前記循環電流が加わり、発生器
3側,配電系統側相互に悪影響を及ぼし合う問題点があ
る。
Further, in the case of the filter device shown in FIG.
The leakage component from the distribution system side due to the capacity difference between a and 9b wraps around to the generator 3 side, and the circulating current due to the capacity difference flows through both series resonance circuits 11a and 11b and is superimposed on the distribution lines 2a and 2b. There is a problem that the circulating current is added to the currents of the frequency signals S1 and S2, and the generator 3 side and the distribution system side adversely affect each other.

本発明は、簡単な構成により、配電系統の交流信号に2
種類の周波数信号を効率よく、かつ正確に重畳できるよ
うにすることを目的とする。
The present invention has a simple structure to convert an AC signal in a distribution system into an AC signal.
It is an object of the present invention to enable efficient and accurate superposition of types of frequency signals.

[課題を解決するための手段] 前記の目的を達成するために、本発明のフィルタ装置
は、配電系統の交流信号に重畳される異なる2種類の周
波数信号を一定周期で択一的に発生する信号発生器と、 この発生器の両端間に共振用第1コンデンサ及び結合用
トランスの1次コイルを直列接続して形成された1次側
直列共振回路と、 一端が配電系統の一方の配電線に接続された前記トラン
スの2次コイルと、 この2次コイルの他端と配電系統の他方の配電線との間
に前記トランスの結合係数調整用リアクトル,共振用第
2コンデンサ及び共振用抵抗を直列接続して形成された
2次側直列共振回路とを備える。
[Means for Solving the Problem] In order to achieve the above object, the filter device of the present invention selectively generates two different types of frequency signals to be superimposed on an AC signal of a power distribution system in a constant cycle. A signal generator, a primary side series resonance circuit formed by connecting in series a resonance first capacitor and a primary coil of a coupling transformer between both ends of the signal generator, and one end of one distribution line of a distribution system A transformer secondary coil connected to the transformer, and a transformer coupling coefficient adjusting reactor, a resonance second capacitor and a resonance resistor between the other end of the secondary coil and the other distribution line of the distribution system. And a secondary side series resonance circuit formed by connecting in series.

[作用] 前記のように構成された本発明のフィルタ装置の場合、
2次側直列共振回路の結合係数調整用リアクトルのイン
ダクタンス及び結合用トランスの結合係数を調整するこ
とにより、1次側直列共振回路及び2次側直列共振回路
がトランス結合の複共振回路を構成し、この複共振回路
の2つの共振周波数が信号発生器からの2種類の周波数
信号の周波数にそれぞれ一致し、信号発生器から一定周
期で択一的に発生する両周波数信号が効率よく,かつ正
確に取り出されて配電系統の交流信号に重畳される。
[Operation] In the case of the filter device of the present invention configured as described above,
By adjusting the inductance of the coupling coefficient adjusting reactor of the secondary side series resonance circuit and the coupling coefficient of the coupling transformer, the primary side series resonance circuit and the secondary side series resonance circuit form a transformer-coupled multiple resonance circuit. , The two resonance frequencies of the multiple resonance circuit respectively match the frequencies of the two kinds of frequency signals from the signal generator, so that both frequency signals generated alternately from the signal generator at constant intervals are efficient and accurate. And is superposed on the AC signal of the distribution system.

このとき、従来のフィルタ選択のスイッチや制御手段が
不要であり、構成が簡単でかつ安価になり、しかも、結
合用トランスにより1次側と2次側とが分離されるた
め、従来のJaumann回路の場合のようなコンデンサの容
量差による配電系統側及び信号発生器側相互間の影響が
防止される。
At this time, the conventional filter selection switch and control means are not required, the configuration is simple and inexpensive, and the coupling transformer separates the primary side and the secondary side. Therefore, the conventional Jaumann circuit is used. In this case, the influence between the distribution system side and the signal generator side due to the capacitance difference of the capacitor can be prevented.

[実施例] 1実施例について、第1図及び第2図を参照して説明す
る。
[Embodiment] An embodiment will be described with reference to FIGS. 1 and 2.

まず、本発明の基本回路構成の等価回路図は第2図
(a)に示すようになり、2種類の周波数信号S1,S2を
例えばT/2の一定周期で択一的に発生する信号発生器3
の両端間に、発生器3等の内部インピーダンス12,共振
用第1コンデンサ13及び結合用トランス14の1次コイル
14aを直列接続して1次側直列共振回路15が形成され、
トランス14の2次コイル14bの両端間に、共振用第2コ
ンデンサ16及び共振用抵抗17の直列回路を接続して2次
側共振回路が形成される。
First, an equivalent circuit diagram of the basic circuit configuration of the present invention is as shown in FIG. 2 (a), and signal generation for selectively generating two types of frequency signals S1 and S2 at a constant cycle of T / 2, for example. Bowl 3
Between both ends of the generator, the internal impedance 12 of the generator 3 etc., the resonance first capacitor 13 and the primary coil of the coupling transformer 14
Primary side series resonance circuit 15 is formed by connecting 14a in series,
A secondary side resonance circuit is formed by connecting a series circuit of a resonance second capacitor 16 and a resonance resistor 17 between both ends of the secondary coil 14b of the transformer 14.

そして、インピーダンス12,抵抗17の値をR1,R2とし、第
1,第2コンデンサ13,16の容量をC1,C2とし、1次コイル
14a,2次コイル14bのインダクタンスをL1,L2とすると、
1次側直列共振回路15の共振周波数faは となり、同様にトランス14の2次側の共振周波数fbは となる。
Then, the impedance 12 and resistance 17 values are set to R1 and R2, respectively.
1, the capacity of the second capacitor 13, 16 is C1, C2, the primary coil
If the inductances of 14a and secondary coil 14b are L1 and L2,
The resonance frequency fa of the primary side series resonance circuit 15 is Similarly, the resonance frequency fb on the secondary side of the transformer 14 becomes Becomes

さらに、fa=fb=fr,(frは共振の中心周波数)となる
場合、第2図(a)に示す回路は、トランス14の結合係
(Mはトランス14の相互インダクタンス)を用いたつぎ
の式で表われる2つの共振周波数を有するトランス結
合の複共振回路となる。
Further, when fa = fb = fr, (fr is the center frequency of resonance), the circuit shown in FIG. (M is a mutual inductance of the transformer 14), and a transformer-coupled multiple resonance circuit having two resonance frequencies represented by the following equation is obtained.

そして、結合係数kを適当に調整することにより、前記
式の共振周波数f′,f″を,信号発生器3の周波数信
号S2,S1の周波数f2,f1それぞれに一致させることができ
る。
By appropriately adjusting the coupling coefficient k, the resonance frequencies f'and f "in the above equation can be made to match the frequencies f2 and f1 of the frequency signals S2 and S1 of the signal generator 3, respectively.

ところで、結合係数kを可変することは、一般に、トラ
ンスの設計上容易ではない。
By the way, it is generally not easy to design the transformer to change the coupling coefficient k.

例えば、周波数frを450Hz,一方の共振周波数f′を435H
zにするには、前記式より、結合係数kを、 k=(fr/f′)−1=(450/435)−1≒0.07 の粗結合値,つまり空心リアクトルの値にしなければな
らない。
For example, the frequency fr is 450Hz, and one resonance frequency f'is 435H.
In order to obtain z, from the above equation, the coupling coefficient k must be a coarse coupling value of k = (fr / f ′) 2 −1 = (450/435) 2 −1≈0.07, that is, the value of the air-core reactor. I won't.

一方、450Hz程度の共振周波数を得るためのインダクタ
ンスL1,L2は、通常10-3H程度になり、これは鉄心入りの
トランスの値である。
On the other hand, the inductances L1 and L2 for obtaining a resonance frequency of about 450 Hz are usually about 10 -3 H, which is the value of a transformer with an iron core.

そして、鉄心入りトランスはその結合係数が一般的に0.
9以上であり、前記の0.07程度の粗結合値にすることは
製造上困難であり、しかも、使用する上でも損失等が大
きく、効率が悪い。
And the coupling coefficient of a transformer with an iron core is generally 0.
It is 9 or more, and it is difficult to set the above-mentioned coarse coupling value to about 0.07 from the viewpoint of manufacturing, and the loss is large and the efficiency is poor even when it is used.

そこで、本発明では、第2図(b)に示すように2次側
共振回路にトランス14の結合係数調整用リアクトル18を
挿入し、リアクトル18,第2コンデンサ16,抵抗17からな
る2次側直列共振回路19を構成し、トランス14の結合係
数を,リアクトル18のインダクタンスL3により容易に調
整できるようにする。
Therefore, in the present invention, as shown in FIG. 2B, the coupling coefficient adjusting reactor 18 of the transformer 14 is inserted in the secondary side resonance circuit, and the secondary side including the reactor 18, the second capacitor 16 and the resistor 17 is inserted. The series resonance circuit 19 is configured so that the coupling coefficient of the transformer 14 can be easily adjusted by the inductance L3 of the reactor 18.

そして、第2図(b)のトランス14の2次コイル14bの
インダクタンスをL2′とすると、同図(a)の回路でイ
ンダクタンスL2が、L2=L2′+L3を満足するように、イ
ンダクタンスL3を設定する。
When the inductance of the secondary coil 14b of the transformer 14 of FIG. 2 (b) is L2 ′, the inductance L3 is set so that the inductance L2 satisfies L2 = L2 ′ + L3 in the circuit of FIG. 2 (a). Set.

このとき、第2図(b)のトランス14の結合係数をk′
とすると、この結合係数k′と,第2図(a)のトラン
ス14の結合係数kとの関係は より、つぎの式のようになる。
At this time, the coupling coefficient of the transformer 14 in FIG.
Then, the relation between this coupling coefficient k ′ and the coupling coefficient k of the transformer 14 in FIG. Then, it becomes the following formula.

したがって、第2図(b)のトランス14の結合係数k′
を0.9とし、リアクトル18のインダクタンスL3による調
整後の結合係数kを前記の粗結合値の0.07にするために
は、まず、前記式より、インダクタンスL2′を、L2′
=(k/k′)2L2=(0.07/0.9)2L2≒0.06L2とし、さら
に、L2=L2′+L3の関係により、インダクタンスL3を、
つぎの式の大きさに設定すればよい。
Therefore, the coupling coefficient k'of the transformer 14 in FIG.
Is 0.9 and the coupling coefficient k after adjustment by the inductance L3 of the reactor 18 is 0.07 of the coarse coupling value, first, the inductance L2 ′ is changed to L2 ′ from the above equation.
= (K / k ') 2 L2 = (0.07 / 0.9) 2 L2 ≈ 0.06 L2, and the inductance L3 can be calculated by the relationship of L2 = L2' + L3.
You can set it to the size of the following formula.

L3=L2−L2′=L2−0.06L2=0.94L2 … つぎに、実際に配電系統に接続した状態の等価回路図は
第1図に示すようになる。
L3 = L2-L2 '= L2-0.06L2 = 0.94L2 ... Then, the equivalent circuit diagram in the state of being actually connected to the distribution system is as shown in FIG.

すなわち、第3図,第4図の配電線2a,2bの等価インピ
ーダンスを抵抗20及びリアクトル21で表わすと、第1図
に示すように、第2図(b)の2次側直列共振回路19の
他端である端子22aと2次コイル14bの他端である端子22
bとの間に、抵抗20及びインダクタンス21が直列に接続
される。
That is, when the equivalent impedance of the distribution lines 2a and 2b in FIGS. 3 and 4 is represented by the resistor 20 and the reactor 21, as shown in FIG. 1, the secondary side series resonance circuit 19 of FIG. 22a, which is the other end of the secondary coil, and terminal 22 which is the other end of the secondary coil 14b
A resistor 20 and an inductance 21 are connected in series with b.

そして、第1図のリアクトル18,21のインダクタンスをL
3′,L4とし、抵抗17,20の値をR2′,R3とすると、インダ
クタンスL3′,L4と第2図(b)のリアクトル18のイン
ダクタンスL3とが,L3=L3′+L4を満足し、同様に、抵
抗値R2′,R3と第2図(b)の抵抗17の抵抗値R2とが,R2
=R2′+R3を満足にする。
Then, set the inductance of reactors 18 and 21 in Fig. 1 to L
If 3 ', L4 and the values of the resistors 17, 20 are R2', R3, the inductances L3 ', L4 and the inductance L3 of the reactor 18 in Fig. 2 (b) satisfy L3 = L3' + L4, Similarly, the resistance values R2 ′, R3 and the resistance value R2 of the resistor 17 in FIG.
= R2 '+ R3 is satisfied.

このとき、インダクタンスL4及び抵抗値R3は、配電系統
の等価インピーダンスの演算により導出することがで
き、第1図のリアクトル18のインダクタンスL3′は、L
3′=L3−L4の式に前記式によるL3及び既知のL4を当
てはめることにより決定でき、抵抗17の抵抗値も、R2′
=R2−R3の式に既知のR2,R3を当てはめることにより決
定できるため、これらの決定により、第1図の複共振回
路構成のフィルタ装置の共振周波数f′,f″を、発生器
3が発生する周波数信号S2,S1の周波数f2,f1にそれぞれ
一致させ、発生器3からの両周波数信号S1,S2を効率よ
く、かつ正確に重畳できる。
At this time, the inductance L4 and the resistance value R3 can be derived by calculating the equivalent impedance of the distribution system, and the inductance L3 'of the reactor 18 in FIG.
3 ′ = L3−L4 can be determined by applying L3 according to the above equation and known L4, and the resistance value of the resistor 17 can also be R2 ′.
= R2-R3 can be determined by applying known R2 and R3 to the formula, and by these determinations, the generator 3 determines the resonance frequencies f ', f "of the filter device having the multiple resonance circuit configuration of FIG. The frequencies f2 and f1 of the generated frequency signals S2 and S1 are made to coincide with each other so that both frequency signals S1 and S2 from the generator 3 can be superposed efficiently and accurately.

そして、発生器3が発生する周波数信号を、伝送するコ
ード内容等に応じて一定周期で信号S1,S2に択一的に切
り換え、例えば、T/2の一定時間ごとに信号S1,S2,S1,S
2,S2,S1を順に発生して伝送すると、従来装置の場合と
同様、管理装置により“101001"という内容の信号が受
信される。
Then, the frequency signal generated by the generator 3 is selectively switched to the signals S1 and S2 at a constant cycle according to the content of the code to be transmitted, and, for example, the signals S1, S2, and S1 are generated at fixed intervals of T / 2. , S
When 2, S2, S1 are sequentially generated and transmitted, the management device receives a signal of "101001" as in the case of the conventional device.

このとき、従来のフィルタ選択のスイッチや制御手段が
不要となり、構成が簡単でかつ安価になり、しかも、ト
ランス14により1次側と2次側とが分離されているた
め、従来のJaumann回路のようなコンデンサの容量差に
よる配電系統側及び信号発生器側相互間の影響が防止さ
れる。
At this time, the conventional filter selection switch and control means are not necessary, the configuration is simple and inexpensive, and the transformer 14 separates the primary side and the secondary side from each other. It is possible to prevent the influence between the distribution system side and the signal generator side due to the difference in capacitance of the capacitors.

[発明の効果] 本発明は、以上説明したように構成されているため、以
下に記載する効果を奏する。
[Advantages of the Invention] Since the present invention is configured as described above, it has the effects described below.

2次側直列共振回路19の結合係数調整用リアクトル18の
インダクタンス及び結合用トランス14の結合係数等を調
整することにより、1次側直列共振回路15及び2次側直
列共振回路19がトランス結合の複共振回路を構成し、こ
の複共振回路の2つの共振周波数が信号発生器3から一
定周期で択一的に出力される2種類の周波数信号の周波
数それぞれに一致し、配電系統の交流信号に前記2種類
の周波数信号を効率よくかつ正確に重畳でき、このと
き、従来のフィルタ選択(切り換え)のスイッチや制御
手段が不要となり、構成の簡素化を図ることができ、し
かも、結合用トランス14による1次側,2次側の直列共振
回路15,19の分離により、配電系統側および信号発生器
側相互間の影響を防止することができる。
By adjusting the inductance of the coupling coefficient adjusting reactor 18 of the secondary side series resonance circuit 19 and the coupling coefficient of the coupling transformer 14, the primary side series resonance circuit 15 and the secondary side series resonance circuit 19 are transformer-coupled. A multi-resonance circuit is configured, and two resonance frequencies of the multi-resonance circuit match the frequencies of the two types of frequency signals that are alternatively output from the signal generator 3 in a constant cycle, and become the AC signal of the distribution system. The two types of frequency signals can be efficiently and accurately superposed, and at this time, the conventional filter selection (switching) switch and control means are not required, the configuration can be simplified, and the coupling transformer 14 can be achieved. By separating the series resonance circuits 15 and 19 on the primary side and the secondary side by means of, it is possible to prevent the influence between the distribution system side and the signal generator side.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例の等価回路図、第2図
(a),(b)は本発明の原理説明図、第3図及び第4
図はそれぞれ従来例の結線図、第5図(a)〜(c)は
第3図の動作説明用の各種信号波形図である。 2a,2b……配電線、3……信号発生器、13……第1コン
デンサ、14……結合用トランス、14a,14b……1次,2次
コイル、15……1次側直列共振回路、16……第2コンデ
ンサ、17……共振用抵抗、18……結合係数調整用リアク
トル、19……2次側直列共振回路。
FIG. 1 is an equivalent circuit diagram of one embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are explanatory views of the principle of the present invention, FIGS.
Each of the drawings is a connection diagram of a conventional example, and FIGS. 5A to 5C are various signal waveform diagrams for explaining the operation of FIG. 2a, 2b …… Distribution line, 3 …… Signal generator, 13 …… First capacitor, 14 …… Coupling transformer, 14a, 14b …… Primary and secondary coils, 15 …… Primary side series resonance circuit , 16 …… Second capacitor, 17 …… Resonance resistor, 18 …… Coupling coefficient adjusting reactor, 19 …… Secondary side series resonance circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】配電系統の交流信号に重畳される異なる2
種類の周波数信号を一定周期で択一的に発生する信号発
生器と、 前記発生器の両端間に共振用第1コンデンサ及び結合用
トランスの1次コイルを直列接続して形成された1次側
直列共振回路と、 一端が配電系統の一方の配電線に接続された前記トラン
スの2次コイルと、 前記2次コイルの他端と配電系統の他方の配電線との間
に前記トランスの結合係数調整用リアクトル,共振用第
2コンデンサ及び共振用抵抗を直列接続して形成された
2次側直列共振回路と を備えたことを特徴とするフィルタ装置。
1. Different two superposed on an AC signal of a distribution system.
A signal generator that selectively generates various types of frequency signals at a constant cycle, and a primary side formed by serially connecting a resonance first capacitor and a primary coil of a coupling transformer across the generator. A series resonance circuit, a secondary coil of the transformer whose one end is connected to one distribution line of the distribution system, and a coupling coefficient of the transformer between the other end of the secondary coil and the other distribution line of the distribution system. A secondary side series resonance circuit formed by connecting an adjusting reactor, a second resonance capacitor, and a resonance resistor in series.
JP62153943A 1987-06-20 1987-06-20 Filter device Expired - Fee Related JPH07108053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153943A JPH07108053B2 (en) 1987-06-20 1987-06-20 Filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153943A JPH07108053B2 (en) 1987-06-20 1987-06-20 Filter device

Publications (3)

Publication Number Publication Date
JPS641427A JPS641427A (en) 1989-01-05
JPH011427A JPH011427A (en) 1989-01-05
JPH07108053B2 true JPH07108053B2 (en) 1995-11-15

Family

ID=15573467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153943A Expired - Fee Related JPH07108053B2 (en) 1987-06-20 1987-06-20 Filter device

Country Status (1)

Country Link
JP (1) JPH07108053B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619080A (en) * 1995-11-02 1997-04-08 Power & Ground Systems Corporation Line filter for reducing AC harmonics
JP2006166682A (en) * 2004-12-10 2006-06-22 Sharp Corp Booster circuit, and ion generation device provided with same
CN109992434A (en) * 2017-12-29 2019-07-09 深圳市优必选科技有限公司 A method of filtering out EtherCAT bus interference signal

Also Published As

Publication number Publication date
JPS641427A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
US4504705A (en) Receiving arrangements for audio frequency signals
US3895370A (en) High-frequency communication system using A-C utility lines
US4473816A (en) Communications signal bypass around power line transformer
EP0159916A2 (en) Passive RF signals coupler for power lines
US4622535A (en) Receiving circuit for a data transmission system
US6529120B1 (en) System for communicating over a transmission line
US7825533B2 (en) Transmission system for interchanging information data between an electrical load and an upstream converter
US20110074219A1 (en) High-frequency inductive coupling power transfer system and associated method
EP1500211B1 (en) Adapter for communicating over power line
JP2835340B2 (en) Voltage generator
JPH07108053B2 (en) Filter device
US4528677A (en) Data transmission system
EP0335948A4 (en) Decoupling network and communication system.
US4835516A (en) Arrangement for introducing audio-frequency signals into a power supply line
US4078216A (en) Circuit for the parallel coupling of audio frequency central-control transmitting stations in a wave band filter construction
GB1585276A (en) Ripple control systems
JPH011427A (en) filter device
EP1344231A1 (en) Transformer providing low output voltage
US1724112A (en) Communicating system for power-transmission lines
US20230239004A1 (en) Power-Line/Communication System
JP2003037533A (en) Power-line carrier communication apparatus
GB2047925A (en) Voltage regulator
US2154694A (en) Communication system
KR102293107B1 (en) Wireless power transmitter
SU1653166A1 (en) Device for signal transmission via a three-phase power distribution line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees