JPH07107007A - Spreading code generation system - Google Patents

Spreading code generation system

Info

Publication number
JPH07107007A
JPH07107007A JP5247911A JP24791193A JPH07107007A JP H07107007 A JPH07107007 A JP H07107007A JP 5247911 A JP5247911 A JP 5247911A JP 24791193 A JP24791193 A JP 24791193A JP H07107007 A JPH07107007 A JP H07107007A
Authority
JP
Japan
Prior art keywords
code
patterns
spreading
sequence
spread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5247911A
Other languages
Japanese (ja)
Other versions
JP2797921B2 (en
Inventor
Minako Takeishi
美奈子 武石
Kenichi Takahashi
憲一 高橋
Hiroshi Onishi
博 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5247911A priority Critical patent/JP2797921B2/en
Priority to US08/197,592 priority patent/US5488629A/en
Publication of JPH07107007A publication Critical patent/JPH07107007A/en
Priority to US08/551,111 priority patent/US5610939A/en
Priority to US08/775,763 priority patent/US5881099A/en
Application granted granted Critical
Publication of JP2797921B2 publication Critical patent/JP2797921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase the multiplicity at the time of multilevel phase modulation in a spreading code generation system in direct spread spectrum communication. CONSTITUTION:Optional spreading code patterns (the output of PN code generators 141 and 142) whose code sequences are different are used between respective phases in a multilevel phase modulation system, the code patterns are multiplied with the same code pattern of an optional orthogonal code sequence (the output of an orthogonal code generator 150) and spreading codes are generated. Also, the spreading codes between the respective phases are the combination of the patterns whose mutual correlation value is large inside the code sequence and the code patterns are mutually circulated and used in synchronism at a point where the mutual correlation value of correlation devices 251-254 is minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は符号分割多元接続方式、
直接スペクトル拡散通信における拡散符号生成方式に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to a code division multiple access system,
The present invention relates to a spread code generation method in direct spread spectrum communication.

【0002】[0002]

【従来の技術】近年、マイクロセル方式や構内無線LA
N等の無線を用いた通信システムの検討が行われてきて
いる。その無線通信方式の一つとしてスペクトラム拡散
方式を用いた符号分割多元接続(Code-Devision-Multip
le-Access:以下CDMAと記す)方式が研究されてお
り、一部では実用化されつつある。
2. Description of the Related Art In recent years, a microcell system and a local wireless LA
A communication system using radio such as N has been studied. As one of the wireless communication methods, code division multiple access (Code-Devision-Multip
le-Access: hereinafter referred to as CDMA) has been studied, and some of them are being put to practical use.

【0003】スペクトラム拡散方式は、主に直接拡散
(Direct Sequence:以下DSと記す)方式と周波数ホ
ッピング(Frequency Hopping:以下FHと記す)方式
とに分けられ、DS方式は情報信号より高い周波数(例
えば数十〜数千倍)からなる拡散符号パターンにより情
報信号を直接スペクトラム拡散する方式である。FH方
式は、例えば、狭帯域変調された信号をある拡散符号パ
ターンに従った順序で搬送波周波数を変化させ、結果的
に平均化することによりスペクトラムを拡散する方式で
ある。
The spread spectrum method is mainly divided into a direct sequence (hereinafter referred to as DS) method and a frequency hopping (hereinafter referred to as FH) method, and the DS method has a frequency higher than that of an information signal (eg, This is a method of directly spectrum spreading an information signal by a spread code pattern consisting of several tens to several thousands. The FH method is a method of spreading a spectrum by, for example, changing the carrier frequency of a narrow-band modulated signal in the order according to a certain spread code pattern, and averaging as a result.

【0004】CDMA方式はDS方式(DS/CDM
A)、FH方式(FH/CDMA)等により拡散を行う
ときに異なる拡散符号パターンを用いることで同一周波
数帯域内で多重する通信方式であり、符号パターンで通
信チャネルの識別を行っている。スペクトラム拡散の拡
散符号としては従来、疑似雑音(Pseudo Noise:以下P
Nと記す)系列がよく用いられ、その代表的なものとし
てはM系列、Gold系列などがあげられる。これらの
系列の各符号パターンの自身との自己相関特性と、同じ
符号系列に属する他の符号パターンとの相互相関特性は
符号系列によって異なる。
The CDMA system is a DS system (DS / CDM
A) is a communication method for multiplexing in the same frequency band by using different spreading code patterns when performing spreading by the FH method (FH / CDMA) or the like, and the communication channel is identified by the code pattern. As a spread code for spread spectrum, pseudo noise (Pseudo Noise: P
N series) is often used, and typical examples thereof include M series and Gold series. The autocorrelation characteristic of each code pattern of these sequences with itself and the cross-correlation characteristic of other code patterns belonging to the same code sequence differ depending on the code sequence.

【0005】従来のDS/CDMA方式では主に2相位
相変調(以下BPSKと記す)方式が用いられてきた
が、最近ではデータの高速化のために同相成分(以下I
chと記す)、直交成分(以下Qchと記す)とで各々
異なる符号パターンを用いて拡散、合成した4相位相変
調(以下QPSKと記す)方式(以下DS/QPSK方
式と記す)や、より多くの位相に分けて伝送する多値位
相変調方式の研究が行われている。
In the conventional DS / CDMA system, a two-phase phase modulation (hereinafter referred to as BPSK) system has been mainly used, but recently, in-phase components (hereinafter referred to as I
ch), quadrature component (hereinafter referred to as Qch), and four-phase phase modulation (hereinafter referred to as QPSK) method (hereinafter referred to as DS / QPSK method) that is spread and combined using different code patterns, and more. There are many studies on multi-level phase modulation schemes that transmit the signals in different phases.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、CDM
A方式を用いたシステムにおいてはチャネル容量を上げ
るために同一周波数帯での多重化を行うが、M系列やG
old系列のみでは多重化が難しいという問題があっ
た。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the system using the A system, multiplexing is performed in the same frequency band in order to increase the channel capacity.
There is a problem that multiplexing is difficult only with the old sequence.

【0007】また、CDMA方式において、各拡散波ど
うしの干渉を小さくするには相互相関値の小さい拡散符
号パターンを用いることが望ましいが、その組み合わせ
は限られていた。さらにDS/QPSK方式のような方
式ではIch、Qchに各々異なる拡散符号パターンを
用いるが、受信側で周波数オフセット等により直交検波
後に両信号成分が完全に分離できない場合、前記I、
Q、両chの拡散符号の相互相関特性が大きいと、各々
の信号の相関検出時に相互に干渉を及ぼし合うという問
題が生じる。
Further, in the CDMA system, it is desirable to use a spread code pattern having a small cross-correlation value in order to reduce the interference between the spread waves, but the combination is limited. Further, in a system such as the DS / QPSK system, different spreading code patterns are used for Ich and Qch respectively, but if both signal components cannot be completely separated after quadrature detection due to frequency offset or the like on the receiving side, I,
If the cross-correlation characteristics of the spread codes of Q and both channels are large, a problem arises in which they interfere with each other when detecting the correlation of each signal.

【0008】チャネル容量に関しては拡散符号の周期長
を長くして拡散率を上げることにより、多重数を多くと
ることが可能である。しかし、実用化しようとする場合
は、拡散帯域幅と情報伝送速度との関係や装置動作速度
等の条件により拡散率が制限されるため、符号周期長を
長くとることは難しい。
Regarding the channel capacity, it is possible to increase the number of multiplexes by lengthening the cycle length of the spreading code and increasing the spreading factor. However, in the case of practical application, it is difficult to increase the code period length because the spreading factor is limited by the conditions such as the relationship between the spreading bandwidth and the information transmission rate and the device operating speed.

【0009】CDMA方式では多重数と通信品質の関係
は符号パターン間の相互相関特性に大きく依存してお
り、従来からスペクトラム拡散の拡散符号として、M系
列、Gold系列などが研究されてきている。例えば、
M系列では自己相関特性が良いため、相関値のピークを
見つけ易いが、生成できるパターン数は少ないことが判
っている。また、Gold系列では生成できるパターン
数はM系列より多いが、相互相関特性が良くないため、
多重化した場合は他拡散波からの干渉により通信品質の
劣化が著しい。このため、同時に通信できるチャネル数
には制限がある。
In the CDMA system, the relationship between the number of multiplexes and the communication quality largely depends on the cross-correlation property between code patterns, and M series and Gold series have been studied as spread spectrum spread codes. For example,
Since the M-sequence has good autocorrelation characteristics, it is easy to find the peak of the correlation value, but it is known that the number of patterns that can be generated is small. Further, although the number of patterns that can be generated in the Gold series is larger than that in the M series, the cross-correlation characteristics are not good,
When multiplexed, the deterioration of communication quality is significant due to interference from other spread waves. Therefore, the number of channels that can be simultaneously communicated is limited.

【0010】これらに対し、最近では相互相関特性の良
い直交符号系列を用いる方式が検討されてきている。直
交符号系列では各符号間に直交性が保たれている場合は
お互いに無相関となり多重数を多くとれるが、直交性が
崩れてしまうと相互相関は著しく劣化する。従って、C
DMAシステムなどで拡散符号に用いる場合は符号間同
期が必要となる。
On the other hand, recently, a method using an orthogonal code sequence having a good cross-correlation characteristic has been studied. In the orthogonal code sequence, when the orthogonality is maintained between the codes, they are uncorrelated with each other and a large number of multiplexes can be taken, but if the orthogonality is broken, the cross correlation is significantly deteriorated. Therefore, C
When used as a spreading code in a DMA system or the like, inter-code synchronization is required.

【0011】また、直交符号系列の一つであるアダマー
ル系列では、2×2のアダマール行列をn回アダマール
変換することにより符号長2(n+1)のアダマール行列を
生成するが、この生成過程からもわかるように1つの符
号パターンがいくつかの符号パターンの繰り返しで成り
立っているため、自己相関特性は悪く、同期捕捉やマル
チパス分離が難しいという問題がある。
In the Hadamard sequence, which is one of the orthogonal code sequences, a Hadamard matrix of code length 2 (n + 1) is generated by performing Hadamard transformation of a 2 × 2 Hadamard matrix n times. As can be seen from the above, since one code pattern consists of repetition of several code patterns, the autocorrelation characteristic is poor, and there is a problem that synchronization acquisition and multipath separation are difficult.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め、本発明における第1の拡散符号生成方式は、多値位
相変調方式において、各位相間で異なる拡散符号パター
ンには自己相関特性の良い符号系列を用い、さらに相互
相関特性の良い直交符号系列を前記各位相の符号パター
ンに乗じて拡散符号パターンを生成することにより、多
重数の増大を可能とするものである。
In order to solve the above-mentioned problems, the first spreading code generation method according to the present invention is a multi-level phase modulation method, in which spreading code patterns different between each phase have good autocorrelation characteristics. The number of multiplexes can be increased by using a code sequence and multiplying the code pattern of each phase by an orthogonal code sequence having a good cross-correlation characteristic to generate a spread code pattern.

【0013】また、本発明における第2の拡散符号生成
方式は、多値位相変調を用いたDS方式において、用い
る拡散符号系列内で相互相関の最大値が他のパターンに
比べ大きくなるパターンどうしを各位相成分に組み合わ
せ、これらの符号パターンを相互に巡回させ、符号間の
相互相関値が最小となる点で位相オフセットをかけ用い
ることで、他波への干渉を抑えつつ、受信側で各位相成
分不完全分離時の相互相関を最小にすることが可能とな
る。これは、各位相成分の信号が常に同期しており、そ
の相互相関値が一定であることを利用したものである。
The second spreading code generation method according to the present invention is a DS method using multi-level phase modulation, in which the maximum cross-correlation value in the spreading code sequence used is larger than other patterns. By combining each phase component, circulating these code patterns mutually, and applying a phase offset at the point where the cross-correlation value between the codes is minimized, it is possible to suppress the interference with other waves and to use each phase on the receiving side. It is possible to minimize the cross-correlation at the time of incomplete component separation. This utilizes the fact that the signals of the respective phase components are always synchronized and their cross-correlation values are constant.

【0014】[0014]

【作用】上記本発明における第1の拡散符号生成方式に
よれば、双方の符号系列の特性を生かした拡散符号系列
の生成が可能となる。すなわち多値位相変調方式の各位
相成分毎に異なる拡散符号に各々自己相関特性の良い符
号系列(ここではPN系列とする)を割り当て、それぞ
れの符号パターンに同一の直交符号系列を乗じること
で、拡散信号波としては他波との干渉を低減し、例え
ば、QPSK信号であれば、PN系列でIch、Qch
分離を行うことが可能となる。すなわちQPSK変調波
1波に対して1直交符号を割り当てていることになる。
According to the first spreading code generation system of the present invention, it is possible to generate a spreading code sequence that makes use of the characteristics of both code sequences. That is, by assigning a code sequence having a good autocorrelation characteristic (here, a PN sequence) to different spreading codes for each phase component of the multilevel phase modulation method, and multiplying each code pattern by the same orthogonal code sequence, As a spread signal wave, interference with other waves is reduced. For example, in the case of a QPSK signal, Ich and Qch in a PN sequence are used.
It becomes possible to carry out separation. That is, one orthogonal code is assigned to one QPSK modulated wave.

【0015】このとき、符号間同期がとれていれば、各
位相成分に同じPN符号パターン組を用いている信号間
では割り当てられた直交符号により互いに無相関となり
干渉が低減され、多重数を多くすることができる。
At this time, if the inter-code synchronization is established, the orthogonal codes assigned to the signals using the same PN code pattern set for each phase component are not correlated with each other to reduce interference and increase the number of multiplexing. can do.

【0016】一方、符号同期がとれていない場合、PN
系列が乗じてあるので相互相関特性の劣化が直交符号系
列のみの場合に比べて緩和され、従来のPN系列での相
互相関特性とほぼ同じになる。同様に、直交符号系列で
の自己相関特性の低さによる同期捕捉やマルチパス分離
が難しいという課題は、PN系列の自己相関特性の高さ
により解決される。
On the other hand, if code synchronization is not established, PN
Since the sequences are multiplied, deterioration of the cross-correlation characteristic is alleviated as compared with the case of only the orthogonal code sequence, and becomes almost the same as the cross-correlation characteristic of the conventional PN sequence. Similarly, the problem of difficulty in synchronization acquisition and multipath separation due to the low autocorrelation characteristic of the orthogonal code sequence is solved by the high autocorrelation characteristic of the PN sequence.

【0017】また、任意の拡散系列内で相互相関の小さ
いパターンの組み合わせは限られている。ところが、相
互相関値の大きい符号パターン間において、相互に巡回
させ位相オフセットをかけていくと相互相関値は変動
し、任意のオフセット点で最小値を持つことがある。そ
こで、任意の多値位相変調波の各位相成分は常に符号同
期がとれていることに着目し、上記本発明における第2
の拡散符号生成方式によることで、他の変調波との相互
相関は比較的小さくなるような符号パターンの組み合わ
せとしつつ、自波の受信検波後の各位相成分の信号分離
が不完全の場合においても、相互の干渉による影響を小
さくすることが可能となる。
Further, combinations of patterns having small cross-correlation within a given spreading sequence are limited. However, when code patterns having a large cross-correlation value are cyclically crossed with each other and a phase offset is applied, the cross-correlation value fluctuates and may have a minimum value at an arbitrary offset point. Therefore, paying attention to the fact that each phase component of an arbitrary multi-level phase modulated wave is always code-synchronized, and
In the case where the signal separation of each phase component after receiving and detecting the own wave is incomplete, the combination of code patterns is used so that the cross-correlation with other modulated waves becomes relatively small by the spread code generation method of Also, it is possible to reduce the influence of mutual interference.

【0018】加えて、ある任意の位相成分に他拡散波か
らの干渉を受けても、残る位相成分は無相関であるから
干渉は小さく、同期捕捉、維持等において誤動作をする
可能性は少なくなる。
In addition, even if an arbitrary phase component receives interference from another diffused wave, the remaining phase components are uncorrelated, so that the interference is small and the possibility of malfunctioning in synchronization acquisition and maintenance is reduced. .

【0019】[0019]

【実施例】(実施例1)以下、本発明の第1の実施例に
ついて図面を参照しながら説明する。なお、本実施例で
は多値位相変調方式の一実施例としてQPSK方式を用
いて説明することにする。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to the drawings. In the present embodiment, the QPSK method will be described as an example of the multi-level phase modulation method.

【0020】図1(a)、(b)はそれぞれ本発明の第
1の実施例における拡散符号生成方式を実現するDS/
QPSKの送受信機のブロック結線図で、各送受信機構
成は動作原理の説明のため、送信アンプや受信フロント
エンドは省略してある。
FIGS. 1 (a) and 1 (b) respectively show DS / s that realize the spread code generation method in the first embodiment of the present invention.
In the block connection diagram of the transceiver of QPSK, the transmission amplifier and the reception front end are omitted for explanation of the operating principle of each transceiver configuration.

【0021】なお、図2のシステム系概念図を示す通
り、図1(a)、(b)の本実施例では拡散率をN倍
(N=2n:ただし、n>2の整数)とし、用いる拡散
符号は直交符号系列では符号長Nw(Nw=2nー2)のア
ダマール符号系列(Hadamard Function:以下HF符号
と記す)を、PN系列では周期2nー1の符号パターン
に0を加えた符号長N=2nの符号PNiとPNqとす
る。図2においてH0〜HNwはHF符号の符号パター
ン番号を、PN1〜PNkはそれぞれ異なる符号パターン
で構成されたI、Qの直交拡散符号組を示す。また、図
3に本実施例のPN符号とHF符号との符号同期関係を
示す。
As shown in the conceptual system diagram of FIG. 2, in the present embodiment shown in FIGS. 1A and 1B, the spreading factor is N times (N = 2 n : where n> 2 is an integer). The spreading code used is a Hadamard function sequence (Hadamard Function: hereinafter referred to as an HF code) having a code length N w (N w = 2 n-2 ) in an orthogonal code sequence, and a code pattern with a period of 2 n -1 in a PN sequence. Codes PN i and PN q having a code length N = 2 n added with 0 are set. H0~HN w 2 is the code number of the pattern HF code, PN 1 to PN k represents different code patterns I configured with the orthogonal spreading code group of Q, respectively. Further, FIG. 3 shows the code synchronization relationship between the PN code and the HF code in this embodiment.

【0022】まず、図1(a)は送信系装置10を示す
もので、100は拡散符号生成部、110は入力される
データをQPSK符号化するQPSK符号化回路、14
1、142はクロックに基づきPN符号を発生するPN
符号発生器、150はクロックに基づき直交符号を発生
する直交符号発生器である。131、132は直交符号
発生器150の出力である直交符号とそれぞれのPN符
号発生器141及び142の出力であるPN符号とを乗
算する乗算器である。121、122はQPSK符号化
回路110の出力であるQPSK符号と乗算器131、
132の出力とを乗算する乗算器である。160は直交
変調回路で、ローカル信号発生源170から発生するロ
ーカル信号に基づき乗算器121、122の出力信号を
直交変調する。180は送信を行なう無線アンテナであ
る。
First, FIG. 1 (a) shows a transmission system device 10, in which 100 is a spread code generator, 110 is a QPSK coding circuit for QPSK coding input data, and 14
Numerals 1 and 142 are PNs that generate a PN code based on a clock
A code generator, 150 is an orthogonal code generator that generates an orthogonal code based on a clock. Reference numerals 131 and 132 denote multipliers for multiplying the orthogonal code output from the orthogonal code generator 150 by the PN code output from the PN code generators 141 and 142, respectively. Reference numerals 121 and 122 denote a QPSK code output from the QPSK encoding circuit 110 and a multiplier 131,
It is a multiplier for multiplying the output of 132. A quadrature modulation circuit 160 quadrature-modulates the output signals of the multipliers 121 and 122 based on the local signal generated from the local signal generation source 170. Reference numeral 180 is a wireless antenna for transmission.

【0023】上記構成において、まず、送信系ブロック
10に入力されたデータはQPSK符号化回路110に
よりQPSK符号化され、Ich、Qchの信号列とし
て、121、122の乗算器に送られる。これに対し拡
散符号生成部100では直交符号発生器150で拡散レ
ートの1/4のレートでHF符号を発生するとともに、
PN符号発生器141、142では拡散レートで、各々
異なる符号パターンのPNi、PNqを発生させ、乗算器
131でPNiとHF符号を、乗算器132でPNqとH
F符号を、図3に示すような符号同期でそれぞれ乗算し
拡散符号を生成する。乗算器121、122に送られた
Ich、Qchのデータは拡散符号生成部100で生成
された拡散符号により拡散され、直交変調部160で直
交変調後、無線アンテナ180から送信される。
In the above structure, first, the data input to the transmission system block 10 is QPSK encoded by the QPSK encoding circuit 110 and sent to the multipliers 121 and 122 as Ich and Qch signal sequences. On the other hand, in the spread code generator 100, the orthogonal code generator 150 generates the HF code at a rate 1/4 of the spread rate, and
The PN code generators 141 and 142 generate PN i and PN q having different code patterns at the spreading rate, and the multiplier 131 outputs PN i and HF code, and the multiplier 132 outputs PN q and H.
F codes are multiplied by code synchronization as shown in FIG. 3 to generate spread codes. The Ich and Qch data sent to the multipliers 121 and 122 are spread by the spreading code generated by the spreading code generation unit 100, orthogonally modulated by the orthogonal modulation unit 160, and then transmitted from the wireless antenna 180.

【0024】図1(b)は受信系装置20を示すもの
で、200は図1(a)に示した無線アンテナ180よ
り送出された送信信号を受信する無線アンテナ、201
はBPF(帯域通過フィルタ)である。210は直交検
波回路で、ローカル信号発生源220から発生するロー
カル信号に基づきBPF201の出力信号を直交検波す
る。231、232はLPF(低域通過フィルタ)、2
41、242はLPF231、232のアナログ出力を
デジタル信号に変換するA/Dコンバータ、251〜2
54は後述するスライディング相関によりA/Dコンバ
ータ241、242の出力の相関を得るディジタル相関
器、260はディジタル相関器251〜254の出力に
基づきデータ復調を行なうデータ復号回路、340はL
PF231、232の出力から送信系装置10のクロッ
クを再生するクロック再生回路である。300は逆拡散
符号生成回路であり、当該逆拡散符号生成回路300は
以下の要素により構成されている。
FIG. 1 (b) shows a receiving system device 20. Reference numeral 200 denotes a radio antenna for receiving the transmission signal transmitted from the radio antenna 180 shown in FIG. 1 (a), and 201.
Is a BPF (band pass filter). Reference numeral 210 denotes a quadrature detection circuit, which quadrature-detects the output signal of the BPF 201 based on the local signal generated from the local signal generation source 220. 231, 232 are LPFs (low pass filters), 2
41 and 242 are A / D converters 251 to 2 for converting the analog outputs of the LPFs 231 and 232 into digital signals.
54 is a digital correlator that obtains the correlation of the outputs of the A / D converters 241 and 242 by sliding correlation described later, 260 is a data decoding circuit that performs data demodulation based on the outputs of the digital correlators 251 to 254, and 340 is L.
This is a clock recovery circuit that recovers the clock of the transmission system device 10 from the outputs of the PFs 231 and 232. Reference numeral 300 denotes a despreading code generation circuit, and the despreading code generation circuit 300 is composed of the following elements.

【0025】281、282はクロック再生回路340
及び後述する同期捕捉回路の出力に基づきPN符号を発
生するPN符号発生器、290は同様にクロック再生回
路340及び後述する同期捕捉回路の出力に基づき直交
符号を発生する直交符号発生器、271、272は直交
符号発生器290の出力である直交符号とそれぞれのP
N符号発生器281及び282の出力であるPN符号と
を乗算するmodulo2の乗算器である。
Reference numerals 281 and 282 denote clock recovery circuits 340.
And a PN code generator 290 that generates a PN code based on the output of a synchronization acquisition circuit described later, and an orthogonal code generator 290 that generates an orthogonal code based on the outputs of the clock recovery circuit 340 and a synchronization acquisition circuit described below. Reference numeral 272 denotes an orthogonal code output from the orthogonal code generator 290 and each P
It is a modulo 2 multiplier that multiplies the PN code output from the N code generators 281 and 282.

【0026】311、312はそれぞれ相関器251、
253の出力信号を2乗する2乗回路、320は2乗器
311、312の出力を加算する加算器、330は加算
器320の出力から同期捕捉の判定を行なう同期捕捉判
定回路である。
Reference numerals 311, 312 denote correlators 251, 251, respectively.
A square circuit for squaring the output signal of 253, an adder 320 for adding the outputs of the squarers 311, 312, and a synchronization acquisition determination circuit 330 for determining the synchronization acquisition from the output of the adder 320.

【0027】上記構成において、図1(a)の送信系装
置10で生成、送信されたDS/QPSK変調波は受信
系装置20において、無線アンテナ200で受信、BP
F201通過後、直交検波回路210でローカル信号源
220からのローカル信号により直交検波される。直交
検波回路210からはIch、Qch信号がパラレル出
力され、各々LPF231、232を通過、A/Dコン
バータ241、242でA/D変換後、それぞれディジ
タル相関器251〜254に入力される。
In the above configuration, the DS / QPSK modulated wave generated and transmitted by the transmission system device 10 of FIG. 1A is received by the reception system device 20 by the wireless antenna 200, and BP is transmitted.
After passing through F201, the quadrature detection circuit 210 performs quadrature detection by the local signal from the local signal source 220. The Ich and Qch signals are output in parallel from the quadrature detection circuit 210, pass through the LPFs 231 and 232 respectively, undergo A / D conversion by the A / D converters 241 and 242, and then are input to the digital correlators 251 to 254, respectively.

【0028】本実施例ではディジタル相関器251〜2
54はスライディング相関とし、周波数オフセット等に
よる位相回転に対処するため4個の相関器を用いてお
り、相関器251と253のそれぞれの出力の2乗和に
より同期捕捉回路330で同期捕捉判定を行っている。
すなわち、これらの符号パターンを相互に巡回し、相互
相関値が最小となる点で同期させている。
In this embodiment, the digital correlators 251 to 2 are used.
Reference numeral 54 designates a sliding correlation, and four correlators are used to cope with phase rotation due to a frequency offset or the like. The synchronization acquisition circuit 330 determines the synchronization acquisition by the sum of squares of the outputs of the correlators 251 and 253. ing.
That is, these code patterns are circulated to each other and synchronized at the point where the cross-correlation value becomes the minimum.

【0029】また、逆拡散符号生成回路300は、同期
捕捉回路330により逆拡散符号生成タイミングを制御
されている他は送信系装置10の拡散符号生成部100
と同じである。
In the despreading code generation circuit 300, the despreading code generation timing of the despreading code generation circuit 100 is controlled by the synchronization acquisition circuit 330.
Is the same as.

【0030】なお、本実施例ではPN符号長はHF符号
長の4倍とし、クロック数変換器150A、290Aを
用いて直交符号発生器150、290の入力クロックを
1/4レートとする構成としているが、N≧NWであれ
ば何倍にとってもよい。
In this embodiment, the PN code length is four times the HF code length, and the clock number converters 150A and 290A are used to make the input clocks of the orthogonal code generators 150 and 290 1/4 rate. However, if N ≧ N W, it may be multiplied by several times.

【0031】以上、本実施例のように送・受信装置1
0、20を構成することで、PN符号とHF符号の特性
を生かした拡散符号の生成ができ、多重数の増加を図る
ことができる。
As described above, the transmitter / receiver 1 as in this embodiment
By configuring 0 and 20, it is possible to generate a spread code that makes use of the characteristics of the PN code and the HF code, and increase the number of multiplexes.

【0032】(実施例2)次に本発明の第2の実施例に
ついてDS/QPSK方式の場合を実施例にとって、図
面を参照しながら説明する。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to the drawings, taking the case of the DS / QPSK system as an embodiment.

【0033】図4は本発明の第2の実施例における直交
拡散による拡散符号生成方式を実現する際の一実施例で
あり、具体的に7段M系列、符号長127の場合を示し
てある。図において、図4は7段M系列内における9個
の符号C1〜C9それぞれの符号パターンを示しており、
同図の符号パターン状態が位相オフセット無し(符号発
生器のレジスタの初期値が全て1)の状態とする。
FIG. 4 shows an embodiment for realizing a spread code generation method by orthogonal spreading in the second embodiment of the present invention, and specifically shows a case of 7-stage M sequence and code length 127. . In the figure, FIG. 4 shows the code patterns of each of the nine codes C 1 to C 9 in the 7-stage M sequence,
It is assumed that the code pattern state in the figure is a state in which there is no phase offset (the initial values of the registers of the code generator are all 1).

【0034】[0034]

【表1】 [Table 1]

【0035】(表1)は図4の個々のパターン間での相
互相関の最大値を示したものである。同表より、例え
ば、C1−C5とC1−C7のように、同じM系列内の符号
パターンであっても組み合わせにより相互相関の最大値
が異なってくる。そこで、相互相関の最大値が大きい符
号パターンの組み合わせ(C1−C5)、(C2−C6)、
(C3−C7)、(C4−C8)をそれぞれIch、Qch
の直交拡散符号組として用いることにし、個々の符号組
において一方の符号パターンに位相オフセットをかけ、
相互相関値をその符号の組み合わせでとりうる最小値と
する。図5は(表1)をもとに本実施例で生成した直交
拡散符号組の具体例を示す。例えば、直交拡散符号組
(C1−C5)ではC5に7チップの位相オフセットをか
けて2符号の相互相関値を1としている。
Table 1 shows the maximum value of cross-correlation between the individual patterns shown in FIG. From the table, even if the code patterns are in the same M sequence, such as C 1 -C 5 and C 1 -C 7 , the maximum value of cross-correlation varies depending on the combination. Therefore, the combination of large code patterns maximum of the cross-correlation (C 1 -C 5), ( C 2 -C 6),
(C 3 -C 7), respectively Ich a (C 4 -C 8), Qch
It is decided to use as an orthogonal spreading code set of, and a phase offset is applied to one code pattern in each code set,
The cross-correlation value is the minimum value that can be taken by the combination of the codes. FIG. 5 shows a specific example of the orthogonal spreading code set generated in this embodiment based on (Table 1). For example, in the orthogonal spreading code set (C 1 -C 5 ), the cross-correlation value of 2 codes is set to 1 by multiplying C 5 by a phase offset of 7 chips.

【0036】以上本実施例によれば、相互相関の大きい
パターンどうしを直交拡散符号として組み合わせて位相
オフセットをかけることで、受信側で、I、Q両信号成
分が完全に分離できない場合でも相互の干渉を小さくで
きる。さらに、他波との相互相関が比較的小さくでき、
どちらか一方のchに干渉を受けても他方が検出できる
ことから、従来の方式より誤動作をする可能性は小さく
なる。
As described above, according to the present embodiment, patterns having a large cross-correlation are combined as orthogonal spreading codes and a phase offset is applied, so that even if both the I and Q signal components cannot be completely separated on the receiving side. Interference can be reduced. Furthermore, the cross-correlation with other waves can be made relatively small,
Since the other can be detected even if one of the channels receives interference, the possibility of malfunctioning is reduced as compared with the conventional method.

【0037】[0037]

【発明の効果】以上のように本発明は、各位相成分毎に
異なる拡散符号に自己相関特性のよい符号系列を割り当
て、各々の位相の符号パターンに同一の直交符号系列を
乗じることで、他波との干渉を低減するとともに、PN
系列で位相間の分離を行うことが可能となる。
As described above, according to the present invention, a code sequence having a good autocorrelation characteristic is assigned to different spreading codes for each phase component, and the code pattern of each phase is multiplied by the same orthogonal code sequence. The interference with the wave is reduced and the PN
It becomes possible to perform separation between phases in a series.

【0038】また、各位相間の信号では常に符号同期が
とれている場合に、相互相関の大きいパターンどうしを
拡散符号として組み合わせて位相オフセットをかけるこ
とで、他波との相互相関は比較的小さく、かつ、自波の
各位相の信号成分の分離が不完全な場合でも相互の干渉
による影響を小さくすることが可能となる。さらに、あ
る任意の位相成分に他波からの干渉を受けても、残る位
相成分は無相関であることから、同期捕捉、維持等にお
ける誤動作の可能性を小さくできる。
When the signals between the phases are always code-synchronized, patterns having a large cross-correlation are combined as spread codes to apply a phase offset, so that the cross-correlation with other waves is relatively small. Moreover, even if the separation of the signal components of each phase of the own wave is incomplete, the influence of mutual interference can be reduced. Further, even if an arbitrary phase component receives interference from another wave, the remaining phase components are uncorrelated, so that the possibility of malfunction in synchronization acquisition and maintenance can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における拡散符号生成方
式を実現するDS/QPSK送受信機のブロック結線図
FIG. 1 is a block connection diagram of a DS / QPSK transceiver that realizes a spread code generation system according to a first embodiment of the present invention.

【図2】同DS/QPSK送受信機におけるシステム系
の概念図
FIG. 2 is a conceptual diagram of a system system in the same DS / QPSK transceiver.

【図3】同DS/QPSK送受信機におけるPN符号と
HF符号とのタイミング関係図
FIG. 3 is a timing relationship diagram between PN code and HF code in the same DS / QPSK transceiver.

【図4】本発明の第2の実施例における拡散符号生成方
式の概念を示した符号のパターン図
FIG. 4 is a code pattern diagram showing a concept of a spread code generation system according to a second embodiment of the present invention.

【図5】本発明の第2の実施例における拡散符号生成方
式の概念を示した符号のパターン図
FIG. 5 is a code pattern diagram showing the concept of a spread code generation method according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 送信系装置 100 拡散符号生成部 110 QPSK符号化回路 121、122 乗算器 131、132 乗算器 141、142 PN符号発生器 150 直交符号発生器 160 直交変調回路 170 ローカル信号発生源 180 無線アンテナ 20 受信系装置 200 無線アンテナ 201 BPF 210 直交検波回路 220 ローカル信号 231、232 LPF 241、242 A/Dコンバータ 251〜254 ディジタル相関器 260 データ復号回路 271、272 乗算器 281、282 PN符号発生器 290 直交符号発生器 300 逆拡散符号発生回路 311、312 2乗回路 320 加算器 330 同期捕捉判定回路 340 クロック再生回路 10 transmission system device 100 spreading code generation unit 110 QPSK coding circuit 121, 122 multiplier 131, 132 multiplier 141, 142 PN code generator 150 orthogonal code generator 160 orthogonal modulation circuit 170 local signal source 180 wireless antenna 20 reception System device 200 Radio antenna 201 BPF 210 Quadrature detection circuit 220 Local signal 231, 232 LPF 241, 242 A / D converter 251-254 Digital correlator 260 Data decoding circuit 271, 272 Multiplier 281, 282 PN code generator 290 Quadrature code Generator 300 Despreading code generator 311, 312 square circuit 320 Adder 330 Synchronization acquisition determination circuit 340 Clock recovery circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の端末を有し、符号分割多元接続方
式を用いた直接スペクトル拡散による通信を行なう際
に、各位相成分に任意の符号系列内の各々異なる符号パ
ターンを用いた多値位相変調方式を用い、前記各位相成
分に対応する拡散符号のそれぞれに対し、任意の直交符
号系列内の同じ符号パターンを乗算した拡散符号を生成
する拡散符号生成方式。
1. A multi-valued phase using a different code pattern in an arbitrary code sequence for each phase component when performing direct spread spectrum communication using a code division multiple access method having a plurality of terminals. A spreading code generation method that uses a modulation method to generate a spreading code by multiplying each spreading code corresponding to each phase component by the same code pattern in an arbitrary orthogonal code sequence.
【請求項2】 複数の端末を有する符号分割多元接続方
式を用いた直接スペクトル拡散による通信を行なう際
に、各位相成分に任意の符号系列内の各々異なる符号パ
ターンを用いた多値位相変調方式を用い、前記符号系列
内で最大相互相関値の大きい符号パターンの組み合わせ
を選択し、それぞれの符号パターンを前記各位相成分の
拡散符号に割り当て、これらの符号パターンの相互相関
値が最小値をとる点まで相互のパターンを巡回させる多
値位相変調用拡散符号を生成する拡散符号生成方式。
2. A multi-level phase modulation method using different code patterns in an arbitrary code sequence for each phase component when performing direct spread spectrum communication using a code division multiple access method having a plurality of terminals. , A combination of code patterns having a large maximum cross-correlation value in the code sequence is selected, each code pattern is assigned to the spread code of each phase component, and the cross-correlation value of these code patterns takes the minimum value. A spreading code generation method that generates a spreading code for multi-level phase modulation in which mutual patterns are circulated up to a point.
【請求項3】 複数の端末を有する符号分割多元接続方
式を用いた直接スペクトル拡散による通信を行なう際
に、各位相成分に任意の符号系列内の各々異なる符号パ
ターンを用いた多値位相変調方式を用い、前記符号系列
内で最大相互相関値の大きい符号パターンの組み合わせ
を選択し、それぞれの符号パターンを前記各位相成分の
拡散符号に割り当て、これらの符号パターンの相互相関
値が最小値をとる点まで相互のパターンを巡回させた多
値位相変調用拡散符号を生成した後、前記各位相成分に
対応する拡散符号のそれぞれに対し、任意の直交符号系
列内の同じ符号パターンを乗算した拡散符号を生成する
拡散符号生成方式。
3. A multi-level phase modulation method using different code patterns in arbitrary code sequences for each phase component when performing direct spread spectrum communication using a code division multiple access method having a plurality of terminals. , A combination of code patterns having a large maximum cross-correlation value in the code sequence is selected, each code pattern is assigned to the spread code of each phase component, and the cross-correlation value of these code patterns takes the minimum value. After generating a multi-level phase modulation spreading code in which mutual patterns are circulated up to the point, each spreading code corresponding to each phase component is multiplied by the same code pattern in an arbitrary orthogonal code sequence. A spread code generation method for generating.
JP5247911A 1993-02-17 1993-10-04 Spreading code generation method Expired - Fee Related JP2797921B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5247911A JP2797921B2 (en) 1993-10-04 1993-10-04 Spreading code generation method
US08/197,592 US5488629A (en) 1993-02-17 1994-02-17 Signal processing circuit for spread spectrum communications
US08/551,111 US5610939A (en) 1993-02-17 1995-10-31 Signal processing circuit for spread spectrum communications
US08/775,763 US5881099A (en) 1993-02-17 1996-12-31 Signal processing circuit for spread spectrum communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5247911A JP2797921B2 (en) 1993-10-04 1993-10-04 Spreading code generation method

Publications (2)

Publication Number Publication Date
JPH07107007A true JPH07107007A (en) 1995-04-21
JP2797921B2 JP2797921B2 (en) 1998-09-17

Family

ID=17170391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5247911A Expired - Fee Related JP2797921B2 (en) 1993-02-17 1993-10-04 Spreading code generation method

Country Status (1)

Country Link
JP (1) JP2797921B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038999A1 (en) * 1995-05-31 1996-12-05 Ntt Mobile Communications Network Inc. Cdma mobile communication method, system, and mobile station equipment
KR20000009140A (en) * 1998-07-21 2000-02-15 윤종용 Apparatus and method for initial capture and frame synchronization of spread spectrum communication system
US6160838A (en) * 1996-12-13 2000-12-12 Uniden Corporation Spread spectrum transmitter, spread spectrum receiver and spread spectrum communication method and automatic gain control circuit for spread spectrum receiver
CN1079614C (en) * 1996-05-20 2002-02-20 三菱电机株式会社 Spread spectrum communication system
KR100346188B1 (en) * 1998-09-29 2002-07-26 삼성전자 주식회사 Device and method for generating spreading code and spreading channel signals using spreading code in cdma communication system
KR100369801B1 (en) * 1997-08-18 2003-04-21 삼성전자 주식회사 Apparatus and method for generating band-spread signal using pseudo-orthogonal code of cdma mobile communication system
US7916770B2 (en) 2003-07-10 2011-03-29 Panasonic Corporation Method of generating spreading codes, CDMA transmission apparatus, and CDMA reception apparatus
JP2016149606A (en) * 2015-02-10 2016-08-18 日本電信電話株式会社 Radio communication system, terminal station device and radio communication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198543A (en) * 1989-12-27 1991-08-29 Mitsubishi Electric Corp Synchronizing spread spectrum multiplex communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198543A (en) * 1989-12-27 1991-08-29 Mitsubishi Electric Corp Synchronizing spread spectrum multiplex communication system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038999A1 (en) * 1995-05-31 1996-12-05 Ntt Mobile Communications Network Inc. Cdma mobile communication method, system, and mobile station equipment
CN1079614C (en) * 1996-05-20 2002-02-20 三菱电机株式会社 Spread spectrum communication system
US6160838A (en) * 1996-12-13 2000-12-12 Uniden Corporation Spread spectrum transmitter, spread spectrum receiver and spread spectrum communication method and automatic gain control circuit for spread spectrum receiver
KR100369801B1 (en) * 1997-08-18 2003-04-21 삼성전자 주식회사 Apparatus and method for generating band-spread signal using pseudo-orthogonal code of cdma mobile communication system
KR20000009140A (en) * 1998-07-21 2000-02-15 윤종용 Apparatus and method for initial capture and frame synchronization of spread spectrum communication system
KR100346188B1 (en) * 1998-09-29 2002-07-26 삼성전자 주식회사 Device and method for generating spreading code and spreading channel signals using spreading code in cdma communication system
US7916770B2 (en) 2003-07-10 2011-03-29 Panasonic Corporation Method of generating spreading codes, CDMA transmission apparatus, and CDMA reception apparatus
JP2016149606A (en) * 2015-02-10 2016-08-18 日本電信電話株式会社 Radio communication system, terminal station device and radio communication method

Also Published As

Publication number Publication date
JP2797921B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US6393047B1 (en) Quadriphase spreading codes in code division multiple access communications
KR100221669B1 (en) Method and apparatus for variable rate signal transmission in a spread spectrum communication system using coset coding
CA2175488C (en) Method and apparatus for bifurcating signal transmission over in-phase and quadrature phase spread spectrum communication channels
JP3658402B2 (en) Synchronization and code acquisition to base stations in spread spectrum communication systems
US6801564B2 (en) Reverse link correlation filter in wireless communication systems
KR100629701B1 (en) Multipath cdma receiver for reduced pilot
JPH0799487A (en) Spread spectrum communication equipment and radio communication equipment
US6674790B1 (en) System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
JP3000037B2 (en) Communication method and apparatus for the communication method
JP3063648B2 (en) Spread spectrum communication system
JP2000174663A (en) Code division multiplex communication system
JPH07107007A (en) Spreading code generation system
JP2000354021A (en) Code division multiplex transmission system
JP2941651B2 (en) Mobile communication system
JPH08293818A (en) Spectrum diffusion communication equipment
JP3534796B2 (en) Spread spectrum communication method, transmitter and receiver thereof
JP2810359B2 (en) Spread spectrum communication system
KR100743888B1 (en) Cdma communication apparatus and system using quasi-orthogonal spreading sequence with guard interval sequence
JPH0888587A (en) Spread spectrum communication equipment
KR100778330B1 (en) Orthogonal code division multiple access communication system and method using cyclic orthogonal sequence
KR100337388B1 (en) Apparatus for acquisition of synchronization of PN signal using multi-channel signal in digital communication system and method therefor
JP4051818B2 (en) Radio equipment using CDMA transmission system
JP4839910B2 (en) Spread spectrum communication system and method, and transmitter and receiver used therefor
JP4339154B2 (en) Spread spectrum transmitter and spread spectrum receiver
JP2724949B2 (en) Spread spectrum communication system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees