JPH071064B2 - Hot water mixing device - Google Patents

Hot water mixing device

Info

Publication number
JPH071064B2
JPH071064B2 JP2021179A JP2117990A JPH071064B2 JP H071064 B2 JPH071064 B2 JP H071064B2 JP 2021179 A JP2021179 A JP 2021179A JP 2117990 A JP2117990 A JP 2117990A JP H071064 B2 JPH071064 B2 JP H071064B2
Authority
JP
Japan
Prior art keywords
valve
water
temperature
hot water
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2021179A
Other languages
Japanese (ja)
Other versions
JPH03229081A (en
Inventor
修 山本
浩一郎 望月
武秀 宮島
隆義 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2021179A priority Critical patent/JPH071064B2/en
Publication of JPH03229081A publication Critical patent/JPH03229081A/en
Publication of JPH071064B2 publication Critical patent/JPH071064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、湯・水を混合する混合弁を駆動させて前記湯
と水との混合割合を自在に変化させることにより、任意
に所定温度の混合水を得ることができる湯水混合装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is designed to drive a mixing valve for mixing hot water and water to freely change a mixing ratio of the hot water and water, thereby arbitrarily setting a predetermined temperature. The present invention relates to a hot and cold water mixing device capable of obtaining mixed water.

〔従来の技術〕[Conventional technology]

従来から、湯用バルブと水用バルブとを適宜調節して所
望温度の温水を得るようにした湯水混合装置は周知であ
る。この種の混合装置は手動操作が伴うため、適温の混
合水を出湯させるのに時間を要するとともに、前記混合
水を得るまでに相当量の湯・水が不必要に垂れ流しとな
るため不経済であった。
Conventionally, a hot and cold water mixing apparatus is known in which hot water and water valves are appropriately adjusted to obtain hot water at a desired temperature. Since this type of mixing device is accompanied by manual operation, it takes time to discharge the appropriate temperature of the mixed water, and a considerable amount of hot water is unnecessarily drained before the mixed water is obtained, which is uneconomical. there were.

このため、前記湯・水を自動混合させる装置として、例
えば、熱湯流路と冷水流路及び両流路とそれぞれ連通す
る混合水流路を備えたケース内に、あらかじめ封入され
たワックス(感熱剤)の熱膨張、収縮によって出没口か
ら出没する軸杆を備えた感温体と、前記感温体の作動に
よって混合水の温度を設定温度に維持する制御弁と、こ
の制御弁を直線方向に移動させて出湯する混合水の温度
を設定するための操作部とを備えた、所謂、自動温度調
節機能を内蔵した湯水混合バルブが市販されている。こ
の湯水混合バルブは、操作部を所望の出湯温度が得られ
る位置に設定することにより、バルブ操作を行うことな
く自動的に適温の混合水が得られ至便である反面、ワッ
クスは熱湯あるいは冷水によって膨張・収縮を繰返すも
のの、その応答速度が比較的遅く、この結果、出湯温度
を変化させた場合、温度変化への追随が鈍くなり、一定
時間熱湯や冷水が吐水されるおそれがあった。又、例え
ば、夏期時に炊事や洗濯等に水道水のみを使用しようと
した場合、前記ワックスが収縮しても軸杆をワックスの
収縮に伴って完全に追随動作させることが難しく、この
ため、熱湯流路を完全に閉鎖させることが困難となって
熱湯を無駄に漏水させるおそれがあった。
Therefore, as an apparatus for automatically mixing the hot water and the water, for example, a wax (heat-sensing agent) previously enclosed in a case having a hot water flow path, a cold water flow path, and a mixed water flow path communicating with both flow paths. Temperature sensing element equipped with a shaft rod that appears and disappears from the entrance and exit due to thermal expansion and contraction, a control valve that maintains the temperature of the mixed water at a set temperature by the operation of the temperature sensing element, and this control valve moves in a linear direction There is commercially available a hot and cold water mixing valve having a so-called automatic temperature control function, which is provided with an operation unit for setting the temperature of the mixed water to be discharged. This hot and cold water mixing valve is convenient because it is convenient to automatically obtain an appropriate temperature mixed water without operating the valve by setting the operating part to the position where the desired hot water temperature can be obtained. Although it repeatedly expands and contracts, its response speed is relatively slow, and as a result, when the tapping temperature is changed, the temperature change becomes slow to follow, and hot water or cold water may be discharged for a certain period of time. Further, for example, when using only tap water for cooking or washing during the summer, it is difficult to cause the shaft rod to completely follow the contraction of the wax even if the wax contracts. There is a risk that it will be difficult to completely close the flow path, and the hot water will be uselessly leaked.

〔発明が解決するための課題〕[Problems to be Solved by the Invention]

前記の各問題点を解消するために、最近、電子式の湯水
混合装置が開発されている。この混合装置としては、例
えば、第9図で示すように、給湯機1と接続した給湯管
2と、給水源3に接続した給水管4とを湯水混合弁5に
連結し、前記混合弁5にて混合した湯・水の混合水を混
合管6を介してシャワー7あるいはカラン(蛇口)7aに
切替えて吐水させる切換弁8と、前記混合管6内に設置
した混合水温検出センサ9とを備え、出湯に際しては、
操作部10にて出湯温度を設定すると、混合水温検出セン
サ9により検出された出湯温度と前記設定温度との偏差
を制御部13にて選定し、その選定された出力信号を湯水
混合弁5の駆動部11に送出し、この駆動部11により前記
湯水混合弁5の弁体を駆動させて弁口の開閉度を調節設
定することにより、湯・水の混合割合を操作部10にてあ
らかじめ設定した出湯温度となるように調節し、この混
合水を、駆動部12からの指令にて吐水路が設定された切
換弁8を経てシャワー7あるいはカラン7aより吐水する
ように構成した湯水水混合装置14がよく知られている。
In order to solve the above problems, an electronic hot and cold water mixing device has been recently developed. As this mixing device, for example, as shown in FIG. 9, a hot water supply pipe 2 connected to a water heater 1 and a water supply pipe 4 connected to a water supply source 3 are connected to a hot water mixing valve 5, and the mixing valve 5 is connected. The mixed water temperature detection sensor 9 installed in the mixing pipe 6 and the switching valve 8 that switches the mixed water of hot water and water to the shower 7 or the currant (faucet) 7a through the mixing pipe 6 to discharge the water. When preparing and tapping,
When the hot water temperature is set by the operation unit 10, the deviation between the hot water temperature detected by the mixed water temperature detection sensor 9 and the set temperature is selected by the control unit 13, and the selected output signal is output by the hot water mixing valve 5. It is sent to the drive unit 11, and the drive unit 11 drives the valve body of the hot and cold water mixing valve 5 to adjust and set the degree of opening and closing of the valve opening. The hot and cold water mixing apparatus is configured to be adjusted so as to reach the hot water discharge temperature, and the mixed water is discharged from the shower 7 or the currant 7a through the switching valve 8 in which the water discharge passage is set by a command from the drive unit 12. 14 is well known.

そして、前記湯水混合弁5及び切換弁8の各弁体を駆動
する駆動部11,12には、通常電動機が使用されており、
この電動機は一般に前記各弁5,8の外部側に取付けられ
て弁装置内の弁体を駆動させて弁口の開閉及び流路の切
換を行っている。
An electric motor is usually used for the drive units 11 and 12 for driving the valve bodies of the hot and cold water mixing valve 5 and the switching valve 8.
This electric motor is generally attached to the outside of each of the valves 5 and 8 to drive the valve element in the valve device to open / close the valve port and switch the flow path.

然るに、前記電動機はその通電部(例えば、コイル)が
湯・水に触れないように前記各弁5,8の外部側に設置さ
れている関係上、各弁5,8内の弁体と駆動連結される電
動機の回転軸は、Oリングやパッキン等のシール部材を
介して前記各弁5,8の壁体に水密に挿入されている。従
って、弁体を駆動する際、回転軸には漏水を防ぐため
に、シール部材が一定圧力により取付けられているの
で、前記シール圧に抗して、即ち、シール部材との摺動
摩擦に打勝って弁体駆動させる必要があるため、駆動ト
ルクの大きな電動機を必要とする問題があった。
However, since the electric motor is installed outside the valves 5 and 8 so that the current-carrying part (for example, coil) does not come into contact with hot water or water, the electric motor is driven with the valve element inside the valves 5 and 8. The rotating shaft of the connected electric motor is watertightly inserted into the wall of each of the valves 5 and 8 through a sealing member such as an O-ring or packing. Therefore, when the valve element is driven, the seal member is attached to the rotary shaft by a constant pressure in order to prevent water leakage, so that the seal pressure is resisted, that is, the sliding friction with the seal member is overcome. Since the valve element needs to be driven, there is a problem that an electric motor having a large driving torque is required.

又、湯水混合弁5の使用中に停電事故が発生すると、電
動機は湯水混合弁5の弁体が出湯温度の位置に保持され
たままとなって弁口を閉じることができないので、混合
水でなく、給水のみを必要とする場合でも、設定された
出湯温度の混合水が吐水されることとなり、不必要に給
湯機1内の熱湯を使用するという問題があった。
If a power failure occurs while the hot and cold water mixing valve 5 is being used, the electric motor cannot close the valve port because the valve body of the hot and cold water mixing valve 5 is held at the hot water discharge temperature position. Even if only the water supply is required, the mixed water having the set hot water temperature is discharged, and there is a problem that the hot water in the water heater 1 is unnecessarily used.

本発明は前記の問題点に鑑み、弁体をソレノイドにより
直線状に往復駆動させる方式を採用し、その目的は、前
記弁体を駆動するソレノイドのプランジャを電気的に制
御し、湯水混合弁の弁口の開閉度合を、混合水の出湯温
度に応じて前記弁体により迅速・確実に可変させて、所
定温度の混合水を得るようにした湯水混合装置を提供す
ることにある。
In view of the above problems, the present invention adopts a method of linearly reciprocally driving a valve body by a solenoid, and an object thereof is to electrically control a plunger of a solenoid that drives the valve body, It is an object of the present invention to provide a hot and cold water mixing apparatus in which the degree of opening and closing of a valve opening can be changed quickly and reliably by the valve body according to the hot water temperature of the mixed water to obtain mixed water at a predetermined temperature.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、リニアソレノイドからなる弁駆動部と、この
弁駆動部の下部に直線状に直付けされて湯・水を混合す
る混合弁部と、更に、前記弁駆動部を駆動制御する制御
装置とによって構成され、前記弁駆動部は、駆動軸を下
方に突出させたプランジャと、該プランジャの軸方向に
配置された固定鉄心と、この固定鉄心の外側に巻装した
コイルとからなり、又、混合弁部は、湯・水の各流入口
と混合水の流出口とを互いに連通させる混合室を内部に
備えた弁本体と、弁駆動部内を貫通する駆動軸と接離可
能に当接して前記混合室に昇降可能に遊嵌したスプール
と、このスプールに取付けられて混合室内に湯・水の各
流入口と混合水の流出口とを連通させる弁口を開閉させ
る弁体とを備えてなり、更に、制御装置は、ノコギリ波
発生回路から定型状に出力されるノコギリ波と、混合水
の温度を検出する混合水温検出回路から出力される出力
とを比較して弁駆動部のコイルに印加される電圧をパル
ス制御し、弁駆動部のプランジャの吸引力を前記弁駆動
部のコイルに流れる電流に比例させて可変させるように
湯水混合弁を構成したことを特徴とする。
The present invention relates to a valve drive unit including a linear solenoid, a mixing valve unit that is directly linearly attached to a lower portion of the valve drive unit to mix hot water and water, and a control device that drives and controls the valve drive unit. The valve drive unit includes a plunger having a drive shaft protruding downward, a fixed core arranged in the axial direction of the plunger, and a coil wound outside the fixed core. The mixing valve part is in contact with and separable from a valve main body having therein a mixing chamber for communicating the hot water / water inlets and the mixed water outlet with each other, and a drive shaft passing through the valve drive part. And a valve body attached to the spool to open and close a valve port that connects the hot water / water inlets and the mixed water outlet to each other. In addition, the control device has a standard configuration from a sawtooth wave generation circuit. The sawtooth wave output to the valve is compared with the output from the mixed water temperature detection circuit that detects the temperature of the mixed water, and the voltage applied to the coil of the valve drive unit is pulse-controlled, and the plunger of the valve drive unit is controlled. The hot and cold water mixing valve is configured to vary the suction force in proportion to the current flowing through the coil of the valve drive unit.

〔作用〕[Action]

湯水混合弁の弁駆動部のコイルに通電を行わない場合
は、混合弁部の弁体は混合室内の弁口を閉鎖して熱湯の
流出を阻止し、前記弁駆動部のコイルに通電を行ったと
きは、制御装置のノコギリ波発生回路から出力されるノ
コギリ波と、混合水温検出回路から出力される混合水の
検出温度に相当する出力とを比較し、前記弁駆動部に印
加される電圧をあらかじめ設定した混合水の出湯温度に
対応させてパルス制御し、前記弁駆動部に流れる電流に
比例した吸引力によってプランジャを固定鉄心側に移動
させ、このプランジャの移動距離だけスプールを駆動軸
を介して押動して弁体により弁口を、あらかじめ設定し
た出湯温度の混合水が得る熱湯の流量を確保するための
開口度に設定し、熱湯を前記弁口から混合室内に流入さ
せ、該混合室内に流入している冷水と混合してあらかじ
め設定した出湯温度の混合水が得られるように構成され
ているので、設定温度に相当する出湯温度の混合水を迅
速確実に出湯させることが可能となり、又、弁駆動部に
流れる電流は、制御装置によってパルス制御されて混合
水の出湯温度に対応する電流が通電されるようになって
いるので、混合室の弁口の開口度合を混合水の設定温度
に維持することができるとともに、出湯温度の設定値を
変更した場合は、制御装置からの指令信号により、前記
弁駆動部には、変更した設定温度に相当する電流がパル
ス制御されて流れ、弁口の開口度合を直ちに変更して所
望の出湯温度の混合水を得ることができる。しかも、弁
駆動部のプランジャは、その吸引力が、弁駆動部にパル
ス制御されて流れる電流に比例して得られるので、前記
プランジャを特別大きな吸引力を必要とすることなく、
所定位置まで少電力で迅速確実に移動させることができ
るので、弁駆動部の小形・軽量化がはかれ、かつ、停電
時においては、プランジャの吸引力が解消される結果、
プランジャは直ちに原位置に復帰して弁口を塞ぎ、停電
時に熱湯が不必要に流出するのを確実に防ぐようにした
ことを特徴とする。
When the coil of the valve drive section of the hot and cold water mixing valve is not energized, the valve body of the mixing valve section closes the valve opening in the mixing chamber to prevent hot water from flowing out, and the coil of the valve drive section is energized. In this case, the sawtooth wave output from the sawtooth wave generation circuit of the control device is compared with the output corresponding to the detected temperature of the mixed water output from the mixed water temperature detection circuit, and the voltage applied to the valve drive section is compared. Is pulse-controlled according to the preset hot water temperature of the mixed water, the plunger is moved to the fixed iron core side by the suction force proportional to the current flowing in the valve drive section, and the spool is driven by the moving distance of the plunger to the drive shaft. The valve opening is pushed by the valve body to set the opening degree for securing the flow rate of the hot water obtained by the mixed water having the preset hot water temperature, and the hot water is caused to flow into the mixing chamber from the valve opening. Flow into the mixing chamber Since it is configured to obtain the mixed water of the preset hot water temperature by mixing with the cold water, it becomes possible to quickly and reliably discharge the mixed water of the hot water temperature corresponding to the set temperature. The current flowing through the valve drive section is pulse-controlled by the control device so that the current corresponding to the hot water temperature of the mixed water is supplied, so that the opening degree of the valve opening of the mixing chamber is set to the set temperature of the mixed water. When the set value of the hot water temperature can be maintained and the set value of the hot water is changed, a current corresponding to the changed set temperature is pulse-controlled to flow through the valve drive unit in response to a command signal from the control device. The opening degree of can be immediately changed to obtain mixed water having a desired tapping temperature. Moreover, since the attraction force of the plunger of the valve drive unit is obtained in proportion to the electric current that is pulse-controlled in the valve drive unit, the plunger does not require a particularly large attraction force,
Since it can be moved to a predetermined position quickly and reliably with a small amount of power, the valve drive unit can be made smaller and lighter, and in the event of a power failure, the suction force of the plunger is canceled,
A feature of the plunger is that it immediately returns to its original position and closes the valve opening to prevent unnecessarily outflow of hot water during a power failure.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図ないし第3図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS.

第1図は本発明に係わる湯水混合装置の使用状態を概略
的に示す構成図で、第9図に記載した符号と同一符号は
同一部品を示す。
FIG. 1 is a configuration diagram schematically showing a usage state of the hot and cold water mixing apparatus according to the present invention, and the same reference numerals as those shown in FIG. 9 denote the same parts.

第1図において、15は給水管で、その配管途中で2方向
に分岐されて一方は給湯機1に、他方は湯水混合弁16に
それぞれ連結し、17は給湯機1と湯水混合弁16とを連結
する給湯管、18は湯水混合弁16の流出口側とカラン18a
の間に配管した混合水管で、その配管途中に混合水の温
度を検出する混合水温度検出センサ(以下、温度検出セ
ンサという)19が取付けられ、その検出信号は制御装置
20に送出される。又、21は給湯管17の配管途中に設けた
熱湯温度検出センサ(以下、熱湯検出センサという)
で、その検出信号も制御装置20に送出される。なお、第
1図中、22は減圧弁、23は安全弁、24は排水ドレン、25
は給水コックである。
In FIG. 1, reference numeral 15 is a water supply pipe, which is branched into two directions in the middle of the pipe, one is connected to a water heater 1 and the other is connected to a hot water mixing valve 16, and 17 is a water heater 1 and a hot water mixing valve 16. A hot water supply pipe that connects the hot water mixing valve 16 and the runner 18a.
A mixed water temperature sensor (hereinafter referred to as a temperature detection sensor) 19 that detects the temperature of the mixed water is attached in the middle of the mixed water pipe connected between the two.
Sent to 20. Further, 21 is a hot water temperature detection sensor provided in the middle of the hot water supply pipe 17 (hereinafter referred to as hot water detection sensor)
Then, the detection signal is also sent to the control device 20. In FIG. 1, 22 is a pressure reducing valve, 23 is a safety valve, 24 is a drainage drain, and 25 is a drainage drain.
Is a water cock.

次に、湯水混合弁16の構造を第2図により説明する。Next, the structure of the hot and cold water mixing valve 16 will be described with reference to FIG.

第2図において、26は湯水混合弁16の弁駆動部を示し、
41は同じく混合弁16の混合弁部を示すもので、両部材2
6,41は縦方向の中央部に断熱材42を介して締付ボルト
(第4図参照)43により締着すると、縦方向に直線状を
なして連結固定される。
In FIG. 2, reference numeral 26 denotes a valve drive part of the hot and cold water mixing valve 16,
Reference numeral 41 also shows the mixing valve portion of the mixing valve 16, and both members 2
When 6, 41 are fastened to the central portion in the vertical direction via a heat insulating material 42 with a fastening bolt (see FIG. 4) 43, they are connected and fixed in a straight line in the vertical direction.

前記湯水混合弁16の弁駆動部26は、第2図で示すよう
に、通電電流に比例して吸引力を任意に変更可能とした
リニアソレノイドを使用し、このリニアソレノイドは、
固定鉄心27の貫通孔28aに軸受を介して遊嵌する駆動軸2
8を下方に突出させたプランジャ29と、該プランジャ29
を上下動可能に収容案内する磁性体の案内筒30と、該案
内筒30と固定鉄心27とを同一軸線上の位置で連結固定す
る真鍮等非磁性体金属からなる連結筒31と、前記案内筒
30と固定鉄心27の外側において、高さ方向の中心を連結
筒31の軸方向における中心位置とほぼ合致させた状態で
前記両部材30,27間にまたがって巻装したコイル32と、
このコイル32の外側に遊嵌した磁性体金属のケース33
と、更に、前記ケース33の上部開口端に締付ねじ33aを
用いて被着したケース33のキャップを兼ねる補助鉄心34
とによって構成されている。そして、前記固定鉄心27と
プランジャ29には、熱湯を案内筒30内に充満させるため
の透孔35が、それぞれ連通可能に穿孔されており、又、
固定鉄心27とプランジャ29の下端及びプランジャ29の上
端と補助鉄心34との間には、非磁性体金属からなるスペ
ーサ36がそれぞれ介在されている。更に、案内筒30の上
端とケース33との境界にはOリング37を水密に挟着させ
て、熱湯がコイル32側に漏出するのを阻止している。
As shown in FIG. 2, the valve drive unit 26 of the hot and cold water mixing valve 16 uses a linear solenoid capable of arbitrarily changing the suction force in proportion to the energizing current.
The drive shaft 2 loosely fitted in the through hole 28a of the fixed iron core 27 via the bearing.
8, the plunger 29 protruding downward, and the plunger 29
And a guide tube 30 made of a magnetic material for accommodating and guiding, and a connection tube 31 made of a non-magnetic metal such as brass for connecting and fixing the guide tube 30 and the fixed iron core 27 at a position on the same axis, and the guide. Cylinder
On the outside of 30 and the fixed iron core 27, the coil 32 wound over both members 30, 27 in a state where the center in the height direction is substantially aligned with the center position in the axial direction of the connecting cylinder 31,
Magnetic metal case 33 loosely fitted to the outside of the coil 32
And an auxiliary iron core 34 that also functions as a cap of the case 33 attached by using a tightening screw 33a on the upper open end of the case 33.
It is composed of and. Further, the fixed iron core 27 and the plunger 29, through holes 35 for filling the guide tube 30 with hot water, are respectively perforated to be communicable,
Spacers 36 made of non-magnetic metal are interposed between the fixed iron core 27 and the lower end of the plunger 29, and between the upper end of the plunger 29 and the auxiliary iron core 34. Further, an O-ring 37 is watertightly sandwiched at the boundary between the upper end of the guide cylinder 30 and the case 33 to prevent the hot water from leaking to the coil 32 side.

つづいて、混合弁部41の構造を第2図によって説明す
る。
Next, the structure of the mixing valve portion 41 will be described with reference to FIG.

混合弁部41は、一方に熱湯の流入口44と冷水の流入口45
を設け、他方には湯・水の混合水が流出する流出口46を
設けた弁本体47と、この弁本体47に設けられて流入口4
4,45と流出口46とを連通させる混合室48と、上端を固定
鉄心27側に突出させて駆動軸28の下方端と当接させて胴
央部に混合室48の弁口49を開閉させる、例えば、耐熱性
に優れたセラミック又は硬質ゴム等からなる弁体50を嵌
着し、下端には内部に径大な空所51を穿孔してその側方
と下方端に径小の小孔a,bを開口した緩衝ピストン52を
螺着して、前記混合室48に駆動軸28と共動移動可能に遊
嵌したスプール53と、弁本体47の下部開口端に螺着され
て前記緩衝ピストン52の下方端を摺動案内する凹穴54を
穿設した閉ナット55と、前記閉ナット55の内方端と弁体
50との間に介挿されて該弁体50を常時弁口49を閉鎖する
方向に押圧付勢する圧縮ばね56とによって構成されてお
り、この混合弁部41上に断熱材42を介して前記弁駆動部
26を一直線状に乗載固定すると、スプール53は圧縮ばね
56に付勢されて弁口49を弁体50により閉鎖した状態で、
駆動軸28と同一線上の位置で当接するようになってい
る。
The mixing valve unit 41 has a hot water inlet 44 and a cold water inlet 45 on one side.
And a valve body 47 provided with an outflow port 46 through which mixed water of hot water flows out, and an inflow port 4 provided in this valve body 47.
A mixing chamber 48 that connects 4,45 and the outlet 46, and an upper end of the mixing chamber 48 that projects toward the fixed iron core 27 and contacts the lower end of the drive shaft 28 to open and close the valve port 49 of the mixing chamber 48 in the center of the body. For example, a valve body 50 made of ceramic or hard rubber having excellent heat resistance is fitted, a large-diameter space 51 is bored in the lower end, and a small diameter is formed at its side and lower ends. A buffer piston 52 having holes a and b opened is screwed into the spool 53, and the spool 53 is loosely fitted into the mixing chamber 48 so as to be movable together with the drive shaft 28. A closed nut 55 having a recessed hole 54 for slidingly guiding the lower end of the buffer piston 52, and an inner end of the closed nut 55 and a valve body.
And a compression spring 56 that is interposed between the valve body 50 and always presses and urges the valve body 50 in the direction of closing the valve port 49. The valve drive section
When the 26 is mounted and fixed in a straight line, the spool 53 becomes a compression spring.
With the valve opening 50 closed by the valve body 50 by being biased by 56,
The drive shaft 28 and the drive shaft 28 come into contact with each other at a position on the same line.

なお、第2図中・60はスプール53を手動操作するための
操作杆で、先端に半円状の係止段部61を有して、混合水
流出口46の上部側から弁本体47の壁体を水密に貫通させ
て混合室48内に突出させ、前記操作杆60の係止段部61
を、スプール53胴央にその軸方向に沿ってコ字状に切除
した係合凹部62と係合させて操作杆60を回動すると、ス
プール53は圧縮ばね56の力に抗して前記操作杆60の半径
寸法の範囲内で降下して弁口49を手動で開放することが
できる。
Reference numeral 60 in FIG. 2 denotes an operating rod for manually operating the spool 53, which has a semicircular locking step portion 61 at the tip, and which extends from the upper side of the mixed water outlet 46 to the wall of the valve body 47. The body is made to penetrate in a watertight manner to project into the mixing chamber 48, and the locking step portion 61 of the operating rod 60 is provided.
When the operating rod 60 is rotated by engaging with the engaging recess 62 cut out in a U shape along the axial direction of the spool 53 in the center of the spool 53, the spool 53 operates against the force of the compression spring 56. The valve port 49 can be manually opened by descending within the radius of the rod 60.

次に前記湯水混合弁16の弁駆動部26を駆動制御する制御
装置20の構成を第7図により説明する。
Next, the configuration of the control device 20 for driving and controlling the valve drive unit 26 of the hot and cold water mixing valve 16 will be described with reference to FIG.

制御装置20は大別すると、電源回路65と、スイッチ回路
66と、ノコギリ波発生回路67と、混合水温検出回路68
と、駆動信号発生回路69と、混合湯温異常検出回路70
と、熱湯温度検出回路71とによって構成されている。
The control device 20 is roughly classified into a power circuit 65 and a switch circuit.
66, sawtooth wave generation circuit 67, mixed water temperature detection circuit 68
Drive signal generating circuit 69 and mixed hot water temperature abnormality detection circuit 70
And a hot water temperature detection circuit 71.

電源回路65は商用電源72に1次側を接続したトランスTr
と、このトランスTrの2次側に交流入力端子を接続した
ダイオードブリッジDBと、このダイオードブリッジDBの
直流出力端子に直列接続した定電圧装置AVRと、更に、
前記直流出力端子に並列接続した平滑コンデンサC,C1
からなり、商用電源72を降下して全波整流した後定電圧
化した定電圧電源Vccを前記各回路及び弁駆動部26のコ
イル32に動作電源として供給する。
The power supply circuit 65 is a transformer Tr in which the primary side is connected to the commercial power supply 72.
And a diode bridge DB with an AC input terminal connected to the secondary side of the transformer Tr, and a constant voltage device AVR connected in series with the DC output terminal of the diode bridge DB,
The smoothing capacitors C, C 1 connected in parallel to the DC output terminal, and the constant voltage power supply V cc which is a constant voltage after the commercial power supply 72 is dropped and full-wave rectified is coiled in each of the circuits and the valve drive unit 26. Supply to 32 as operating power.

スイッチ回路66は定電圧電源Vccと接地抵抗R1との間に
挿入した操作スイッチ73と、クロック入力端CLを該スイ
ッチ73に接続したRSフリップフロップFFとからなり、操
作スイッチ73の投入によって入力されるクロック信号に
よって、その出力端Qからは常時(操作スイッチ73のOF
F状態時)“H"レベルの信号が出力されている。
The switch circuit 66 includes an operation switch 73 inserted between the constant voltage power supply V cc and the ground resistance R 1, and an RS flip-flop FF having a clock input terminal CL connected to the switch 73. Depending on the input clock signal, the output terminal Q always operates (OF of the operation switch 73
(F state) "H" level signal is output.

ノコギリ波発生回路67は、発振回路67aと積分回路67bと
からなり、前記発振回路67aは比較器A1を備え、その反
転入力端子は、ダイオードD1を介してRSフリップフロッ
プFFの出力端と接続されており、定電圧電源Vccを接地
間に直列に挿入した抵抗R2,R3とコンデンサC2との時定
数によって設定された出力が、RSフリップフロップFFか
ら“L"レベルの信号が出力される毎に入力され、又、非
反転入力端子には、定電圧電源Vccと接地間に直列に挿
入した抵抗R4,R5,R6とによって分圧された出力が入力さ
れることによって、比較器A1の出力端からは、操作スイ
ッチ73を投入することにより一定周期の方形波が出力さ
れる。つづいて、積分回路67bは増幅器S1を備え、その
反転入力端子は抵抗R7を介して比較器A1の出力端と接続
し、又、非反転入力端子は抵抗R9を介して接地されてい
るので、その出力端からは、抵抗R8,R7とコンデンサC3
との時定数により比較器A1からの方形波出力が積分され
た形、即ち、ノコギリ波状となって出力される。
The sawtooth wave generation circuit 67 includes an oscillation circuit 67a and an integration circuit 67b, the oscillation circuit 67a includes a comparator A 1 , the inverting input terminal of which is connected to the output terminal of the RS flip-flop FF via a diode D 1. The output that is set by the time constant of the resistors R 2 and R 3 and the capacitor C 2 in which the constant voltage power supply V cc is connected in series between the ground is output from the RS flip-flop FF as the “L” level signal. Is input every time it is output, and the output divided by the resistors R 4 , R 5 , and R 6 inserted in series between the constant voltage power supply V cc and the ground is input to the non-inverting input terminal. As a result, a square wave having a constant cycle is output from the output end of the comparator A 1 by turning on the operation switch 73. Then, the integrating circuit 67b includes an amplifier S 1, connected to its inverting input terminal the output terminal of the comparator A 1 via a resistor R 7, The non-inverting input terminal is grounded through a resistor R 9 Therefore, from the output end, resistors R 8 and R 7 and capacitor C 3
The square wave output from the comparator A 1 is integrated by the time constants of and, that is, a sawtooth wave is output.

次に混合水温検出回路68は、温度−電圧変換回路74と、
混合水温設定回路75と、基準電圧設定回路76と、差動増
幅器S2とからなり、温度−電圧変換回路74は定電圧電源
Vccと接地間に、混合水温検出センサ(以下温度検出セ
ンサという、本例ではサーミスタ使用)19と抵抗R10
を直列に挿入して構成され、温度検出センサSにて検出
した温度に対応する抵抗値と抵抗R10により分圧された
電圧が、抵抗R11を介して差動増幅器S2の非反転入力端
子に入力され、又、混合水温設定回路75は定電圧電源V
ccと接地間に可変抵抗VRと抵抗R12,R13とを直列に挿入
して構成し、可変抵抗VRと抵抗R12の接続点からは、混
合水の設定温度に相当する電圧が差動増幅器S2の非反転
入力端子に抵抗R14を介して入力され、更に、基準電圧
設定回路76は、抵抗R15とR16とによって分圧された電圧
が混合水温検出回路68の基準電圧として差動増幅器S2
非反転入力端子に入力される。更に、差動増幅器S2の反
転入力端子と出力端との間には、差動増幅器S2による増
幅度を設定するフィードバック抵抗R17が接続されてい
る。そして、差動増幅器S2は温度−電圧変換回路74と混
合水温設定回路75にて検出された温度の差を演算増幅し
てその出力端からアナログ信号として出力する。
Next, the mixed water temperature detection circuit 68, the temperature-voltage conversion circuit 74,
It is composed of a mixed water temperature setting circuit 75, a reference voltage setting circuit 76, and a differential amplifier S 2 , and the temperature-voltage conversion circuit 74 is a constant voltage power supply.
It is configured by inserting a mixed water temperature detection sensor (hereinafter referred to as a temperature detection sensor, a thermistor is used in this example) 19 and a resistor R 10 in series between V cc and the ground, and corresponds to the temperature detected by the temperature detection sensor S. The voltage value divided by the resistance value and the resistance R 10 is input to the non-inverting input terminal of the differential amplifier S 2 via the resistance R 11 , and the mixed water temperature setting circuit 75 uses the constant voltage power supply V
The variable resistor VR and the resistor R 12, R 13 constituted by inserted in series between cc and ground, from the connection point of the variable resistor VR and the resistor R 12, the voltage corresponding to the set temperature of the mixed water is differential The voltage is input to the non-inverting input terminal of the amplifier S 2 via the resistor R 14 , and further, the reference voltage setting circuit 76 uses the voltage divided by the resistors R 15 and R 16 as the reference voltage of the mixed water temperature detection circuit 68. It is input to the non-inverting input terminal of the differential amplifier S 2 . Furthermore, between the inverting input terminal and the output terminal of the differential amplifier S 2, the feedback resistor R 17 to set the amplification degree of the differential amplifier S 2 is connected. The differential amplifier S 2 arithmetically amplifies the difference between the temperatures detected by the temperature-voltage conversion circuit 74 and the mixed water temperature setting circuit 75, and outputs it as an analog signal from its output end.

駆動信号発生回路69は比較器A2とトランジスタTとから
なり、前記比較器A2の反転入力端子は差動増幅器S2の出
力端と接続されて該増幅器S2からの出力が入力され、
又、非反転入力端子は増幅器S1からの出力が入力され
る。一方、比較器A2の出力端は抵抗R18を介してエミツ
タ接地のトランジスタTのベースに接地され、このトラ
ンジスタTのコレクタは弁駆動部26のコイル32を介して
定電圧電源Vccと接続される。そして、前記比較器A2
らは差動増幅器S2と増幅器S1との出力を比較した出力が
トランジスタTに送出されて該トランジスタTをパルス
駆動させる。
The drive signal generating circuit 69 is composed of a comparator A 2 and a transistor T, the inverting input terminal of the comparator A 2 is connected to the output terminal of the differential amplifier S 2 , and the output from the amplifier S 2 is input.
The output from the amplifier S 1 is input to the non-inverting input terminal. On the other hand, the output terminal of the comparator A 2 is grounded to the base of the transistor T, which is grounded by the emitter, via the resistor R 18, and the collector of this transistor T is connected to the constant voltage power supply V cc via the coil 32 of the valve drive unit 26. To be done. Then, an output obtained by comparing the outputs of the differential amplifier S 2 and the amplifier S 1 is sent from the comparator A 2 to the transistor T to pulse-drive the transistor T.

混合湯温異常検出回路70は、比較器A3を備えて、その反
転入力端子には、定電圧電源Vccと接地間に直列に挿入
した抵抗R19とR20とによって分圧された電圧(この電圧
は、例えば、混合水の設定温度の最大値を約10%上回る
温度に相当する電圧とする)が入力され、又、非反転入
力端子には、温度検出センサ19にて検出した抵抗値と抵
抗R10とによって分圧された電圧が入力される。そし
て、比較器A3の出力端は、アノードを、定電圧電源Vcc
に比較器A2とトランジスタTとの接続点a及び抵抗R21
を介して接続したダイオードD2のカソードが接続され
て、常時は“H"レベル信号が出力されている。
Mixed hot water temperature abnormality detecting circuit 70 includes a comparator A 3, the inverted input terminal, a voltage divided by the constant-voltage power supply V cc and the resistor R 19 and R 20 inserted in series between the ground (This voltage is, for example, a voltage corresponding to a temperature that exceeds the maximum value of the set temperature of the mixed water by about 10%), and the resistance detected by the temperature detection sensor 19 is input to the non-inverting input terminal. The voltage divided by the value and the resistance R 10 is input. The output terminal of the comparator A 3 has an anode connected to the constant voltage power supply V cc.
Is a connection point a between the comparator A 2 and the transistor T and a resistor R 21.
The cathode of the diode D 2 connected through is connected, and the "H" level signal is always output.

熱湯温度検出回路71は、定電圧電源Vccと接地間に直列
に挿入した抵抗R21と熱湯温度検出センサ(以下、熱湯
検出センサという)21とからなる温度一電圧変換回路77
と、定電圧電源Vccと接地間に抵抗R22,R23を直列に挿入
して構成した基準電圧設定回路78と、比較器A4とからな
り、前記比較器A4の反転入力端子には、熱湯検出センサ
21にて検出した熱湯温度に相当する抵抗値と抵抗R21
により分圧された電圧が入力され、非反転入力端子には
抵抗R22,R23により分圧された電圧(給湯機1から供給
される熱湯の温度があらかじめ定めた温度まで降下した
時の設定値に相当する電圧)が入力される。又、比較器
A4の出力端は、比較器A3と同様に、ダイオードD3,接続
点a,抵抗R21を介して定電圧電源Vccに接続され、常時は
“H"レベルの信号が出力される。
The hot water temperature detection circuit 71 includes a temperature-voltage conversion circuit 77 including a resistor R 21 and a hot water temperature detection sensor (hereinafter referred to as hot water detection sensor) 21 that are inserted in series between a constant voltage power supply V cc and ground.
And a reference voltage setting circuit 78 configured by inserting resistors R 22 and R 23 in series between the constant voltage power supply V cc and the ground, and a comparator A 4, which is connected to the inverting input terminal of the comparator A 4. Is a hot water sensor
The voltage divided by the resistance R 21 and the resistance value corresponding to the hot water temperature detected at 21 is input, and the voltage divided by the resistors R 22 and R 23 is input to the non-inverting input terminal (from the water heater 1 A voltage corresponding to a set value when the temperature of the hot water supplied drops to a predetermined temperature) is input. Also, comparator
Similar to the comparator A 3 , the output terminal of A 4 is connected to the constant voltage power supply V cc via the diode D 3 , the connection point a, and the resistor R 21 and always outputs the “H” level signal. .

なお、第1図において、80は可変抵抗VRのボリューム、
81は混合水の出湯温度設定表示目盛である。
In FIG. 1, 80 is a variable resistor VR volume,
Reference numeral 81 is a scale for displaying the temperature at which the mixed water flows out.

次に動作について説明する。Next, the operation will be described.

湯水混合弁16の使用に当たっては、制御装置20の操作ス
イッチ73を投入すると同時に、ボリューム80を操作し
(第8図のVR参照)、カラン18aから出湯する混合水の
出湯温度を表示目盛81の所望の温度位置に設定する。こ
の状態でカラン18aを開放すると、混合水管18内に残留
している水が吐水される。前記操作スイッチ73の投入に
より、RSフリップフロップFFの出力端から“L"レベルの
信号が出力され、この信号に基づき、ノコギリ波発生回
路67からノコギリ波状の出力が出力されて駆動信号発生
回路69の比較器A2の非反転入力端子に入力される(第8
図の67参照)。一方、混合水管18内に挿入した温度検出
センサ19が混合水管18内の水温を検出し、その水温に相
当する出力が温度一電圧変換回路74から差動増幅器S2
非反転入力端子に入力される。又、前記差動増幅器S2
反転入力端子には、ボリューム80にて設定した混合水の
出湯温度に相当する出力が混合水温設定回路75から入力
される。差動増幅器S2は前記両回路74,75からの入力の
差電圧を所定の設定値で増幅し、その出力端からのアナ
ログ信号として出力し、駆動信号発生回路69の比較器A2
の反転入力端子に入力される(第8図のS2参照)。前記
駆動信号発生回路69の比較器A2は、ノコギリ波発生回路
67からの出力と、混合水温検出回路68からの出力とを比
較し、比較器A2の出力端から“H"レベルと“L"レベルの
パルス信号を交互に出力し、トランジスタTを前記パル
スによってオン・オフ制御する。
In using the hot and cold water mixing valve 16, the operation switch 73 of the control device 20 is turned on and, at the same time, the volume 80 is operated (see VR in FIG. 8) to display the hot water temperature of the hot water mixed from the calan 18a. Set to the desired temperature position. When the Karan 18a is opened in this state, the water remaining in the mixed water pipe 18 is discharged. When the operation switch 73 is turned on, an “L” level signal is output from the output terminal of the RS flip-flop FF, and based on this signal, a sawtooth wave-shaped output is output from the sawtooth wave generation circuit 67 and a drive signal generation circuit 69. Is input to the non-inverting input terminal of the comparator A 2 of
(See fig 67). On the other hand, the temperature detection sensor 19 inserted in the mixed water pipe 18 detects the water temperature in the mixed water pipe 18, and the output corresponding to the water temperature is input from the temperature-voltage conversion circuit 74 to the non-inverting input terminal of the differential amplifier S 2. To be done. Further, an output corresponding to the hot water temperature of the mixed water set by the volume 80 is input from the mixed water temperature setting circuit 75 to the inverting input terminal of the differential amplifier S 2 . The differential amplifier S 2 amplifies the difference voltage between the inputs from both the circuits 74 and 75 by a predetermined set value and outputs it as an analog signal from the output terminal thereof, and the comparator A 2 of the drive signal generating circuit 69.
Is input to the inverting input terminal (see S 2 in FIG. 8). The comparator A 2 of the drive signal generating circuit 69 is a sawtooth wave generating circuit.
The output from 67 is compared with the output from the mixed water temperature detection circuit 68, and pulse signals of "H" level and "L" level are alternately output from the output terminal of the comparator A 2 , and the transistor T is pulsed as described above. ON / OFF control by.

然るに、前記操作スイッチ73を投入した時点では、混合
水の設定温度と温度検出センサ19により検出した混合水
管18内の水温との温度差が比較的大きいため、駆動信号
発生回路69からは“H"レベルの信号が一定時間連続して
出力され、トランジスタTをオン状態に維持させ、湯水
混合弁16の弁駆動26のコイル32に定電圧電源Vccが供給
されて通電を開始する。
However, when the operation switch 73 is turned on, the temperature difference between the set temperature of the mixed water and the water temperature in the mixed water pipe 18 detected by the temperature detection sensor 19 is relatively large. The level signal is continuously output for a certain period of time to keep the transistor T in the ON state, and the coil 32 of the valve drive 26 of the hot and cold water mixing valve 16 is supplied with the constant voltage power source V cc to start energization.

コイル32に前記通電が行われると、第6図のように弁駆
動部26の案内筒30からプランジャ29を経て固定鉄心27に
流れる磁束(第6図に実線で示す矢印)により,プラン
ジャ29は固定鉄心27側に1点鎖線で示すように急速に吸
引される。この場合、プランジャ29はコイル32に高い電
圧が印加されるにも係わらず固定鉄心27に吸着されない
のは、前記プランジャ29の上部にケース33のキャップを
兼ねた補助鉄心34が設けてあるためである。即ち、コイ
ル32への通電により発生した磁束は前記のように、案内
筒30からプランジャ29に流れ、該プランジャ29を流れる
磁束は固定鉄心27側と補助鉄心34側とに分流する。従っ
て、プランジャ29が固定鉄心27側に吸引される場合は、
補助鉄心34側に作用する吸引力に勝るときであり、前記
補助鉄心34側にもプランジャ29を吸引する力が作用して
いる限り、プランジャ29は固定鉄心27側に急速移動を行
うものの吸着されることはない。
When the coil 32 is energized, the plunger 29 is moved by the magnetic flux (the arrow shown by the solid line in FIG. 6) flowing from the guide cylinder 30 of the valve drive unit 26 through the plunger 29 to the fixed iron core 27 as shown in FIG. It is rapidly attracted to the fixed iron core 27 side as shown by the alternate long and short dash line. In this case, the plunger 29 is not attracted to the fixed iron core 27 even though a high voltage is applied to the coil 32, because the auxiliary iron core 34 also serving as the cap of the case 33 is provided above the plunger 29. is there. That is, the magnetic flux generated by energizing the coil 32 flows from the guide tube 30 to the plunger 29 as described above, and the magnetic flux flowing through the plunger 29 is divided into the fixed iron core 27 side and the auxiliary iron core 34 side. Therefore, when the plunger 29 is attracted to the fixed iron core 27 side,
When the force to attract the plunger 29 is exerted on the side of the auxiliary iron core 34, and the force of attracting the plunger 29 also acts on the side of the auxiliary iron core 34, the plunger 29 is rapidly moved to the side of the fixed iron core 27 but is absorbed. There is no such thing.

又、本発明においては、プランジャ29に作用する吸引力
が補助鉄心34側に比べて固定鉄心27側にやや強く作用さ
せるために、プランジャ29が作動する前のプランジャ29
の下端と、固定鉄心27の上端との間に生じている空隙G
が、コイル32の高さ方向の中心とコイル32下端との間の
ほぼ中間に位置するように設定してある。このため、コ
イル32に通電が行われると、プランジャ29は補助鉄心34
側の吸引力を振り切る状態で、固定鉄心27側にパルス制
御された通電電流に比例した吸引力によって移動する。
前記プランジャ29が固定鉄心27側に移動すると、駆動軸
28も同時に降下し、弁本体47の混合室48内に遊嵌したス
プール53を圧縮ばね56の力に抗して押し下げる。このた
め、スプール53に嵌着した弁体50は下方に降下して弁口
49を比較的大きく開口する。弁口49が開口されると、給
湯機1から給湯管17→熱湯流入口44を経て混合室48の弁
口49上部から弁駆動部26内の空所に流入している熱湯及
び給湯機1から直接流入する熱湯は、弁口49下側の混合
室48に流出し、この混合室内に既に流入している冷水と
混合され、弁本体47の混合水流出口46より混合水管18を
経てカラン18aから混合水となって吐水される。前記弁
本体47から混合水管18に流入する混合水の温度は、順次
温度検出センサ19により検出されてその検出信号が差動
増幅器S2に入力される。この場合、弁口49が比較的大き
く開口されているので、熱湯の混合室48への流入が多く
なり、弁本体47の流出口46付近の混合水は一時的に混合
水の設定温度よりやや高くなることがある。この結果、
温度検出センサ19にて検出した温度と、あらかじめ設定
した混合水の設定温度とが逆転し、差動増幅器S2からは
混合水の温度を引下げるためのアナログ信号が出力され
る(第8図の19,S2参照)。駆動信号発生回路69は前記
差動増幅器S2からの信号が入力されると、この信号の出
力とノコギリ波発生回路67からの出力とを比較し、比較
器A2の出力端から“H"レベルの信号の出力時間を短かく
し、“L"レベルの信号の出力時間を長くすることによ
り、トランジスタTのオン時間を制限し、弁駆動部26の
コイル32に印加される電圧を降圧させてコイル32に流れ
る電流を減少させる(第8図A2,32参照)。前記コイル3
2への通電量が減少すると、それに比例してプランジャ2
9の吸引力が前記よりやや小さくなり、原位置側に少し
戻されることとなる。このため、スプール53は圧縮ばね
56の力によりプランジャ29に追随して上動し、弁体50に
より弁口49の開口度をやや狭くして熱湯の流出を減ら
し、混合水の温度をその設定温度より少し低くする。こ
のように、温度検出センサ19によって検出される温度に
よって駆動信号発生回路69から出力されるパルス信号の
幅を可変させてトランジスタTのオン・オフ時間を短く
したり、長くすることにより、コイル32に流れる電流を
制御させてプランジャ29の吸引力を変化させ、弁体50に
より弁口49の開口度を設定した温度の混合水が得られる
開口度に近づけ、熱湯と冷水との混合割合を設定温度の
混合水が得られるようにする(第8図のA2参照)。
Further, in the present invention, since the attraction force acting on the plunger 29 acts on the fixed iron core 27 side rather strongly than on the auxiliary iron core 34 side, the plunger 29 before the plunger 29 is actuated
G between the lower end of the core and the upper end of the fixed iron core 27
Is set to be located approximately in the middle between the center of the coil 32 in the height direction and the lower end of the coil 32. Therefore, when the coil 32 is energized, the plunger 29 moves to the auxiliary core 34.
In the state where the suction force on the side is completely shaken off, the fixed iron core 27 is moved by the suction force proportional to the energized current that is pulse-controlled.
When the plunger 29 moves to the fixed iron core 27 side, the drive shaft
28 also descends at the same time and pushes down the spool 53 loosely fitted in the mixing chamber 48 of the valve body 47 against the force of the compression spring 56. For this reason, the valve body 50 fitted on the spool 53 descends downward and the valve opening
Open 49 relatively large. When the valve port 49 is opened, the hot water and the water heater 1 flowing from the water heater 1 through the hot water supply pipe 17 → the hot water inlet 44 into the void in the valve drive unit 26 from the upper portion of the valve port 49 of the mixing chamber 48. The hot water flowing directly from the outlet flows into the mixing chamber 48 below the valve port 49, is mixed with the cold water that has already flowed into this mixing chamber, and flows from the mixing water outlet 46 of the valve body 47 through the mixing water pipe 18 to the currant 18a. It becomes mixed water and is discharged. The temperature of the mixed water flowing from the valve body 47 into the mixed water pipe 18 is sequentially detected by the temperature detection sensor 19, and the detection signal is input to the differential amplifier S 2 . In this case, since the valve port 49 is opened relatively large, the inflow of hot water into the mixing chamber 48 increases, and the mixed water in the vicinity of the outlet port 46 of the valve body 47 is temporarily slightly above the set temperature of the mixed water. It can be high. As a result,
The temperature detected by the temperature detection sensor 19 and the preset temperature of the mixed water are reversed, and the differential amplifier S 2 outputs an analog signal for lowering the temperature of the mixed water (Fig. 8). 19, S 2 ). When the signal from the differential amplifier S 2 is input, the drive signal generation circuit 69 compares the output of this signal with the output from the sawtooth wave generation circuit 67, and outputs “H” from the output terminal of the comparator A 2. By shortening the output time of the level signal and lengthening the output time of the “L” level signal, the on time of the transistor T is limited, and the voltage applied to the coil 32 of the valve drive unit 26 is reduced. The current flowing through the coil 32 is reduced (see A 2 , 32 in FIG. 8). The coil 3
As the amount of electricity to 2 decreases, the plunger 2
The suction force of 9 becomes slightly smaller than the above, and it will be returned to the original position side a little. Therefore, the spool 53 is a compression spring.
The force of 56 moves upward following the plunger 29, and the valve body 50 slightly narrows the opening degree of the valve port 49 to reduce the outflow of hot water, and the temperature of the mixed water is made slightly lower than the set temperature. In this way, the width of the pulse signal output from the drive signal generation circuit 69 is varied according to the temperature detected by the temperature detection sensor 19 to shorten or lengthen the on / off time of the transistor T, thereby making the coil 32 The suction force of the plunger 29 is changed by controlling the current flowing through the valve, and the valve body 50 brings the opening degree of the valve opening 49 closer to the opening degree at which the mixed water of the temperature is obtained, and the mixing ratio of hot water and cold water is set. Make sure to obtain a mixed water of temperature (see A 2 in Fig. 8).

そして、混合水管18に流れる混合水の温度があらかじめ
設定した出湯温度に達すると、駆動信号発生回路69から
は、コイル32に流れる電流を一定に維持するパルス信号
が出力されてトランジスタTをオン・オフ制御し、プラ
ンジャ29の吸引力を一定に保持させ、弁口49を熱湯の流
量があらかじめ設定した温度の混合水が得られる開口度
に維持する。即ち、コイル32への通電電流がパルス制御
によって定電流制御を行うことができ、これによって、
熱湯の通水量を一定に保つことが可能となり、湯・水を
設定温度に混合させた混合水がカラン18aから確実に吐
水させることができる(第8図のS2,A2,32参照)。
Then, when the temperature of the mixed water flowing through the mixed water pipe 18 reaches a preset hot water temperature, the drive signal generating circuit 69 outputs a pulse signal for keeping the current flowing through the coil 32 constant to turn on the transistor T. It is controlled to be off, the suction force of the plunger 29 is kept constant, and the valve port 49 is maintained at an opening degree such that the flow rate of the hot water is a mixed water having a preset temperature. That is, the current passed through the coil 32 can be subjected to constant current control by pulse control.
It is possible to keep the amount of hot water flowing constant, and the mixed water in which hot water and water are mixed at the set temperature can be reliably discharged from the currant 18a (see S 2 , A 2 , 32 in FIG. 8). .

なお、混合水の出湯中、混合水の温度が設定温度を越え
て降下しないような異常事態が生じた場合、前記混合水
の検出温度の出力は、混合湯温異常検出回路70の比較器
A3に入力され、その温度があらかじめ設定した異常温度
の設定値を越えると、比較器A3出力端から“L"レベルの
信号が出力されて、定電圧電源Vccが抵抗R21を通って比
較器A3に流れる。このため、駆動信号発生回路69の比較
器A2からの出力によってトランジスタTのベースに流れ
る電流が断たれて、トランジスタTをオフさせるので、
弁駆動部26のコイル32には定電圧電源Vccの供給ができ
なくなってコイル32への通電が断たれる。従って、プラ
ンジャ29は吸引力が解消され、圧縮ばね56にて上動する
スプール53及び駆動軸28によって原位置に戻り弁口49を
弁体50にて直ちに閉鎖させ、異常温度の混合水が出場す
るのを阻止する。
When an abnormal situation occurs in which the temperature of the mixed water does not drop below the set temperature while the mixed water is being discharged, the output of the detected temperature of the mixed water is the comparator of the mixed hot water temperature detection circuit 70.
When the temperature is input to A 3 , and the temperature exceeds the preset abnormal temperature setting value, a “L” level signal is output from the output terminal of the comparator A 3 , and the constant voltage power supply V cc passes through the resistor R 21 . Flows to the comparator A 3 . Therefore, the output from the comparator A 2 of the drive signal generating circuit 69 cuts off the current flowing through the base of the transistor T and turns off the transistor T.
The constant voltage power supply V cc cannot be supplied to the coil 32 of the valve drive unit 26, and the power supply to the coil 32 is cut off. Accordingly, the suction force of the plunger 29 is canceled, the spool 53 and the drive shaft 28 which are moved upward by the compression spring 56 return to the original position, and the valve port 50 is immediately closed by the valve body 50, so that the mixed water of abnormal temperature appears. Stop doing.

又、給湯器1からの出湯量が増大して混合弁部41に流入
する熱湯の温度があらかじめ設定した温度以下に達する
と、熱湯検出センサ21がこれを検出し、その検出信号は
比較器A4に入力される。このため、比較器A4の出力端は
前記異常温度の混合水が出湯されようとする場合と同様
に、“L"レベルとなってコイル32への通電を断ち、弁口
49を弁体51により閉鎖して熱湯の無駄な流出を防ぐ。な
お、熱湯の温度が降下した場合、その降下温度の設定値
をあらかじめ可変抵抗を用いて任意に可変できるように
してもよい。
Further, when the amount of hot water discharged from the water heater 1 increases and the temperature of the hot water flowing into the mixing valve section 41 reaches a temperature equal to or lower than a preset temperature, the hot water detection sensor 21 detects this and the detection signal is the comparator A. Entered in 4 . For this reason, the output end of the comparator A 4 becomes “L” level and the coil 32 is de-energized, as in the case where the mixed water having the abnormal temperature is about to be discharged.
The valve body 51 closes the valve 49 to prevent wasteful flow of hot water. When the temperature of the hot water drops, the set value of the temperature drop may be variable in advance by using a variable resistor.

次に、弁駆動部26のプランジャ29がコイル32に通電され
る電流値によって固定鉄心27側に吸引されたり、原位置
側に戻ろうとする際、弁駆動部26内の空所には、固定鉄
心27やプランジャ29に設けた透孔35を通って熱湯が流入
しているため、前記弁駆動部26の空所と給湯管17内の圧
力は同圧になっているので、プランジャ29はコイル32へ
の通電電流が可変された場合の吸引力の増減に伴う移動
を、圧力差によって生ずる抵抗を全く受けることがない
ため、少電力で円滑に、かつ、確実に行うことができ
る。
Next, when the plunger 29 of the valve drive unit 26 is attracted to the fixed iron core 27 side by the current value supplied to the coil 32 or when returning to the original position side, the plunger 29 of the valve drive unit 26 is fixed in a void space. Since hot water flows in through the through hole 35 provided in the iron core 27 and the plunger 29, the pressure in the void of the valve drive unit 26 and the pressure in the hot water supply pipe 17 are the same, so the plunger 29 is a coil. Since the resistance caused by the pressure difference is not received at all when the attracting force increases or decreases when the energizing current to 32 is varied, the movement can be smoothly and reliably performed with a small amount of power.

なお、この場合、熱湯の流入によりコイル32の温度が上
昇してその抵抗値が小さくなると、コイル32への通電量
が一時的に増えて弁口49の開口度が広くなり、熱湯の流
入量が増加するものの、温度検出センサ19がこれを検出
してコイル32への通電量を制御装置20によって制御する
ことができるため、混合水の出湯温度が異常上昇するの
を抑制することができる。
In this case, when the temperature of the coil 32 rises due to the inflow of hot water and its resistance value decreases, the energization amount to the coil 32 temporarily increases and the opening degree of the valve port 49 widens, and the inflow amount of hot water increases. However, since the temperature detection sensor 19 can detect this and control the amount of electricity to the coil 32 by the control device 20, it is possible to suppress an abnormal rise in the hot water temperature of the mixed water.

又、前記プランジャ29の移動に伴って共動移動するスプ
ール53には、内部に空所51を設けた緩衝ピストン52が付
設されているため、スプール53が降下すると、前記緩衝
ピストン52は、空所51や閉ナット55の凹穴54に流入して
いる水を小径な小孔a,bから混合室48内に排出しながら
ゆっくりと下降することとなるため、スプール53の急速
な降下が、前記緩衝ピストン52が空所51から水を排出さ
せることによって生ずる降下速度の鈍化及びそれに伴っ
て発生する緩衝効果により制御される。従って、スプー
ル53の急速降下に伴う波打ち現象と圧縮ばね56の付勢力
との相乗作用によって生ずるチャタリング現象(スプー
ル53が混合室48内で揺動運動を行う現象)が確実に阻止
でき、弁口49の開口度を所定の設定値に正確に保持させ
ることにより、熱湯の流量を常時定量に維持することが
可能となる。
Further, a buffer piston 52 having an empty space 51 therein is attached to the spool 53 that moves together with the movement of the plunger 29. Therefore, when the spool 53 descends, the buffer piston 52 becomes empty. Since the water flowing into the recessed hole 54 of the place 51 and the closed nut 55 is slowly lowered while discharging into the mixing chamber 48 from the small holes a and b, the rapid drop of the spool 53 is The buffering piston 52 is controlled by the slowing down of the descending speed caused by discharging the water from the cavity 51 and the buffering effect generated therewith. Therefore, the chattering phenomenon (a phenomenon in which the spool 53 makes an oscillating motion in the mixing chamber 48) caused by the synergistic effect of the undulation phenomenon caused by the rapid drop of the spool 53 and the urging force of the compression spring 56 can be reliably prevented, and the valve opening By accurately maintaining the opening degree of 49 at a predetermined set value, it becomes possible to constantly maintain a constant flow rate of hot water.

更に、湯水混合弁16を使用当初において熱湯の通水量を
確認する場合、あるいは、停電時において混合水を必要
とする場合は、操作杆60をスプール53が降下する方向に
手動により回動させると、操作杆60先端の半円状の係止
段部61により、スプール53の係合凹部62の下端縁が下方
に押動され、スプール53を圧縮ばね56の力に抗して押し
下げることができるように構成されているので、本発明
の湯水混合弁16は停電時等においても、給湯機1内の熱
湯を容易に利用することができる。
Furthermore, when confirming the amount of hot water passing through the hot water mixing valve 16 at the beginning of use, or when mixed water is required at the time of power failure, the operating rod 60 can be manually rotated in the direction in which the spool 53 descends. The lower end edge of the engagement recess 62 of the spool 53 is pushed downward by the semicircular locking step 61 at the tip of the operating rod 60, and the spool 53 can be pushed down against the force of the compression spring 56. Since the hot water mixing valve 16 of the present invention is configured as described above, the hot water in the water heater 1 can be easily used even during a power failure or the like.

又、操作スイッチ73をオフすると、弁駆動部26のコイル
32への通電が断たれるため、プランジャ29は固定鉄心27
側への吸引力が解消される。すると、スプール53を常時
押し上げる方向に付勢している圧縮ばね56の力により、
スプール53は弁体50が弁口49を塞ぐ位置まで押し上げら
れて前記弁口49を閉鎖するとともに、プランジャ29を原
位置に押し戻す。この結果、熱湯は弁口49の閉鎖に伴い
出湯せず、冷水のみの使用が可能となる。これは、例え
ば、夏期等において混合水を余り必要としない時期に冷
水のみを使用し、熱湯の無駄な使用を避けることができ
るので、至便であるとともに、給湯機の効率的な使用を
可能とする利点がある。
When the operation switch 73 is turned off, the coil of the valve drive unit 26
Since the power to 32 is cut off, the plunger 29
The suction force to the side is eliminated. Then, by the force of the compression spring 56 that constantly urges the spool 53 in the upward direction,
The spool 53 pushes up the valve body 50 to a position where it closes the valve opening 49 to close the valve opening 49 and pushes the plunger 29 back to its original position. As a result, the hot water does not come out when the valve port 49 is closed, and only the cold water can be used. For example, this is convenient because it is possible to use only cold water and avoid wasteful use of hot water at a time when the mixed water is rarely needed in the summer and the like, and it is possible to use the water heater efficiently. There is an advantage to

〔発明の効果〕〔The invention's effect〕

本発明は以上説明したように、混合弁部とその弁駆動部
とを一直線状に配置し、弁駆動部内の駆動軸と混合弁部
のスプールとを同一鉛直線上の位置に当接させて前記ス
プールを直線移動させるようにして湯水混合装置を構成
したので、駆動軸の移動が直線的で、しかも、大きな摺
動摩擦を受けることなくスプールに直接伝達でき、混合
弁部内の弁口の開口度を確実に、かつ、迅速に設定する
ことができる。しかも、スプールを誤差なく直線的に動
作させることにより、湯・水の混合割合、混合水の温度
・流量の微調節等を正確に行うことが可能となる。
As described above, according to the present invention, the mixing valve portion and the valve driving portion thereof are arranged in a straight line, and the drive shaft in the valve driving portion and the spool of the mixing valve portion are brought into contact with each other on a position on the same vertical line, Since the hot and cold water mixing device is configured so that the spool moves linearly, the movement of the drive shaft is linear, and it can be directly transmitted to the spool without receiving large sliding friction, and the opening degree of the valve opening in the mixing valve can be controlled. It can be set reliably and quickly. Moreover, by operating the spool linearly without any error, it becomes possible to accurately perform fine adjustment of the mixing ratio of hot water and water, the temperature and flow rate of mixed water, and the like.

又、本発明は、湯水混合弁の弁駆動部に流れる電流を、
混合水の出湯温度に対応して通電することにより、弁駆
動部のプランジヤの吸引力を混合水の出湯温度に対応し
て任意に可変することができるように弁駆動部を駆動制
御する制御装置が構成されているので、前記弁駆動部に
流れる電流をパルス制御を行うことによってプランジヤ
の吸引力を混合水の出湯温度に対応して任意に可変する
ことが可能となり、このプランジヤにスプールを介して
連接した弁体を正確に駆動制御して湯水混合弁の弁口
を、混合水の出湯温度に応じて開口度合を調整すること
ができるため、湯・水の混合割合が正確に行い得、所要
温度の混合水を迅速,確実に得ることができる。
Further, the present invention, the current flowing through the valve drive portion of the hot water mixing valve,
A controller for driving and controlling the valve drive unit so that the suction force of the plunger of the valve drive unit can be arbitrarily changed in accordance with the hot water temperature of the mixed water by energizing in accordance with the hot water temperature of the mixed water. Is configured, it is possible to arbitrarily change the suction force of the plunger according to the hot water temperature of the mixed water by performing pulse control of the current flowing through the valve drive unit. Since the valve opening of the hot and cold water mixing valve can be accurately controlled by controlling the valve body connected to the hot water mixing valve, the opening degree can be adjusted according to the hot water temperature of the mixed water. It is possible to quickly and reliably obtain mixed water at the required temperature.

更に、本発明は、弁駆動部を駆動制御する制御装置に
は、混合水がその出湯中に、設定温度より一定の温度上
昇して降下しないような場合は、湯水混合弁の弁駆動部
への通電を直ちに停止して混合水の出湯を停止する混合
湯温異常検出回路が設けてあるため、前記のように、混
合水の出湯温度に異常が生じた場合、直ちに出湯を停止
して混合水の利用者が火傷を負うのを防止することがで
きるので、湯水混合装置を安全に使用することができ
る。その上、本発明においては、前記混合水の出湯を停
止しても冷水の流入口と混合水の流出口は弁体によって
閉鎖されず常時連通する構造となっているので、設定温
度以上の混合水の出湯が停止されても、冷水は吐水を継
続しているので、万一、設定温度以上の混合水が一時的
に出湯し、かつ、その出湯が直ちに停止しても、冷水の
みは吐水が継続されているため、異常温度の混合水の出
湯による弊害を確実に防ぐことができる。
Further, according to the present invention, the control device for controlling the drive of the valve drive unit is provided with a valve drive unit of the hot and cold water mixing valve when the mixed water does not drop by rising a certain temperature from the set temperature during the hot water discharge. Since there is a mixed hot water temperature abnormality detection circuit that immediately stops the energization of the mixed water and stops the hot water discharge of the mixed water, as described above, if an abnormality occurs in the hot water temperature of the mixed water, the hot water is immediately stopped and mixed. Since it is possible to prevent the water user from getting burned, the hot and cold water mixing device can be used safely. In addition, in the present invention, even if the discharge of the mixed water is stopped, the cold water inlet and the mixed water outlet are not closed by the valve body and are always in communication with each other, so that the mixing at the set temperature or higher is achieved. Even if the tapping of water is stopped, cold water continues to spout, so by any chance, if mixed water above the set temperature temporarily comes out and if tapping stops immediately, only cold water will spout. Therefore, it is possible to surely prevent the harmful effects caused by the discharge of the mixed water having the abnormal temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の湯水混合装置の一実施例を示す概略構
成図、第2図は本発明の湯水混合装置を縦断して示す正
面図、第3図は湯水混合装置の動作状態を示す要部縦断
面図、第4図は平面図、第5図は第2図のA-A線におけ
る断面図、第6図は磁束の流れを示す説明図、第7図は
制御装置の構成を示すブロック図、第8図はタイムチャ
ート図、第9図は従来の湯水混合装置の一実施例を示す
構成図である。 16……湯水混合弁、26……弁駆動部 29……プランジャ、28……コイル 41……混合弁部、47……弁本体 48……混合室、49……弁口 50……弁体
FIG. 1 is a schematic configuration diagram showing an embodiment of the hot and cold water mixing apparatus of the present invention, FIG. 2 is a front view showing the hot and cold water mixing apparatus of the present invention in a longitudinal section, and FIG. 3 shows an operating state of the hot and cold water mixing apparatus. FIG. 4 is a plan view, FIG. 5 is a cross-sectional view taken along the line AA of FIG. 2, FIG. 6 is an explanatory view showing the flow of magnetic flux, and FIG. 7 is a block showing the configuration of the control device. FIG. 8 and FIG. 8 are time charts, and FIG. 9 is a configuration diagram showing an embodiment of a conventional hot and cold water mixing apparatus. 16 …… Hot water mixing valve, 26 …… Valve drive part 29 …… Plunger, 28 …… Coil 41 …… Mixing valve part, 47 …… Valve body 48 …… Mixing chamber, 49 …… Valve 50 …… Valve body

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−107683(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-107683 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱湯の流入口と冷水の流入口から流入した
湯・水を混合して流出口から適温の混合水として流出す
る流出口を備えた混合室と、前記混合室内に、熱湯が流
通する弁口を開閉自在に閉鎖し、かつ、冷水の流入口と
混合水の流出口を常時連通させる弁体を上下動可能に収
容して形成した弁本体と、前記弁本体の上部において、
コイルに通電される電流をパルス制御してプランジヤの
吸引力を前記コイルに流れる電流に比例して可変させる
制御装置を備えて前記プランジヤを駆動軸、スプールを
介して弁本体に直線移動可能に当接させて形成した弁駆
動部とを一直線上に配置固定して湯水混合弁を形成し、
前記制御装置は、ノコギリ波を定型状に出力するノコギ
リ波発生回路と、湯水混合弁の流出口から流出する混合
水の湯温を検出する混合水温検出回路と、前記ノコギリ
波発生回路からの出力と混合水温検出回路からの出力と
を比較して前記弁駆動部に印加される電圧に相当するパ
ルス信号を出力する駆動信号発生回路と、更に、混合水
の出湯中にその湯温が設定温度を所定温度以上に上昇し
たとき、これを検出して前記駆動信号発生回路の作動を
停止させて弁駆動部への通電を断ち、湯水混合弁の弁口
を閉鎖させる混合湯温異常検出回路とによって構成し、
前記弁駆動部のプランジヤの吸引力を、弁駆動部に通電
される電流に比例させて可変させることにより、湯水混
合弁を駆動制御するようにしたことを特徴とする湯水混
合装置。
1. A mixing chamber provided with an outlet for mixing hot water and water flowing in from an inlet of hot water and an inlet of cold water and flowing out from the outlet as a mixed water of an appropriate temperature, and hot water in the mixing chamber. A valve main body formed by accommodating a valve body that movably closes a circulating valve port and that allows a cold water inflow port and a mixed water outflow port to communicate with each other at all times, and an upper part of the valve main body,
It is equipped with a control device that pulse-controls the current applied to the coil to vary the attraction force of the plunger in proportion to the current flowing in the coil, and allows the plunger to move linearly to the valve body via the drive shaft and spool. The hot water mixing valve is formed by arranging and fixing the valve drive portion formed by contacting with each other in a straight line,
The controller is a sawtooth wave generation circuit that outputs a sawtooth wave in a fixed form, a mixed water temperature detection circuit that detects the hot water temperature of the mixed water that flows out from the outlet of the hot and cold water mixing valve, and an output from the sawtooth wave generation circuit. And the output from the mixed water temperature detection circuit, and outputs a pulse signal corresponding to the voltage applied to the valve drive section, and further, when the mixed water is discharged, the hot water temperature is the set temperature. When the temperature rises above a predetermined temperature, it is detected that the operation of the drive signal generation circuit is stopped, the energization of the valve drive unit is cut off, and the hot water mixing abnormality detection circuit is closed. Composed by
The hot and cold water mixing apparatus is characterized in that the hot and cold water mixing valve is drive-controlled by varying the suction force of the plunger of the valve driving unit in proportion to the current supplied to the valve driving unit.
JP2021179A 1990-01-31 1990-01-31 Hot water mixing device Expired - Fee Related JPH071064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021179A JPH071064B2 (en) 1990-01-31 1990-01-31 Hot water mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021179A JPH071064B2 (en) 1990-01-31 1990-01-31 Hot water mixing device

Publications (2)

Publication Number Publication Date
JPH03229081A JPH03229081A (en) 1991-10-11
JPH071064B2 true JPH071064B2 (en) 1995-01-11

Family

ID=12047714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021179A Expired - Fee Related JPH071064B2 (en) 1990-01-31 1990-01-31 Hot water mixing device

Country Status (1)

Country Link
JP (1) JPH071064B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107683A (en) * 1989-09-20 1991-05-08 Matsushita Electric Ind Co Ltd Hot/cold water mixing device

Also Published As

Publication number Publication date
JPH03229081A (en) 1991-10-11

Similar Documents

Publication Publication Date Title
US5466995A (en) Zoning circulator controller
US4921208A (en) Proportional flow valve
US4618091A (en) Apparatus for controlling the passage of a liquid
EP0349984B1 (en) Washing device for parts of human body
JP3374332B2 (en) Automotive engine cooling system
CN110036185B (en) Thermostatic valve for an internal combustion engine
US6460335B1 (en) Actuator
EP1152179A1 (en) Rotary mixing solenoid valve for temperature-control
JPH071064B2 (en) Hot water mixing device
JPS6131784A (en) Combination faucet device
JPH0674859B2 (en) Hot water mixing device
JPS62243012A (en) Hot water mixing device
US2609989A (en) Gas valve control
JPH076584B2 (en) Hot water mixing device
JPS6116463Y2 (en)
KR100340748B1 (en) A control device of proportional valves
JP2762529B2 (en) Hot water mixing control device
JPH04341675A (en) Hot/cold water combination system
EP3693671B1 (en) Filling system with thermal actuating device
JP2831502B2 (en) Shower equipment
JPS6055734B2 (en) Constant temperature hot water tap device
JP2831504B2 (en) Shower equipment
WO1988002349A1 (en) Hot water dispenser
JPH021005A (en) Hot and cold water mixing device
JPH04228988A (en) Hot and cold water mixing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees