JPH0697512A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element

Info

Publication number
JPH0697512A
JPH0697512A JP4273657A JP27365792A JPH0697512A JP H0697512 A JPH0697512 A JP H0697512A JP 4273657 A JP4273657 A JP 4273657A JP 27365792 A JP27365792 A JP 27365792A JP H0697512 A JPH0697512 A JP H0697512A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type semiconductor
conversion element
metal plate
semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4273657A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nakamura
恭之 中村
Makoto Kawakami
川上  誠
Chuichi Takahashi
忠一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4273657A priority Critical patent/JPH0697512A/en
Publication of JPH0697512A publication Critical patent/JPH0697512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve power generating capability (conversion efficiency) and productivity of a thermoelectric conversion element consisting of the structure where the PN junction is formed by a P-type semiconductor mainly composed of iron silicide (FeSi2) and an N-type semiconductor. CONSTITUTION:In view of joining a P-type semiconductor 11 mainly consisting of iron silicide (FeSi2) and an N-type semiconductor 12 through formation of the PN junction via a highly thermoconductive metal plate 13, the semiconductors 11, 12 and the highly thermoconductive metal plate 13 are integrated by the brazing by the brazing material 14, 14 of a titanium (Ti) system active metal to form a thermoelectric conversion element 10. Thereby, since the brazing can be done via the highly thermoconductive metal plate 13, the semiconductors 11, 12 can be easily and individually manufactured and moreover thermal energy from the heat source can be transmitted with high effectiveness to the PN junction area through the highly thermoconductive metal plate 13. Accordingly, thermoelectric conversion efficiency can be improved remarkably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄硅化物(FeSi
2)を主体とするP型半導体とN型半導体とをPN接合
した構成からなる熱電変換素子の改良に係り、PN接合
部を高熱伝導金属板を介在させチタン(Ti)系活性金
属ろう材にてろう付け形成し、発電能力(変換効率)を
向上させるとともに製造を容易にした熱電変換素子に関
する。
BACKGROUND OF THE INVENTION This invention relates to iron sulfide (FeSi
2 ) Regarding improvement of a thermoelectric conversion element composed of a P-type semiconductor and an N-type semiconductor mainly composed of 2 ), a PN junction is made into a titanium (Ti) -based active metal brazing material with a high thermal conductive metal plate interposed. The present invention relates to a thermoelectric conversion element which is formed by brazing to improve the power generation capacity (conversion efficiency) and facilitates manufacturing.

【0002】[0002]

【従来の技術】熱電変換素子は、最近の産業界において
要求の高い、熱エネルギーの有効活用の観点から実用化
が期待されているデバイスであり、例えば、排熱を利用
し電気エネルギーに変換するシステムや、屋外で簡単に
電気を得る為の小型携帯用発電装置、ガス機器の炎セン
サー等非常に広範囲の用途が検討されている。しかし、
いままでに知られている熱電変換素子は、一般に熱電変
換素子を構成する半導体の価格が高く、そのわりに使用
温度範囲が低く、また、変換効率が低いことや製造方法
が煩雑である等の理由から汎用されるに至っていない。
2. Description of the Related Art A thermoelectric conversion element is a device which is highly demanded in recent industry and is expected to be put into practical use from the viewpoint of effective utilization of thermal energy. For example, exhaust heat is used to convert it into electric energy. A very wide range of applications are being investigated, such as systems, small portable power generators for easily obtaining electricity outdoors, and flame sensors for gas appliances. But,
The thermoelectric conversion elements that have been known so far are generally high in the price of semiconductors that make up the thermoelectric conversion element, but the operating temperature range is low, and the conversion efficiency is low and the manufacturing method is complicated. Has not been widely used since.

【0003】これらの問題点を解決する熱電変換素子と
して、鉄硅化物(FeSi2)を主体とするP型半導体
とN型半導体とをPN接合した構成からなる熱電変換素
子が提案されており、半導体が比較的安価な材料からな
ることや、耐熱性も〜900°C程度と高い等のことか
ら注目されている。
As a thermoelectric conversion element for solving these problems, there has been proposed a thermoelectric conversion element having a structure in which a P-type semiconductor mainly composed of iron silicide (FeSi 2 ) and an N-type semiconductor are PN-junctioned, Attention is paid to the fact that the semiconductor is made of a relatively inexpensive material and has a high heat resistance of about 900 ° C.

【0004】この熱電変換素子は、通常、図9に示す如
く、鉄硅化物(FeSi2)にマンガン(Mn)または
コバルト(Co)等の適性不純物を添加したP型半導体
2とN型半導体3とを一端側でPN接合して形成したU
字型の形状からなる。このような構成からなる熱電変換
素子1において、前記PN接合部4を加熱すると、該P
N接合部4に熱エネルギーが供給されゼーベック効果に
よって各々の半導体2,3の解放端側(低温端側)にプ
ラス(+)及びマイナス(−)の電圧が発生し、該解放
端から電力が取り出せるのである。
In this thermoelectric conversion element, as shown in FIG. 9, usually, a P-type semiconductor 2 and an N-type semiconductor 3 in which an appropriate impurity such as manganese (Mn) or cobalt (Co) is added to iron silicide (FeSi 2 ). U formed by PN joining at one end
It consists of a letter shape. In the thermoelectric conversion element 1 having such a configuration, when the PN junction 4 is heated, the P
Heat energy is supplied to the N-junction 4 and positive (+) and negative (-) voltages are generated on the open end side (low temperature end side) of each of the semiconductors 2 and 3 by the Seebeck effect, and electric power is generated from the open end. You can take it out.

【0005】また、このU字型の形状からなる熱電変換
素子1は、以下に説明する如き工程によって製造される
ことが知られている。すなわち、 1)Fe1-XMnXSi2及びFe1-YCoYSi2の所定組
成を有するP型半導体用合金及びN型半導体用合金を溶
解鋳造にて得る。 2)上記各々半導体用合金をスタンプミル、ボールミル
等の粉砕機によって所定の粒径(1.5μm程度)に粉
砕する。 3)所定量のバインダー(PVA)を混錬して造粒す
る。 4)上記各々の半導体用合金粉末を、U字型の貫通孔を
有するダイス内に充填する。ただし、合金粉末を充填す
る際には、予めダイス内に下パンチを配置するととも
に、PN接合部となる箇所に仕切り板を配置しておき、
各々の半導体用合金粉末を所定量充填した後に、該仕切
り板を取り除き、互いの半導体用合金粉末同志がPN接
合部にて接触するようにする。 5)上記ダイス内に配置される上パンチと下パンチとで
加圧圧縮成形しU字型の形状からなる成形体を得る。 6)上記成形体に大気中にて脱バインダー処理を施した
後、真空中で所定温度にて焼結する(例えば、1150
°C×3時間)。 7)上記焼結体に大気中で所定温度にて半導体化熱処理
を施す(例えば、750°C×50〜200時間)。
Further, it is known that the thermoelectric conversion element 1 having this U-shaped shape is manufactured by the steps described below. That is, 1) An alloy for P-type semiconductor and an alloy for N-type semiconductor having a predetermined composition of Fe 1-X Mn X Si 2 and Fe 1-Y Co Y Si 2 are obtained by melt casting. 2) Each of the above semiconductor alloys is crushed to a predetermined particle size (about 1.5 μm) by a crusher such as a stamp mill or a ball mill. 3) A predetermined amount of binder (PVA) is kneaded and granulated. 4) Each of the above semiconductor alloy powders is filled in a die having a U-shaped through hole. However, when the alloy powder is filled, the lower punch is arranged in advance in the die, and the partition plate is arranged at the position to be the PN junction.
After filling a predetermined amount of each alloy powder for semiconductors, the partition plate is removed so that the alloy powders for semiconductors contact each other at the PN junction. 5) Pressure compression molding is performed with the upper punch and the lower punch arranged in the die to obtain a molded body having a U-shape. 6) The molded body is debindered in the atmosphere and then sintered at a predetermined temperature in vacuum (for example, 1150).
° C x 3 hours). 7) The sintered body is subjected to semiconductor heat treatment at a predetermined temperature in the atmosphere (for example, 750 ° C. × 50 to 200 hours).

【0006】[0006]

【発明が解決しようとする課題】先に説明した製造方法
によって得られる鉄硅化物(FeSi2)を主体とする
P型半導体2とN型半導体3とをPN接合を形成して接
合したU字型熱電変換素子1は、従来から知られる他の
熱電変換素子に比べて、価格、耐熱性等の点において優
れているが、その反面、PN接合構成、製造方法等に起
因して以下の問題点を有している。図9に示す構成にお
いて、PN接合部4を加熱すると、該PN接合部4に熱
エネルギーが供給され電流の発生源となる電子正孔対が
発生するが、同時にこの電子正孔対発生時には、熱エネ
ルギーを奪う所謂ペルチェ効果のためPN接合部4の温
度が低下し、その結果、電子正孔対の発生頻度が減少
し、各々の半導体2,3の解放端側(低温端側)から取
り出せる電力が減少することとなり、要求される発電能
力(変換効率)を実現するに至っていない。
A U-shape in which a P-type semiconductor 2 and an N-type semiconductor 3 mainly composed of iron silicate (FeSi 2 ) obtained by the above-described manufacturing method are joined to form a PN junction. The type thermoelectric conversion element 1 is superior to other conventionally known thermoelectric conversion elements in terms of price, heat resistance, etc. However, on the other hand, the following problems are caused by the PN junction configuration, the manufacturing method, and the like. Have a point. In the structure shown in FIG. 9, when the PN junction portion 4 is heated, heat energy is supplied to the PN junction portion 4 to generate an electron-hole pair which is a source of a current. At the same time, when the electron-hole pair is generated, Due to the so-called Peltier effect that robs thermal energy, the temperature of the PN junction 4 is lowered, and as a result, the frequency of generation of electron-hole pairs is reduced, and the semiconductors 2 and 3 can be taken out from the open end side (low temperature end side). Electric power is reduced, and the required power generation capacity (conversion efficiency) has not been realized.

【0007】また、先に説明した製造方法において、U
字型熱電変換素子の成形体を得るためには、1つのダイ
ス内にP型半導体用合金粉末とN型半導体用合金粉末か
らなる2種類の粉末を混合することなく同時に充填する
必要があることから、その充填作業は非常に煩雑なもの
となる。さらに、このような2種類の粉末を加圧圧縮成
形、焼結によって一体化する構成であることから、成形
体の形状も必然的に限定され、この熱電変換素子の用途
拡大を妨げる要因にもなっている。
In the manufacturing method described above, U
In order to obtain a shaped body of the V-shaped thermoelectric conversion element, it is necessary to simultaneously fill two dies, which are an alloy powder for P-type semiconductor and an alloy powder for N-type semiconductor, in one die without mixing them. Therefore, the filling work becomes very complicated. Further, since the two types of powders are integrated by pressure compression molding and sintering, the shape of the molded body is necessarily limited, and it may be a factor that hinders the expansion of applications of this thermoelectric conversion element. Has become.

【0008】さらにまた、上記の充填作業時に細心の注
意を払ったとしても、互いの半導体用合金粉末の接合部
において、粉末の混合を完全に防ぐことは困難であり、
その接合状態に応じて良好なPN接合が得られず、電気
的な特性劣化やバラツキを招く要因となっている。
Furthermore, even if great care is taken during the above-mentioned filling work, it is difficult to completely prevent the mixing of the powders at the joint portions of the alloy powders for semiconductors,
A good PN junction cannot be obtained depending on the junction state, which is a factor causing electrical characteristic deterioration and variation.

【0009】この発明は、上記の問題点を解決し、鉄硅
化物(FeSi2)を主体とするP型半導体とN型半導
体とをPN接合した構成からなる熱電変換素子におい
て、その発電能力(変換効率)の向上を可能とするとと
もに製造方法が容易な構成を提供し、該熱電変換素子の
用途範囲を大幅に拡大することを目的とするものであ
る。
The present invention solves the above problems and provides a thermoelectric conversion element having a structure in which a P-type semiconductor mainly composed of iron silicide (FeSi 2 ) and an N-type semiconductor are PN-junctioned. The purpose of the present invention is to provide a structure capable of improving the conversion efficiency) and an easy manufacturing method, and to greatly expand the application range of the thermoelectric conversion element.

【0010】[0010]

【課題を解決するための手段】この発明は、上記の目的
を達成するために種々の検討を繰り返した結果、予め鉄
硅化物(FeSi2)を主体とするP型半導体とN型半
導体とを別個に作成したのち、これらの各々半導体をチ
タン(Ti)系活性金属ろう材にて銅(Cu)板等の高
熱伝導金属板にろう付け一体化することによって目的が
達成できることを知見し、提案するものである。
According to the present invention, as a result of repeating various investigations in order to achieve the above-mentioned object, a P-type semiconductor and an N-type semiconductor mainly containing iron silicide (FeSi 2 ) are prepared in advance. After making them separately, we found that the objective can be achieved by brazing and integrating each of these semiconductors with a highly heat conductive metal plate such as a copper (Cu) plate with a titanium (Ti) based active metal brazing material, and propose To do.

【0011】すなわち、本願発明者は製造を容易にする
とともに、PN接合部における各々半導体用合金粉末の
混合を完全に防ぎ、さらに各々半導体の形状を任意に選
定可能とするためには、P型半導体とN型半導体とを別
個に作成することが不可欠であると判断した。また、本
願発明者は、ペルチェ効果による電子正孔対の発生の減
少を防止するためにPN接合部に熱エネルギーを効率良
く供給するには、PN接合部を直接加熱する従来の構成
ではPN接合部の形状等の点から限界があり、熱源から
の熱エネルギーをPN接合部に効率良く伝導することが
可能な銅(Cu)板等の高熱伝導金属板を各々半導体の
接合部に配置することが有効であることを確認した。
That is, in order to facilitate manufacture, the present inventor can completely prevent the alloy powder for semiconductors from being mixed in the PN junction portion, and can arbitrarily select the shape of each semiconductor, the P type It was determined that it was essential to create the semiconductor and the N-type semiconductor separately. In order to efficiently supply the thermal energy to the PN junction in order to prevent the reduction of the generation of electron-hole pairs due to the Peltier effect, the inventor of the present application uses the PN junction in the conventional configuration in which the PN junction is directly heated. There is a limit in terms of the shape of the parts, etc., and high heat conductive metal plates such as copper (Cu) plates that can efficiently conduct the heat energy from the heat source to the PN junction are arranged at the semiconductor junctions. Was confirmed to be effective.

【0012】さらに、これらの別個に作成された半導体
と高熱伝導金属板を接合一体化する手段を種々検討した
ところ、従来から知られる半田では、接合一体化は可能
であっても融点が低いことから高温度での使用が困難で
あり、低温度で使用した場合は鉄硅化物(FeSi2
を主体とする半導体が本来有する特徴を十分発現するこ
とができず、目的とする出力電力を得ることができなか
った。
Further, various studies have been made on means for joining and integrating the separately prepared semiconductor and the high thermal conductive metal plate, and it has been found that the conventionally known solder has a low melting point even though the joining and integration are possible. Is difficult to use at high temperature, and iron sulfide (FeSi 2 ) when used at low temperature
The characteristics originally possessed by the semiconductor mainly composed of were not fully expressed, and the target output power could not be obtained.

【0013】従来からろう材として多用されている銀
(Ag)ろうでは、各々半導体の表面に形成されている
酸化膜(SiO2)との馴染みが悪いことから接合強度
が低く、特に高温雰囲気での使用に耐えるような接合強
度が得られなく、さらに酸化膜(SiO2)を除去した
後、銀(Ag)ろうにてろう付けをすると、各々半導体
の内部に銀(Ag)が拡散し、半導体の電気的特性を低
下させることのみならず機械的特性をも低下させてしま
う(脆くなる)ことが確認された。
Since the silver (Ag) brazing material which has been widely used as a brazing material has a poor bonding strength with the oxide film (SiO 2 ) formed on the surface of each semiconductor, the bonding strength is low, especially in a high temperature atmosphere. If a brazing strength that does not withstand the use of the above is not obtained, and after brazing with silver (Ag) brazing after removing the oxide film (SiO 2 ), silver (Ag) diffuses inside each semiconductor, It was confirmed that not only the electrical characteristics of the semiconductor are deteriorated, but also the mechanical characteristics are deteriorated (becomes brittle).

【0014】そこで、本願出願人が先に金属とセラミッ
クスの接合用ろう材として提案したチタン(Ti)を芯
材とする3層複合箔ろう材(特開平2−93095号)
等の他、チタン(Ti)を主成分とする所謂チタン(T
i)系活性金属ろう材を用いてこれらの半導体と高熱伝
導金属板を接合一体化したところ、半導体表面の酸化膜
(SiO2)を除去することなく極めて良好な接合を得
ることができた。
Therefore, the present applicant has previously proposed a three-layer composite foil brazing material having titanium (Ti) as a core material, which has been proposed as a brazing material for joining metal and ceramics (Japanese Patent Laid-Open No. 2-93095).
In addition to the above, so-called titanium containing titanium (Ti) as a main component (T
When these semiconductors and the high thermal conductive metal plate were joined and integrated by using the i) -based active metal brazing material, extremely good joining could be obtained without removing the oxide film (SiO 2 ) on the semiconductor surface.

【0015】以上に説明するような種々の知見に基づき
完成されたこの発明は、要するに、鉄硅化物(FeSi
2)を主体とするP型半導体とN型半導体とをPN接合
した構成からなる熱電変換素子において、前記一対の半
導体間に高熱伝導金属板を介在させチタン(Ti)系活
性金属ろう材にてろう付けしPN接合部を形成したこと
を特徴とする熱電変換素子である。
The present invention completed on the basis of various findings as described above is, in short, iron sulfide (FeSi).
2 ) In a thermoelectric conversion element composed of a P-type semiconductor and an N-type semiconductor mainly composed of 2 ), a high thermal conductive metal plate is interposed between the pair of semiconductors, and a titanium (Ti) -based active metal brazing material is used. The thermoelectric conversion element is characterized in that a PN junction is formed by brazing.

【0016】[0016]

【作用】図1は、この発明の熱電変換素子の一実施例を
示す概要説明図である。すなわち、鉄硅化物(FeSi
2)を主体とするP型半導体11とN型半導体12とを
銅(Cu)などの高熱伝導金属板13を介してPN接合
を形成して接合すべく、前記各々半導体11,12と高
熱伝導金属板13とをチタン(Ti)系活性金属ろう材
14,14にてろう付け一体化した構成からなる熱電変
換素子10である。また、高熱伝導金属板13の表面に
は加熱による酸化を防止するためのTiNなどの耐酸化
コーティング17を施してある。15,15は各々半導
体11,12の解放端側に接合され、電極板と放熱板と
を兼ねる銅(Cu)板であり、該接合部の温度はPN接
合部に比べて低温度であるためチタン(Ti)系活性金
属を使用することなく亜鉛−錫(Zn−Sn)半田等の
融点の低いろう材16,16にて接合一体化しても目的
とする特性の熱電変換素子10を得ることができる。
FIG. 1 is a schematic explanatory view showing an embodiment of the thermoelectric conversion element of the present invention. That is, iron silicide (FeSi
In order to form a PN junction between the P-type semiconductor 11 and the N-type semiconductor 12 mainly composed of 2 ) through a high thermal conductive metal plate 13 such as copper (Cu), the semiconductors 11 and 12 and the high thermal conductivity are respectively formed. The thermoelectric conversion element 10 has a structure in which a metal plate 13 and a titanium (Ti) -based active metal brazing material 14, 14 are integrally brazed together. The surface of the high thermal conductive metal plate 13 is provided with an oxidation resistant coating 17 such as TiN for preventing oxidation due to heating. Reference numerals 15 and 15 denote copper (Cu) plates joined to the open ends of the semiconductors 11 and 12, respectively, which also serve as an electrode plate and a heat dissipation plate, and the temperature of the joints is lower than that of the PN junction. To obtain a thermoelectric conversion element 10 having a desired characteristic even if they are joined and integrated with a brazing material 16 having a low melting point such as zinc-tin (Zn-Sn) solder without using a titanium (Ti) -based active metal. You can

【0017】以上の構成において、高熱伝導金属板13
を熱源(図示せず)に近づけると、熱源からの熱エネル
ギーが高熱伝導金属板13を介して鉄硅化物(FeSi
2)を主体とするP型半導体11とN型半導体12とに
伝導、供給され、先に説明したようにゼーべック効果に
よって各々の半導体11,12の解放端側(低温端側)
にプラス(+)及びマイナス(−)の電圧が発生し、該
解放端から電力が取り出せるのである。
In the above structure, the high thermal conductive metal plate 13
Is brought close to a heat source (not shown), the heat energy from the heat source is passed through the high thermal conductive metal plate 13 to form an iron sulfide (FeSi).
2 ) is conducted and supplied to the P-type semiconductor 11 and the N-type semiconductor 12 which are mainly composed of 2 ), and as described above, due to the Seebeck effect, the open ends (low temperature ends) of the respective semiconductors 11 and 12
Positive (+) and negative (-) voltages are generated in the electric field, and electric power can be taken out from the open end.

【0018】この構成においては、各々の半導体11,
12の接合部に熱エネルギー供給源として高熱伝導金属
板13が配置され、各々の半導体11,12の外部に位
置する熱源(図示せず)からたえず熱エネルギーが効率
良く供給されることから、ペルチェ効果による電子正孔
対の発生の減少を防止することができ、発電効率を高め
ることができる。また、P型半導体11とN型半導体1
2とが別個に製造され高熱伝導金属板13を介して接合
されていることからPN接合部における各々半導体用合
金粉末の混合等が生じることなく安定した電力が取り出
せる。
In this structure, each semiconductor 11,
A high thermal conductive metal plate 13 is disposed as a heat energy supply source at the joint of 12 and heat energy is constantly supplied efficiently from a heat source (not shown) located outside each of the semiconductors 11 and 12. It is possible to prevent a decrease in the generation of electron-hole pairs due to the effect, and it is possible to improve power generation efficiency. In addition, the P-type semiconductor 11 and the N-type semiconductor 1
Since 2 and 2 are manufactured separately and joined through the high thermal conductive metal plate 13, stable power can be taken out without mixing of the alloy powder for semiconductor in the PN junction.

【0019】さらに、各々半導体11,12の解放端側
に銅(Cu)板からなる放熱板を接合することによって
各々半導体11,12の加熱部(PN接合部)と解放端
との温度差を拡大することが可能となり、発電効率の一
層の向上が達成される。各々半導体11,12の感温部
も実質的に高熱伝導金属板13との接合部分だけとなる
ことから、該各々半導体11,12の全長(L)を短く
することができ、各々半導体11,12が有する電気抵
抗をも低減することができ、発電効率の向上に寄与する
こととなる。その他、この発明の熱電変換素子10は種
々の特徴を有するが、それらの具体的な特徴は後述する
他の実施例とをあわせて詳細に説明する。
Further, by connecting a heat dissipation plate made of a copper (Cu) plate to the open ends of the semiconductors 11 and 12, respectively, the temperature difference between the heating part (PN junction part) and the open ends of the semiconductors 11 and 12 is reduced. It will be possible to expand and further improve the power generation efficiency. Since the temperature sensing portions of the semiconductors 11 and 12 are substantially only the joint portion with the high thermal conductive metal plate 13, the total length (L) of the semiconductors 11 and 12 can be shortened. The electric resistance of 12 can also be reduced, which contributes to the improvement of power generation efficiency. Besides, the thermoelectric conversion element 10 of the present invention has various characteristics, and the specific characteristics thereof will be described in detail in combination with other embodiments described later.

【0020】以下に、この発明の熱電変換素子10を構
成する各々の部材について一層詳細に説明する。熱電変
換素子10を構成する各々半導体11,12は、これら
を各々別個に所定形状からなる成形空間(貫通孔)を有
するダイス内に充填して加圧圧縮成形する以外は先に説
明した従来の製造方法と実質的には同様方法にて得られ
る。すなわち、溶解鋳造にて得られるFe1-XMnXSi
2及びFe1-YCoYSi2の所定組成を有するP型半導体
用合金及びN型半導体用合金を粉砕、造粒した後、別個
に所定形状からなる成形空間(貫通孔)を有するダイス
内に充填し、さらに、加圧圧縮成形、脱バインダー処
理、焼結、半導体化熱処理の各工程を経て、各々独立し
た単体品としてP型半導体11とN型半導体12とを得
るのである。
Each member constituting the thermoelectric conversion element 10 of the present invention will be described in more detail below. Each of the semiconductors 11 and 12 constituting the thermoelectric conversion element 10 is separately filled in a die having a molding space (through hole) having a predetermined shape and press-compressed, and the conventional semiconductors described above are used. It can be obtained by a method substantially similar to the manufacturing method. That is, Fe 1-X Mn X Si obtained by melt casting
In a die having a molding space (through hole) having a predetermined shape after crushing and granulating a P-type semiconductor alloy and an N-type semiconductor alloy having a predetermined composition of 2 and Fe 1 -Y Co Y Si 2 Then, the P-type semiconductor 11 and the N-type semiconductor 12 are obtained as independent individual products through the processes of pressure compression molding, binder removal processing, sintering, and heat treatment for semiconductorizing.

【0021】P型半導体11とN型半導体12との接合
部に配置する高熱伝導金属板13は、熱源からの熱エネ
ルギーを各々半導体に効率よく伝導、供給できる材料で
あれば良く、銅(Cu)板、銅(Cu)合金板の他、ア
ルミニウム(Al)板、アルミニウム(Al)合金板、
ニッケル(Ni)板、ニッケル(Ni)合金板やこれら
の組合せによるクラッド材、あるいはさらに該材料の表
面に加熱による酸化を防止するためのTiNなどの耐酸
化コーティングを施してある材料等、熱伝導特性が良好
でしかもチタン(Ti)系活性金属ろう材14との馴染
みの良い材料の中から選定するのが好ましい。熱伝導の
観点からは銅(Cu)板などが好ましいが、耐酸化コー
ティングを施さずに単板で使用する場合は、耐酸化性に
すぐれたニッケル(Ni)板が好ましい。また、高熱伝
導金属板13は、その機械的強度とともに各々半導体と
熱源との距離等を考慮して形状、寸法を選定するのが好
ましい。例えば、熱源としては自動車やボイラーの排
熱、ストーブの余熱等の内燃、外燃機器のエネルギーの
ほか、地熱や太陽熱などの自然エネルギーなどの種々の
熱源が想定できるが、まず熱源からの熱エネルギーを効
率よく集熱する装置や治具を使用する場合、これらの装
置や治具からの熱エネルギーを各々半導体に効率よく伝
導、供給するため、装置や治具等に応じて、あるいはこ
れらと一体化するため高熱伝導金属板の材質、形状など
が適宜選定されるため、高熱伝導金属板は様々な形態を
取り得る。当然、熱電変換素子そのものを集熱装置等に
適合させるよう構成する場合においても高熱伝導金属板
は様々な形態を取り得る。
The high thermal conductive metal plate 13 disposed at the joint between the P-type semiconductor 11 and the N-type semiconductor 12 may be made of any material capable of efficiently conducting and supplying heat energy from a heat source to the semiconductor. ) Plate, copper (Cu) alloy plate, aluminum (Al) plate, aluminum (Al) alloy plate,
Nickel (Ni) plate, nickel (Ni) alloy plate, a clad material made of a combination thereof, or a material having an anti-oxidizing coating such as TiN on the surface of the material to prevent oxidation due to heating It is preferable to select from materials having good characteristics and having good compatibility with the titanium (Ti) -based active metal brazing material 14. A copper (Cu) plate or the like is preferable from the viewpoint of heat conduction, but a nickel (Ni) plate having excellent oxidation resistance is preferable when it is used as a single plate without an oxidation resistant coating. Further, it is preferable to select the shape and size of the high thermal conductive metal plate 13 in consideration of the mechanical strength thereof and the distance between the semiconductor and the heat source. For example, as heat sources, various heat sources such as exhaust heat of automobiles and boilers, internal combustion such as residual heat of stoves, energy of external combustion equipment, natural energy such as geothermal heat and solar heat can be assumed, but first, heat energy from heat source When using devices and jigs that efficiently collect heat, the heat energy from these devices and jigs can be efficiently conducted and supplied to the semiconductor, depending on the device or jig, or integrated with these. Since the material, shape, etc. of the high thermal conductive metal plate are appropriately selected to realize the high thermal conductive metal plate, the high thermal conductive metal plate can take various forms. Of course, even when the thermoelectric conversion element itself is configured to be adapted to a heat collecting device or the like, the high thermal conductive metal plate can take various forms.

【0022】各々半導体11,12と高熱伝導金属板1
3とを接合一体化するチタン(Ti)系活性金属ろう材
14としては、本願出願人が先に金属とセラミックスの
接合用ろう材として提案したチタン(Ti)を芯材とし
てその両主面にニッケル(Ni)またニッケル−銅(N
i−Cu)合金箔等を圧接してなる3層複合箔ろう材
(特開平2−93095号)の他、チタン(Ti)を芯
材としてその両主面銅(Cu)箔等を圧接してなる3層
複合箔ろう材、チタン(Ti)に銅(Cu)、ニッケル
(Ni)、またはニッケル−銅(Ni−Cu)合金箔等
を圧接してなる2層複合箔ろう材等の所謂複合箔ろう
材、チタン(Ti)を主成分としてコバルト(Co)、
ニッケル(Ni)、鉄(Fe)等の他種々の添加元素を
含有してなるろう付け用液体急冷合金箔帯(特開昭59
−116350号)、チタン(Ti)を主成分として銅
(Cu)の他種々の添加元素を含有してなるろう付け用
液体急冷合金箔帯(特開昭59−126739号)等の
所謂液体急冷合金箔帯ろう材、さらにチタン(Ti)を
主成分とする合金粉末、またはチタン(Ti)粉末と銅
(Cu)、ニッケル(Ni)粉末等との混合粉末を有機
バインダーを用いてペースト状にした所謂ペースト状ろ
う材等公知の種々の形態からなるチタン(Ti)系活性
金属ろう材の使用が可能である。
Semiconductors 11 and 12 and a metal plate 1 having high thermal conductivity, respectively.
As the titanium (Ti) -based active metal brazing filler metal 14 that joins and integrates 3 and 3, titanium (Ti), which has been previously proposed by the applicant as a brazing filler metal for joining metal and ceramics, is used as a core material on both main surfaces thereof. Nickel (Ni) or nickel-copper (N
In addition to a three-layer composite foil brazing material (Japanese Patent Laid-Open No. 2-93095) obtained by pressure-bonding an i-Cu) alloy foil or the like, titanium (Ti) is used as a core material and both surfaces of the copper (Cu) foil are pressure-contacted. The so-called three-layer composite foil brazing material, such as a two-layer composite foil brazing material obtained by press-contacting titanium (Ti) with copper (Cu), nickel (Ni), nickel-copper (Ni-Cu) alloy foil, or the like. Composite foil brazing material, titanium (Ti) as the main component, cobalt (Co),
Liquid quenching alloy foil strip for brazing containing various additive elements other than nickel (Ni), iron (Fe), etc.
-116350), a liquid quenching alloy foil strip for brazing containing titanium (Ti) as a main component and various additive elements other than copper (Cu) (Japanese Patent Laid-Open No. 59-126739), and so-called liquid quenching. An alloy foil brazing material, an alloy powder mainly composed of titanium (Ti), or a mixed powder of titanium (Ti) powder and copper (Cu), nickel (Ni) powder, etc. is made into a paste using an organic binder. It is possible to use a titanium (Ti) -based active metal brazing material having various known forms such as the so-called pasty brazing material.

【0023】いずれにしても、チタン(Ti)系活性金
属ろう材14は、P型半導体11とN型半導体12及び
高熱伝導金属板13との馴染みを良好にし、高温度での
使用に耐える接合強度を得るためには、上記種々の形態
からなるろう材が溶融した時点でその中に占めるチタン
(Ti)の割合が20wt%以上となるよう構成する必
要があり、また他の構成金属に応じてその上限が選定さ
れる。チタン(Ti)以外の構成金属としては、前記の
如き種々金属が選定可能であるが、銀(Ag)等各々の
半導体の諸特性に悪影響を及ぼすと懸念される金属の含
有は極力排除するのが好ましい。通常、上記の条件にお
いて、チタン(Ti)のろう材中に占める割合は20w
t%〜80wt%の範囲にあり、好ましくは40wt%
〜60wt%程度である。
In any case, the titanium (Ti) -based active metal brazing material 14 makes the P-type semiconductor 11 and the N-type semiconductor 12 and the high thermal conductive metal plate 13 fit well, and is a joint that can be used at high temperatures. In order to obtain the strength, it is necessary to configure the brazing filler metal having the various forms described above so that the proportion of titanium (Ti) in the brazing filler metal when melted is 20 wt% or more. The upper limit is selected. As the constituent metals other than titanium (Ti), various metals as described above can be selected, but the inclusion of metals such as silver (Ag), which are feared to adversely affect various semiconductor characteristics, should be excluded as much as possible. Is preferred. Usually, under the above conditions, the ratio of titanium (Ti) in the brazing filler metal is 20w.
t% to 80 wt%, preferably 40 wt%
It is about 60 wt%.

【0024】これらのチタン(Ti)系活性金属ろう材
は、各々半導体11,12と高熱伝導金属板13との間
に配置する作業性等を考慮して、その形態を選定するこ
とが望ましい。また、これらのチタン(Ti)系活性金
属ろう材は、比較的融点が高いことから、ろう付け完了
後における高温度での使用に耐えることが可能である
が、反面ろう付け作業温度も必然的に高温度になること
から、ろう付け作業の際には各々半導体11,12への
影響を考慮する必要がある。すなわち、半導体化熱処理
を完了したのちに各々半導体11,12を900°Cを
越えて加熱すると半導体として有する本来の特性が損な
われ、目的とする発電作用が得られなくなることから、
一旦半導体化熱処理を完了した各々半導体11、12に
高熱伝導金属板13をろう付けする際には、そのろう付
け作業温度を900°C以下にすることが望ましい。
It is desirable to select the form of these titanium (Ti) -based active metal brazing materials in consideration of workability to be arranged between the semiconductors 11 and 12 and the high thermal conductive metal plate 13. Further, since these titanium (Ti) -based active metal brazing materials have relatively high melting points, they can withstand use at high temperatures after completion of brazing, but on the other hand, brazing work temperature is also inevitable. Since the temperature is extremely high, it is necessary to consider the influence on the semiconductors 11 and 12 during the brazing work. That is, if each of the semiconductors 11 and 12 is heated above 900 ° C. after completion of the heat treatment for semiconducting, the original characteristics of the semiconductor are impaired and the desired power generation effect cannot be obtained.
When the high thermal conductive metal plate 13 is brazed to each of the semiconductors 11 and 12 that have once undergone the heat treatment for semiconductorizing, the brazing work temperature is preferably set to 900 ° C. or less.

【0025】一方、半導体化熱処理を完了する前の所謂
焼結処理が完了した時点での各々半導体11,12用焼
結体では、上記のような制限を受けないことから900
°Cを越えるろう付け作業温度にて高熱伝導金属板13
をろう付けすることが可能であり、これらろう付け作業
完了後に半導体化熱処理を施すことによって目的とする
熱電変換素子を得ることができる。従って、使用するチ
タン(Ti)系活性金属ろう材のろう付け作業温度に応
じて、ろう付け作業の工程を半導体化熱処理の前後のい
ずれに行うかを決定することが必要である。
On the other hand, the sintered bodies for the semiconductors 11 and 12 at the point of time when the so-called sintering process is completed before the semiconductor heat treatment is completed are not subject to the above restrictions.
High thermal conductive metal plate 13 at brazing work temperature exceeding ° C
Can be brazed, and the desired thermoelectric conversion element can be obtained by performing heat treatment for semiconductorizing after completion of these brazing operations. Therefore, it is necessary to determine whether to perform the brazing process before or after the semiconductor heat treatment, depending on the brazing temperature of the titanium (Ti) -based active metal brazing material to be used.

【0026】図2から図7に示す熱電変換素子は、この
発明の他の実施例を示す概略説明図である。この発明の
熱電変換素子においては、熱電変換素子を構成する各々
半導体が個別に独立して製造されることから、それらを
種々の形状とすることが可能であることを先に説明し
た。図1には、各々の半導体を略角柱状として、高熱伝
導金属板を介して接合することによって略U字型の熱電
変換素子とする構成が示されたが、図2から図5では立
方体または直方体(略立方体)からなる半導体を配置し
て構成した熱電変換素子を示している。
2 to 7 are schematic explanatory views showing another embodiment of the present invention. In the thermoelectric conversion element of the present invention, since the semiconductors forming the thermoelectric conversion element are individually and independently manufactured, it is possible to make them into various shapes. FIG. 1 shows a configuration in which each semiconductor is formed into a substantially prismatic shape and is joined through a high thermal conductive metal plate to form a substantially U-shaped thermoelectric conversion element. However, in FIGS. 1 shows a thermoelectric conversion element configured by arranging semiconductors made of a rectangular parallelepiped (substantially cubic).

【0027】図2は直方体からなる鉄硅化物(FeSi
2)を主体とするP型半導体21とN型半導体22とを
銅(Cu)板からなる高熱伝導金属板23を介してPN
接合を形成して接合して熱電変換素子20を構成してい
る。25,25はそれぞれP型半導体とN型半導体との
低温端側に接合し、放熱板の役割を兼ねる銅(Cu)板
からなる電極板である。この電極板25,25は後述す
る図3、図4に示す実施例の如く熱電変換素子20を複
数接続する構成において電気的接続を容易にするため
に、それぞれ所定の角度をもって解放端部が開くよう接
合されている。この熱電変換素子20においては、P型
半導体21およびN型半導体22と高熱伝導金属板23
との接合、P型半導体21およびN型半導体22と電極
板25,25との接合はいずれもチタン(Ti)系活性
金属ろう材24にてろう付け一体化されており、その発
電のメカニズムは図1に示した熱電変換素子10の場合
と同様である。
FIG. 2 shows an iron silicide (FeSi) composed of a rectangular parallelepiped.
2 ) mainly composed of a P-type semiconductor 21 and an N-type semiconductor 22 via a high thermal conductive metal plate 23 made of a copper (Cu) plate.
The thermoelectric conversion element 20 is configured by forming and joining the joints. Reference numerals 25 and 25 denote electrode plates made of a copper (Cu) plate which are joined to the low temperature end sides of the P-type semiconductor and the N-type semiconductor and also serve as a heat radiating plate. In order to facilitate electrical connection in the configuration in which a plurality of thermoelectric conversion elements 20 are connected as in the embodiments shown in FIGS. 3 and 4 described later, the electrode plates 25, 25 have open ends that open at predetermined angles. Are joined together. In this thermoelectric conversion element 20, the P-type semiconductor 21, the N-type semiconductor 22 and the high thermal conductive metal plate 23 are used.
The joining with the P-type semiconductor 21 and the N-type semiconductor 22 and the electrode plates 25, 25 are all integrated by brazing with a titanium (Ti) -based active metal brazing material 24. This is similar to the case of the thermoelectric conversion element 10 shown in FIG.

【0028】熱源が比較的広範囲におよぶ場合は、この
熱電変換素子20を複数直列または並列接続することに
よって、一層大きな電力を得ることができる。例えば、
図3に示す構成では、図2に示す構成と同様な構成から
なる熱電変換素子20a,20b,20cを水平方向に
所謂横並びに接続し、熱源(図示せず)に近接または接
触する各々高熱伝導金属板23a,23b,23cから
伝導、供給される熱エネルギーの総和に相当する電力を
電極板25aと25cの両端部から取り出すことができ
る。図中26は熱電変換素子20a,20b,20cの
各々電極板25a,25b,25cを電気的に接続する
リベット等の接続部材である。
When the heat source covers a relatively wide range, a larger amount of electric power can be obtained by connecting a plurality of thermoelectric conversion elements 20 in series or in parallel. For example,
In the configuration shown in FIG. 3, the thermoelectric conversion elements 20a, 20b, 20c having the same configuration as the configuration shown in FIG. 2 are connected horizontally in a so-called side-by-side arrangement, and each has a high thermal conductivity close to or in contact with a heat source (not shown). Electric power corresponding to the total of thermal energy conducted and supplied from the metal plates 23a, 23b and 23c can be taken out from both ends of the electrode plates 25a and 25c. In the figure, reference numeral 26 is a connecting member such as a rivet that electrically connects the electrode plates 25a, 25b, 25c of the thermoelectric conversion elements 20a, 20b, 20c.

【0029】図4に示す構成では、図2に示す構成と同
様な構成からなる熱電変換素子20d,20e,20f
を垂直方向に所謂縦並びに接続し、熱源(図示せず)に
近接または接触する各々高熱伝導金属板23d,23
e,23fから伝導、供給される熱エネルギーの総和に
相当する電力を電極板25dと25fの両端部から取り
出すことができる。
In the configuration shown in FIG. 4, thermoelectric conversion elements 20d, 20e, 20f having the same configuration as the configuration shown in FIG.
Are connected in a vertical direction in a so-called vertical direction, and each of the high thermal conductive metal plates 23d, 23 is close to or in contact with a heat source (not shown)
Electric power corresponding to the sum of the thermal energy conducted and supplied from e and 23f can be taken out from both ends of the electrode plates 25d and 25f.

【0030】図5に示す構成の熱電変換素子50は、い
ままで説明した熱電変換素子がいずれもP型半導体およ
びN型半導体が高熱伝導金属板を挟んで垂直方向に積層
するよう接合配置した構成であるのに対し、一枚の高熱
伝導金属板の同一平面上にそれぞれP型半導体およびN
型半導体を接合配置した構成であり、いままで説明した
この発明の熱電変換素子と同様な作用効果を得ることが
できる。すなわち、一枚の高熱伝導金属板53の一方端
は、熱源(図示せず)に効率よく近接または接触するた
めに狭幅の長方形状となっており、またP型半導体51
およびN型半導体52を接合配置する他方端は広幅の正
方形状となっており、さらにそれぞれP型半導体51と
N型半導体52との低温端側(図面上面)には放熱板の
役割を兼ねる銅(Cu)板からなる電極板55,55を
接合配置している。
In the thermoelectric conversion element 50 having the structure shown in FIG. 5, all of the thermoelectric conversion elements described so far are arranged so that P-type semiconductors and N-type semiconductors are vertically stacked with a high thermal conductive metal plate sandwiched therebetween. On the other hand, a P-type semiconductor and N
This is a configuration in which the type semiconductors are joined and arranged, and the same effects as those of the thermoelectric conversion element of the present invention described so far can be obtained. That is, one end of the single highly heat-conductive metal plate 53 has a narrow rectangular shape in order to efficiently approach or contact a heat source (not shown), and the P-type semiconductor 51.
The other end where the N-type semiconductor 52 and the N-type semiconductor 52 are joined and arranged has a wide square shape, and copper that also serves as a heat sink is provided on the low temperature end side (upper surface of the drawing) of the P-type semiconductor 51 and the N-type semiconductor 52, respectively. The electrode plates 55, 55 made of (Cu) plates are arranged in a joined state.

【0031】この熱電変換素子50においても、P型半
導体51およびN型半導体52と高熱伝導金属板53と
の接合、P型半導体51およびN型半導体52と電極板
55,55との接合はいずれもチタン(Ti)系活性金
属ろう材54にてろう付け一体化されている。熱源(図
示せず)から供給される熱エネルギーは、高熱伝導金属
板53を介してそれぞれP型半導体51とN型半導体5
2に伝導、供給される。この時、互いの半導体51,5
2は高熱伝導金属板53の同一平面上に接合配置してい
るが、該高熱伝導金属板53を介してPN接合を形成し
て接合されていることから、各々半導体51,52の低
温端側(図面上面)から電力を取り出すことが可能とな
る。
Also in the thermoelectric conversion element 50, the P-type semiconductor 51 and the N-type semiconductor 52 are joined to the high thermal conductive metal plate 53, and the P-type semiconductor 51 and the N-type semiconductor 52 are joined to the electrode plates 55 and 55. Is also integrated by brazing with a titanium (Ti) -based active metal brazing material 54. Thermal energy supplied from a heat source (not shown) is supplied to the P-type semiconductor 51 and the N-type semiconductor 5 through the high thermal conductive metal plate 53, respectively.
2 is conducted and supplied. At this time, the semiconductors 51, 5 of each other
2 is arranged on the same plane of the high thermal conductive metal plate 53, but since the PN junction is formed through the high thermal conductive metal plate 53, the semiconductors 51 and 52 are connected on the low temperature end side. It becomes possible to take out electric power from the upper surface of the drawing.

【0032】図2から図5のいずれの構成においても、
半導体の低温端側に接合する電極板の面積を比較的大型
化して放熱板の役割を兼ねる構成したが、これらは図1
の構成における電極板15と同様に、各々半導体の加熱
部(PN接合部)と解放端との温度差を拡大し、発電効
率の向上を目的としたものである。さらに、これらの電
極板に強制冷却手段を配置することによって、その効果
を一層向上することが可能となる。
In any of the configurations shown in FIGS. 2 to 5,
The area of the electrode plate joined to the low temperature end side of the semiconductor is made relatively large so that it also serves as a heat sink.
Similar to the electrode plate 15 in the above configuration, the purpose is to increase the temperature difference between the heating portion (PN junction portion) and the open end of each semiconductor and improve the power generation efficiency. Further, by arranging the forced cooling means on these electrode plates, the effect can be further improved.

【0033】図6に示す構成の熱電変換素子60は、リ
ング状からなる鉄硅化物(FeSi2)を主体とするP
型半導体61a,61b,61cとN型半導体62a,
62b,62cとをそれぞれの内周部および外周部に交
互に配置されるリング状の銅(Cu)板からなる高熱伝
導金属板63a,63b,63c,63d,63eを介
してPN接合を形成して接合し、全体として円筒状の熱
電変換素子を構成している。図中64a,64b,64
c,64d,64eはそれぞれ半導体と高熱伝導金属板
とを接合するチタン(Ti)系活性金属ろう材である。
また、65,65はそれぞれ上端部に位置するP型半導
体61a、下端部に位置するN型半導体62cにチタン
(Ti)系活性金属ろう材64によって接合される電極
部材である。
The thermoelectric conversion element 60 having the structure shown in FIG. 6 is composed mainly of a ring-shaped iron silicate (FeSi 2 ).
Type semiconductors 61a, 61b, 61c and N type semiconductors 62a,
62b and 62c are formed on the inner peripheral portion and the outer peripheral portion, respectively, to form a PN junction via high thermal conductive metal plates 63a, 63b, 63c, 63d and 63e made of ring-shaped copper (Cu) plates. And joined together to form a cylindrical thermoelectric conversion element. 64a, 64b, 64 in the figure
Reference numerals c, 64d, and 64e are titanium (Ti) -based active metal brazing materials for joining the semiconductor and the high thermal conductive metal plate.
Further, reference numerals 65 and 65 are electrode members joined to the P-type semiconductor 61a located at the upper end and the N-type semiconductor 62c located at the lower end by a titanium (Ti) -based active metal brazing material 64, respectively.

【0034】このような構成からなる円筒状の熱電変換
素子60において、その内周に配置される円筒部材66
(例えば、表面を酸化処理して電気絶縁性を高めたアル
ミ(Al)管)内を通過する排ガス等の温度を熱源と
し、該円筒部材66の外周面に接触するリング状高熱伝
導金属板63a,63b,63cからP型半導体61
a,61b,61c及びN型半導体62a,62b,6
2cに伝導、供給される熱エネルギーに応じて電力を発
生し、電極部材65,65から電力を取り出すことがで
きる。この構成において、リング状高熱伝導金属板63
d,63eは各々半導体への熱エネルギー供給には直接
寄与していないが、各々半導体にて発生する電力を電気
的に直列接続する役割を果たす。
In the cylindrical thermoelectric conversion element 60 having such a structure, the cylindrical member 66 arranged on the inner circumference thereof.
(For example, a ring-shaped high thermal conductive metal plate 63a that contacts the outer peripheral surface of the cylindrical member 66 by using the temperature of exhaust gas or the like that passes through an aluminum (Al) tube whose surface is oxidized to improve electrical insulation) as a heat source. , 63b, 63c to the P-type semiconductor 61
a, 61b, 61c and N-type semiconductors 62a, 62b, 6
Electric power can be generated from the electrode members 65, 65 by generating electric power according to the thermal energy conducted and supplied to the 2c. In this configuration, the ring-shaped high thermal conductive metal plate 63
Each of d and 63e does not directly contribute to the thermal energy supply to the semiconductor, but each plays the role of electrically connecting the electric power generated in the semiconductor in series.

【0035】図7に示す構成の熱電変換素子70は、矩
形板状からなる鉄硅化物(FeSi2)を主体とするP
型半導体71a,71b,71cとN型半導体72a,
72b,72cとをそれぞれの対向位置にある両端部に
交互に配置される矩形板状の銅(Cu)板からなる高熱
伝導金属板73a,73b,73c,73d,73eを
介してPN接合を形成して接合し、全体として直方体状
の熱電変換素子を構成している。図中74a,74b,
74c,74d,74eはそれぞれ半導体と高熱伝導金
属板とを接合するチタン(Ti)系活性金属ろう材であ
る。また、75,75、はそれぞれ上端部に位置するP
型半導体71a、下端部に位置するN型半導体72cに
チタン(Ti)系活性金属ろう材74によって接合され
る電極部材である。
The thermoelectric conversion element 70 having the structure shown in FIG. 7 is composed mainly of iron silicide (FeSi 2 ) having a rectangular plate shape.
Type semiconductors 71a, 71b, 71c and N type semiconductors 72a,
PN junction is formed through high heat conductive metal plates 73a, 73b, 73c, 73d, 73e made of rectangular copper (Cu) plates alternately arranged at opposite ends of 72b and 72c. Then, they are joined together to form a rectangular parallelepiped thermoelectric conversion element. 74a, 74b in the figure,
74c, 74d, and 74e are titanium (Ti) -based active metal brazing materials for joining the semiconductor and the high thermal conductive metal plate. Also, 75 and 75 are P located at the upper end, respectively.
The electrode member is joined to the type semiconductor 71a and the N-type semiconductor 72c located at the lower end by a titanium (Ti) -based active metal brazing material 74.

【0036】このような構成からなる直方体状の熱電変
換素子70においては、該熱電変換素子70の一外周面
側(図においては熱電変換素子70の右側)に位置する
熱源(図示せず)からの熱エネルギーを高熱伝導金属板
73a,73b,73cからP型半導体71a、71
b,71c及びN型半導体72a,72b,72cに伝
導、供給し、該熱エネルギーに応じて電力を発生し、電
極部材75,75から電力を取り出すことができる。こ
の構成において、高熱伝導金属板73d,73eは各々
半導体への熱エネルギー供給には直接寄与していない
が、各々半導体にて発生する電力を電気的に直列接続す
る役割を果たす。
In the rectangular parallelepiped thermoelectric conversion element 70 having such a structure, a heat source (not shown) located on one outer peripheral surface side of the thermoelectric conversion element 70 (right side of the thermoelectric conversion element 70 in the drawing) is used. The heat energy of the high thermal conductive metal plates 73a, 73b, 73c from the P-type semiconductors 71a, 71
b, 71c and the N-type semiconductors 72a, 72b, 72c can be conducted and supplied, electric power can be generated according to the thermal energy, and electric power can be taken out from the electrode members 75, 75. In this configuration, the high thermal conductive metal plates 73d and 73e do not directly contribute to the thermal energy supply to the semiconductors, but each plays a role of electrically connecting the electric power generated in the semiconductors in series.

【0037】[0037]

【実施例】図1に示すこの発明の熱電変換素子10と、
図9に示す従来の熱電変換素子1との負荷特性を測定す
ることによって、この発明の熱電変換素子10が優れて
いることを確認した。図1に示すこの発明の熱電変換素
子10を得るために、以下の構成部材を準備した。 鉄硅化物(FeSi2)を主体とするP型半導体11お
よびN型半導体12 組成(wt%):P型→Fe43.5Mn4Si52.5
型→Fe44.5Co3.5Si51.5 寸法:高さ4mm×幅4mm×長さ20mm 比抵抗(ρ):0.08Ωcm 高熱伝導金属板13 材質:銅(Cu)板 寸法:厚さ0.5mm×幅5mm×長さ10mm チタン(Ti)系活性金属ろう材14 構成:Cu−Ni/Ti/Cu−Ni(3層複合ろう
材) Ti割合50wt% 寸法:厚さ0.08mm×幅3mm×長さ5mm 融点:900°C 電極15 材質:銅(Cu)板 寸法:厚さ0.5mm×幅3mm×長さ10mm 耐酸化コーティング17 材質:TiN 寸法:厚さ2μm
EXAMPLE A thermoelectric conversion element 10 of the present invention shown in FIG.
By measuring the load characteristics with the conventional thermoelectric conversion element 1 shown in FIG. 9, it was confirmed that the thermoelectric conversion element 10 of the present invention was excellent. In order to obtain the thermoelectric conversion element 10 of the present invention shown in FIG. 1, the following constituent members were prepared. P-type semiconductor 11 and N-type semiconductor 12 mainly composed of iron silicide (FeSi 2 ) Composition (wt%): P-type → Fe 43.5 Mn 4 Si 52.5 N
Mold → Fe 44.5 Co 3.5 Si 51.5 Dimensions: height 4 mm x width 4 mm x length 20 mm Specific resistance (ρ): 0.08 Ωcm High thermal conductive metal plate 13 Material: copper (Cu) plate Dimensions: thickness 0.5 mm x width 5 mm x length 10 mm Titanium (Ti) -based active metal brazing material 14 Structure: Cu-Ni / Ti / Cu-Ni (3-layer composite brazing material) Ti ratio 50 wt% Dimension: Thickness 0.08 mm x width 3 mm x length 5mm Melting point: 900 ° C Electrode 15 Material: Copper (Cu) plate Dimension: Thickness 0.5mm x Width 3mm x Length 10mm Oxidation resistant coating 17 Material: TiN Dimension: Thickness 2μm

【0038】上記の各々半導体11,12と高熱伝導金
属板13とをチタン(Ti)系活性金属ろう材14を介
し、所定の圧力を加えて位置決めした状態にて、大気
中、900°C×15minの条件にてろう付けし、そ
の後電極15をZn−Sn半田にて250°Cで接合
し、この発明の熱電変換素子10を得た。
The above semiconductors 11 and 12 and the high thermal conductive metal plate 13 are positioned with a predetermined pressure applied through a titanium (Ti) -based active metal brazing material 14 in the atmosphere at 900 ° C. After brazing under the condition of 15 min, the electrode 15 was joined with Zn—Sn solder at 250 ° C. to obtain the thermoelectric conversion element 10 of the present invention.

【0039】従来の熱電変換素子1は、一対の半導体
が、この発明の熱電変換素子10と同組成でほぼ同寸法
になるよう従来の粉末冶金法にて一体成形したものを使
用した。それぞれの熱電変換素子10,1に図1および
図9に示すように電流計5、電圧計6、可変抵抗7を接
続し、この発明の熱電変換素子10においては高熱伝導
金属板13を、また、従来の熱電変換素子1においては
半導体のPN接合部をトーチにて加熱(約800°C)
することによって、それぞれの負荷特性を測定したとこ
ろ、図8に示すような特性を得た。図8よりこの発明の
熱電変換素子10の負荷特性が従来の熱電変換素子1の
負荷特性に比べて優れていることが明らかであり、この
発明の熱電変換素子10の発電能力(変換効率)が高い
ことが確認できた。
As the conventional thermoelectric conversion element 1, a pair of semiconductors integrally molded by the conventional powder metallurgy method is used so that the pair of semiconductors has the same composition and substantially the same size as the thermoelectric conversion element 10 of the present invention. As shown in FIGS. 1 and 9, an ammeter 5, a voltmeter 6, and a variable resistor 7 are connected to each thermoelectric conversion element 10 and 1, and in the thermoelectric conversion element 10 of the present invention, a high thermal conductive metal plate 13 is used. , In the conventional thermoelectric conversion element 1, the semiconductor PN junction is heated by the torch (about 800 ° C)
By doing so, the respective load characteristics were measured, and the characteristics shown in FIG. 8 were obtained. It is clear from FIG. 8 that the load characteristics of the thermoelectric conversion element 10 of the present invention are superior to the load characteristics of the conventional thermoelectric conversion element 1, and the power generation capacity (conversion efficiency) of the thermoelectric conversion element 10 of the present invention is It was confirmed to be high.

【0040】[0040]

【発明の効果】この発明の熱電変換素子においては、鉄
硅化物(FeSi2)を主体とするP型半導体およびN
型半導体の接合部に熱エネルギー供給源として高熱伝導
金属板が配置され、各々の半導体の外部に位置する熱源
から絶えず熱エネルギーが効率良く供給されることか
ら、ペルチェ効果による電子正孔対の発生の減少を防止
することができ、発電効率を高めることができる。従来
の直熱式の場合、接合部以外が熱せられるので、冷接点
部を離すために素子が長くなり、内部抵抗が増加する
が、この発明の熱電変換素子においては、熱が高熱伝導
金属板を熱することにより供給されて、PN接合部のみ
が加熱されるので、冷接点部近くにも温度差が得られ、
内部抵抗が小さくなり、発電能力が著しく向上する。
According to the thermoelectric conversion element of the present invention, a P-type semiconductor mainly composed of iron silicide (FeSi 2 ) and an N-type semiconductor are used.
A high thermal conductive metal plate is placed as a heat energy supply source at the junction of the semiconductors, and heat energy is constantly and efficiently supplied from the heat source located outside each semiconductor. Can be prevented, and power generation efficiency can be improved. In the case of the conventional direct heating type, since the elements other than the joint portion are heated, the element becomes long to separate the cold junction portion and the internal resistance increases, but in the thermoelectric conversion element of the present invention, the heat is a high heat conductive metal plate. Is supplied by heating, and only the PN junction is heated, so a temperature difference can be obtained near the cold junction,
The internal resistance is reduced and the power generation capacity is significantly improved.

【0041】また、P型半導体とN型半導体とが別個に
製造され高熱伝導金属板を介して接合されていることか
ら従来構成の如きPN接合部における各々半導体用合金
粉末の混合等が生じることなく、該PN接合部にて特性
劣化が生じたり電気的特性にバラツキ生じたりすること
がなく安定した電力が取り出せる。さらに、P型半導体
とN型半導体とを別個に製造することが可能になったこ
とにより、製造方法(充填−成形工程)が容易になり、
量産性に優れた構成となった。また、P型半導体とN型
半導体との個々の形状を用途に応じて任意に製造するこ
とが可能となったことより、実施例に示すような種々な
構成からなる熱電変換素子の提供が実現でき、これら熱
電変換素子の用途を一層広げることができる。
Further, since the P-type semiconductor and the N-type semiconductor are manufactured separately and joined together through the high thermal conductive metal plate, mixing of the alloy powder for semiconductors or the like occurs in the PN junction as in the conventional structure. In addition, stable power can be taken out without deterioration of characteristics at the PN junction or variation in electrical characteristics. Furthermore, since it is possible to manufacture the P-type semiconductor and the N-type semiconductor separately, the manufacturing method (filling-molding step) becomes easy,
The configuration has excellent mass productivity. Further, since individual shapes of the P-type semiconductor and the N-type semiconductor can be arbitrarily manufactured according to the application, it is possible to provide the thermoelectric conversion element having various configurations as shown in the examples. Therefore, the applications of these thermoelectric conversion elements can be further expanded.

【0042】この発明の熱電変換素子においては、特に
各々半導体の低温端側に銅(Cu)板等からなる放熱板
を接合することによって各々半導体の加熱部(PN接合
部)と低温端側との温度差を拡大することが可能とな
り、発電効率の一層の向上が達成される。熱電変換素子
を構成する各々部材を比較的融点の高いチタン(Ti)
系活性金属ろう材にて接合一体化するため、高温度雰囲
気での使用にも耐え、鉄硅化物(FeSi2)を主体と
する半導体が本来有する耐熱特性を有効に活用すること
ができることも大きな効果の一つであり、特に400°
C〜900°Cの温度範囲における熱センサーとして、
また電源として有効である。
In the thermoelectric conversion element of the present invention, a heat radiating plate made of a copper (Cu) plate or the like is joined to the low temperature end side of each semiconductor to form a semiconductor heating portion (PN junction portion) and a low temperature end side. It is possible to widen the temperature difference and the power generation efficiency is further improved. Titanium (Ti), which has a relatively high melting point, is used for each member that constitutes the thermoelectric conversion element.
Since it is joined and integrated with a system-based active metal brazing material, it can withstand use in a high temperature atmosphere and can effectively utilize the heat resistance characteristic of a semiconductor mainly composed of iron silicate (FeSi 2 ). One of the effects, especially 400 °
As a thermal sensor in the temperature range of C to 900 ° C,
It is also effective as a power source.

【0043】以上に説明するように、この発明の熱電変
換素子は多くの長所を有しており、例えばストーブやコ
ンロの近傍に配置することによって、これらの作動に基
づきファンモーターを回転させたり、自動車の排熱エネ
ルギーを利用してリニアアクチュエーターを作動して各
種部品を駆動させたり、例えば、熱電変換された電力を
電池などに蓄電して電池を電源として、あるいは発電さ
れたものを直接使用して電子機器を作動させたり、多く
の用途への活用が考えられる。また、熱源も自動車やボ
イラーの排熱、ストーブの余熱のほか、地熱や太陽熱な
どの自然エネルギーの活用も可能で、種々の集熱治具や
装置を利用して高熱をこの発明の熱電変換素子の高熱伝
導金属板に伝熱することにより、多くの電子機器を作動
させることが可能になる。
As described above, the thermoelectric conversion element of the present invention has many advantages. For example, by arranging the thermoelectric conversion element in the vicinity of the stove or the stove, the fan motor can be rotated based on these operations, By using the exhaust heat energy of the car to operate the linear actuator to drive various parts, for example, the thermoelectrically converted electric power is stored in a battery or the like and the battery is used as the power source, or the generated power is used directly. It can be used to operate electronic devices and be used for many purposes. In addition to the exhaust heat of automobiles and boilers, the residual heat of the stove, it is also possible to utilize natural energy such as geothermal heat and solar heat as the heat source, and high heat can be generated by using various heat collecting jigs and devices. It is possible to operate many electronic devices by transferring heat to the high thermal conductive metal plate of.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の熱電変換素子の一構成例を示す縦断
説明図である。
FIG. 1 is a vertical cross-sectional explanatory view showing one structural example of a thermoelectric conversion element of the present invention.

【図2】この発明の熱電変換素子の他の構成例を示す説
明図であり、aは上面説明図、bは縦断説明図である。
2A and 2B are explanatory views showing another configuration example of the thermoelectric conversion element of the present invention, in which a is a top view and b is a longitudinal section.

【図3】この発明の熱電変換素子の他の構成例を示す上
面説明図である。
FIG. 3 is an explanatory top view showing another configuration example of the thermoelectric conversion element of the present invention.

【図4】この発明の熱電変換素子の他の構成例を示す縦
断説明図である。
FIG. 4 is a vertical cross-sectional explanatory view showing another configuration example of the thermoelectric conversion element of the present invention.

【図5】この発明の熱電変換素子の他の構成例を示す説
明図であり、aは上面説明図、bは縦断説明図である。
5A and 5B are explanatory views showing another configuration example of the thermoelectric conversion element of the present invention, in which a is a top view and b is a longitudinal section.

【図6】この発明の熱電変換素子の他の構成例を示す横
断説明図である
FIG. 6 is a transverse cross-sectional view showing another configuration example of the thermoelectric conversion element of the present invention.

【図7】この発明の熱電変換素子の他の構成例を示す縦
断説明図である。
FIG. 7 is a vertical cross-sectional explanatory view showing another configuration example of the thermoelectric conversion element of the present invention.

【図8】この発明の熱電変換素子と従来の熱電変換素子
との負荷特性を測定した結果を示す負荷特性曲線図であ
る。
FIG. 8 is a load characteristic curve diagram showing a result of measuring load characteristics of the thermoelectric conversion element of the present invention and the conventional thermoelectric conversion element.

【図9】従来の熱電変換素子の概要説明図である。FIG. 9 is a schematic explanatory diagram of a conventional thermoelectric conversion element.

【符号の説明】[Explanation of symbols]

1,10,20,20a,20b,20c,20d,2
0e,20f,50,60,70 熱電変換素子 2,11,21,51,61a,61b,61c,71
a,71b,71c P型半導体 3,12,22,52,62a,62b,62c,72
a,72b,72c N型半導体 4 PN接合部 5 電流計 6 電圧計 7 可変抵抗 13,23,23a,23b,23c,23d,23
e,23f,53,63a,63b,63c,63d,
63e,73a,73b,73c,73d,73e 高
熱伝導金属板 14,24,54,64a,64b,64c,64d,
64e,74,74a,74b,74c,74d,74
e チタン(Ti)系活性金属ろう材 15,25,25a,25c,25d,25f,55,
65,75 電極板 16 ろう材 17 耐酸化コーティング 26 接続部材 66 円筒部材
1, 10, 20, 20a, 20b, 20c, 20d, 2
0e, 20f, 50, 60, 70 Thermoelectric conversion element 2, 11, 21, 51, 61a, 61b, 61c, 71
a, 71b, 71c P-type semiconductor 3, 12, 22, 52, 62a, 62b, 62c, 72
a, 72b, 72c N-type semiconductor 4 PN junction part 5 Ammeter 6 Voltmeter 7 Variable resistance 13, 23, 23a, 23b, 23c, 23d, 23
e, 23f, 53, 63a, 63b, 63c, 63d,
63e, 73a, 73b, 73c, 73d, 73e High thermal conductive metal plate 14, 24, 54, 64a, 64b, 64c, 64d,
64e, 74, 74a, 74b, 74c, 74d, 74
e Titanium (Ti) -based active metal brazing material 15, 25, 25a, 25c, 25d, 25f, 55,
65,75 Electrode plate 16 Brazing material 17 Oxidation resistant coating 26 Connection member 66 Cylindrical member

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄硅化物(FeSi2)を主体とするP
型半導体とN型半導体とをPN接合した構成からなる熱
電変換素子において、前記一対の半導体間に高熱伝導金
属板を介在させチタン(Ti)系活性金属ろう材にてろ
う付けしPN接合部を形成したことを特徴とする熱電変
換素子。
1. A P containing iron sulfide (FeSi 2 ) as a main component.
In a thermoelectric conversion element having a PN junction structure of a N-type semiconductor and an N-type semiconductor, a high thermal conductive metal plate is interposed between the pair of semiconductors and brazed with a titanium (Ti) -based active metal brazing material to form a PN junction. A thermoelectric conversion element characterized by being formed.
JP4273657A 1992-09-16 1992-09-16 Thermoelectric conversion element Pending JPH0697512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273657A JPH0697512A (en) 1992-09-16 1992-09-16 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273657A JPH0697512A (en) 1992-09-16 1992-09-16 Thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH0697512A true JPH0697512A (en) 1994-04-08

Family

ID=17530743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273657A Pending JPH0697512A (en) 1992-09-16 1992-09-16 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0697512A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140583A (en) * 1997-07-23 1999-02-12 Daido Steel Co Ltd Alloy for soldering and solder bonding method
WO1999034450A1 (en) * 1997-12-27 1999-07-08 Sumitomo Special Metals Co., Ltd. Thermoelectric element
WO2004001864A1 (en) * 2002-06-19 2003-12-31 Jfe Steel Corporation β-IRON DISILICATE THERMOELECTRIC TRANSDUCING MATERIAL AND THERMOELECTRIC TRANSDUCER
JP2004063656A (en) * 2002-07-26 2004-02-26 Toshiba Corp Thermoelectric converter
EP1495498A1 (en) * 2002-04-15 2005-01-12 Research Triangle Institute Thermoelectric device utilizing double-sided peltier junctions and method of making the device
EP1515376A2 (en) * 2003-09-15 2005-03-16 Miliauskaite, Asta, Dr. Device for generating electrical energy
US7164077B2 (en) 2001-04-09 2007-01-16 Research Triangle Institute Thin-film thermoelectric cooling and heating devices for DNA genomic and proteomic chips, thermo-optical switching circuits, and IR tags
JP2007173688A (en) * 2005-12-26 2007-07-05 National Institute Of Advanced Industrial & Technology Thermoelectric conversion element using air cooling function
JP2007311440A (en) * 2006-05-17 2007-11-29 Univ Kanagawa Peltier module, and manufacturing method thereof
US7342169B2 (en) 2001-10-05 2008-03-11 Nextreme Thermal Solutions Phonon-blocking, electron-transmitting low-dimensional structures
JP2008141161A (en) * 2006-11-07 2008-06-19 Univ Kanagawa Peltier module
US7679203B2 (en) 2006-03-03 2010-03-16 Nextreme Thermal Solutions, Inc. Methods of forming thermoelectric devices using islands of thermoelectric material and related structures
JP2010207385A (en) * 2009-03-10 2010-09-24 Kanagawa Univ Living tissue cutting/adhesion apparatus
US7838759B2 (en) 2005-06-22 2010-11-23 Nextreme Thermal Solutions, Inc. Methods of forming thermoelectric devices including electrically insulating matrices between conductive traces
US8063298B2 (en) 2004-10-22 2011-11-22 Nextreme Thermal Solutions, Inc. Methods of forming embedded thermoelectric coolers with adjacent thermally conductive fields
JP2012504927A (en) * 2008-08-28 2012-02-23 ランダ コーポレーション リミテッド Devices and methods for electricity generation
CN102779936A (en) * 2011-05-12 2012-11-14 冯建明 PN junction tetrode type thermoelectric conversion and refrigeration and heating device
US8623687B2 (en) 2005-06-22 2014-01-07 Nextreme Thermal Solutions, Inc. Methods of forming thermoelectric devices including conductive posts and/or different solder materials and related methods and structures
US9601677B2 (en) 2010-03-15 2017-03-21 Laird Durham, Inc. Thermoelectric (TE) devices/structures including thermoelectric elements with exposed major surfaces
JP2017107925A (en) * 2015-12-08 2017-06-15 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
JP2020150139A (en) * 2019-03-13 2020-09-17 株式会社テックスイージー Thermoelectric conversion module

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140583A (en) * 1997-07-23 1999-02-12 Daido Steel Co Ltd Alloy for soldering and solder bonding method
WO1999034450A1 (en) * 1997-12-27 1999-07-08 Sumitomo Special Metals Co., Ltd. Thermoelectric element
AU743474B2 (en) * 1997-12-27 2002-01-24 Sumitomo Special Metals Co., Ltd. Thermoelectric element
US7164077B2 (en) 2001-04-09 2007-01-16 Research Triangle Institute Thin-film thermoelectric cooling and heating devices for DNA genomic and proteomic chips, thermo-optical switching circuits, and IR tags
US7342169B2 (en) 2001-10-05 2008-03-11 Nextreme Thermal Solutions Phonon-blocking, electron-transmitting low-dimensional structures
EP1495498A4 (en) * 2002-04-15 2008-03-05 Nextreme Thermal Solutions Inc Thermoelectric device utilizing double-sided peltier junctions and method of making the device
EP1495498A1 (en) * 2002-04-15 2005-01-12 Research Triangle Institute Thermoelectric device utilizing double-sided peltier junctions and method of making the device
US7235735B2 (en) 2002-04-15 2007-06-26 Nextreme Thermal Solutions, Inc. Thermoelectric devices utilizing double-sided Peltier junctions and methods of making the devices
WO2004001864A1 (en) * 2002-06-19 2003-12-31 Jfe Steel Corporation β-IRON DISILICATE THERMOELECTRIC TRANSDUCING MATERIAL AND THERMOELECTRIC TRANSDUCER
JP2004063656A (en) * 2002-07-26 2004-02-26 Toshiba Corp Thermoelectric converter
EP1515376A2 (en) * 2003-09-15 2005-03-16 Miliauskaite, Asta, Dr. Device for generating electrical energy
EP1515376A3 (en) * 2003-09-15 2008-03-19 Miliauskaite, Asta, Dr. Device for generating electrical energy
US8063298B2 (en) 2004-10-22 2011-11-22 Nextreme Thermal Solutions, Inc. Methods of forming embedded thermoelectric coolers with adjacent thermally conductive fields
US8623687B2 (en) 2005-06-22 2014-01-07 Nextreme Thermal Solutions, Inc. Methods of forming thermoelectric devices including conductive posts and/or different solder materials and related methods and structures
US7838759B2 (en) 2005-06-22 2010-11-23 Nextreme Thermal Solutions, Inc. Methods of forming thermoelectric devices including electrically insulating matrices between conductive traces
JP2007173688A (en) * 2005-12-26 2007-07-05 National Institute Of Advanced Industrial & Technology Thermoelectric conversion element using air cooling function
US7679203B2 (en) 2006-03-03 2010-03-16 Nextreme Thermal Solutions, Inc. Methods of forming thermoelectric devices using islands of thermoelectric material and related structures
JP2007311440A (en) * 2006-05-17 2007-11-29 Univ Kanagawa Peltier module, and manufacturing method thereof
JP2008141161A (en) * 2006-11-07 2008-06-19 Univ Kanagawa Peltier module
JP2012504927A (en) * 2008-08-28 2012-02-23 ランダ コーポレーション リミテッド Devices and methods for electricity generation
JP2010207385A (en) * 2009-03-10 2010-09-24 Kanagawa Univ Living tissue cutting/adhesion apparatus
US9601677B2 (en) 2010-03-15 2017-03-21 Laird Durham, Inc. Thermoelectric (TE) devices/structures including thermoelectric elements with exposed major surfaces
CN102779936A (en) * 2011-05-12 2012-11-14 冯建明 PN junction tetrode type thermoelectric conversion and refrigeration and heating device
JP2017107925A (en) * 2015-12-08 2017-06-15 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
WO2017098863A1 (en) * 2015-12-08 2017-06-15 日立化成株式会社 Thermoelectric conversion module and method for manufacturing same
JP2020150139A (en) * 2019-03-13 2020-09-17 株式会社テックスイージー Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JPH0697512A (en) Thermoelectric conversion element
Skomedal et al. Design, assembly and characterization of silicide-based thermoelectric modules
WO2002023643A1 (en) Thermoelectric conversion element
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JP5671258B2 (en) Thermoelectric conversion module
WO2010101049A1 (en) Thermoelectric conversion element and thermoelectric conversion module
US20020014261A1 (en) Thermoelectric unicouple used for power generation
WO2013011997A1 (en) Stacked thermoelectric conversion module
US20140102500A1 (en) Thermoelectric Device Assembly, Thermoelectric Module and its Manufacturing Method
WO2013076765A1 (en) Thermoelectric conversion module
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
WO2006043402A1 (en) Thermoelectric conversion module
JP2003092435A (en) Thermoelectric module and its manufacturing method
JP4524382B2 (en) Thermoelectric power generation elements that are subject to temperature differences
JP2014179375A (en) Thermoelectric conversion element
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
CN106159077B (en) Bismuth telluride-based thermoelectric power generation element and preparation method thereof
WO2017020833A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
JP2001217469A (en) Thermoelectric conversion element and its manufacturing method
JP7314927B2 (en) Thermoelectric conversion module member, thermoelectric conversion module, and method for manufacturing thermoelectric conversion module member
Bhatt et al. Bismuth telluride based efficient thermoelectric power generator with electrically conducive interfaces for harvesting low-temperature heat
JP3450397B2 (en) Thermoelectric conversion element
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
US9306144B2 (en) Thermoelectric generator and production method for thermoelectric generator