JPH0695016B2 - Corrosion diagnosis method for inner surface of pipe - Google Patents

Corrosion diagnosis method for inner surface of pipe

Info

Publication number
JPH0695016B2
JPH0695016B2 JP2157768A JP15776890A JPH0695016B2 JP H0695016 B2 JPH0695016 B2 JP H0695016B2 JP 2157768 A JP2157768 A JP 2157768A JP 15776890 A JP15776890 A JP 15776890A JP H0695016 B2 JPH0695016 B2 JP H0695016B2
Authority
JP
Japan
Prior art keywords
dent
standard
image
depth
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2157768A
Other languages
Japanese (ja)
Other versions
JPH0448205A (en
Inventor
憲一郎 土屋
正志 早滝
Original Assignee
日本鋼管工事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管工事株式会社 filed Critical 日本鋼管工事株式会社
Priority to JP2157768A priority Critical patent/JPH0695016B2/en
Publication of JPH0448205A publication Critical patent/JPH0448205A/en
Publication of JPH0695016B2 publication Critical patent/JPH0695016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はX線透過写真法による稼動中の鋼管内面の腐
食診断法、特に腐食検出処理の迅速化に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for diagnosing corrosion of an inner surface of a steel pipe during operation by X-ray radiography, and particularly to speeding up a corrosion detection process.

[従来の技術] 地上あるいは水中に設置された管内面の腐食状況を稼動
しながら調査する方法としては、超音波を利用して管の
肉厚を測定する超音波探傷法やX線透過により撮影した
X線フイルムから腐食の状態を検出する方法等が使用さ
れている。
[Prior Art] As a method for investigating the corrosion state of the inner surface of a pipe installed on the ground or in water, an ultrasonic flaw detection method that measures the wall thickness of the pipe using ultrasonic waves or X-ray imaging is used. The method of detecting the state of corrosion from the X-ray film is used.

超音波探傷方によると、肉厚を0.1mmの精度まで測定す
ることができる。また、X線透過法によると測定精度が
超音波探傷法より落ちるが、充分に腐食の状況を調査す
ることができ、かつ、X線透過法によると腐食の状態を
X線フイルムによりで簡単に確認することができるとと
もに、測定した資料の保存性等が良いため、地上のみな
らず海中等水中の管の腐食調査にX線透過法が使用され
ている。
According to the ultrasonic flaw detection method, the wall thickness can be measured to an accuracy of 0.1 mm. Moreover, although the measurement accuracy of the X-ray transmission method is lower than that of the ultrasonic flaw detection method, it is possible to sufficiently investigate the corrosion condition, and the X-ray transmission method allows the corrosion condition to be easily measured by the X-ray film. Since it can be confirmed and the stored data of the measured data is good, the X-ray transmission method is used not only on the ground but also on the corrosion of pipes in water such as in the sea.

このX線フイルムを用いる撮影法では、照射するX線に
垂直な2次元像しか得られないため、X線フイルムに形
成された像の濃度分布を調べ、この像の濃度分布から腐
食の深さ分布を求めて表示し、腐食の状況をより確実に
調査する方法が採用されている。
In the imaging method using this X-ray film, only a two-dimensional image perpendicular to the irradiated X-ray can be obtained. Therefore, the density distribution of the image formed on the X-ray film is examined, and the depth of corrosion is determined from the density distribution of this image. A method has been adopted in which the distribution is obtained and displayed to more reliably investigate the corrosion condition.

従来、この像の濃度分布から腐食の深さ分布を求めて腐
食の状況を調査するときには、あらかじめ調査する管と
同じ径、厚さの管に標準凹みを作り、調査する現場と同
様な状態でシミュレーション実験を行ない比較用のX線
フイルムに標準凹みの像を形成し、このX線フイルムの
濃度に対する残厚推定データを求めておく。そして調査
する管を撮影したX線フイルムの濃度とシミュレーショ
ン実験で得たX線フイルムの濃度とを比較して腐食の分
布と推定残厚を求め、ディスプレ表示したり、X−Yプ
ロッタ等で印刷している。
Conventionally, when investigating the corrosion condition by obtaining the depth distribution of corrosion from the concentration distribution of this image, a standard recess is made in a pipe with the same diameter and thickness as the pipe to be investigated in advance, and it is in the same condition as the site to be investigated. A simulation experiment is conducted to form an image of a standard depression on an X-ray film for comparison, and residual thickness estimation data for the density of this X-ray film is obtained. Then, the concentration of the X-ray film obtained by photographing the tube to be investigated is compared with the concentration of the X-ray film obtained in the simulation experiment to obtain the distribution of corrosion and the estimated residual thickness, and the display is displayed or printed by an XY plotter or the like. is doing.

[発明が解決しようとする課題] 上記従来の方法で、例えば海中に設置された管の腐食分
布を調査するときには、1回の調査でも必ず水中でシミ
ュレーション実験を行ない、事前にX線フイルムの濃度
と残厚推定データの特性を求める必要があり、調査毎に
1〜2週間程度の実験が必要になる。このため実際の調
査を行う前にかなりの時間と費用がかかるという短所が
あった。
[Problems to be Solved by the Invention] For example, when investigating the corrosion distribution of a pipe installed in the sea by the above-mentioned conventional method, a simulation experiment is always carried out in water even if it is a single survey, and the concentration of the X-ray film is preliminarily measured. Therefore, it is necessary to obtain the characteristics of the remaining thickness estimation data, and it is necessary to carry out an experiment for 1 to 2 weeks for each survey. Therefore, there is a disadvantage in that it takes a considerable amount of time and money before conducting the actual survey.

また、腐食の分布を得るために、X−Yプロッタ上のX
線フイルムを1点ずつ濃度計で測定する必要があり、1
枚のX線フイルム(四切りサイズ)を読み取るのに2〜
3時間程度必要になり、読取時間が長くかかるという短
所もあった。
Also, in order to obtain the distribution of corrosion, X-Y on the plotter is used.
It is necessary to measure the line film one by one with a densitometer.
2 to read one X-ray film (quarter size)
It takes about 3 hours, and there is also a disadvantage that the reading time is long.

さらに、シミュレーション実験においてX線フイルムの
濃度と残厚推定データの特性や腐食分布を精度よく得る
ためには熟練を要し、専門家でないと解析することが出
来ないという短所もあった。
Further, in the simulation experiment, it is necessary to have skill in order to accurately obtain the characteristics of the X-ray film concentration and the residual thickness estimation data and the corrosion distribution, and there is a disadvantage that only a specialist can analyze.

この発明はかかる短所を解決するためになされたもので
あり、シミュレーション実験なしで、かつ、専門家でな
くても短時間で腐食分布を得ることができる管内面の腐
食診断法を提供することを目的とするものである。
The present invention has been made to solve the above disadvantages, and it is an object of the present invention to provide a corrosion diagnosis method for the inner surface of a pipe, which can obtain a corrosion distribution in a short time without a simulation experiment and even without an expert. It is intended.

[課題を解決するための手段] この発明に係る管内面の腐食診断法は、管の被検部近傍
に、深さが異なる複数の標準凹みを有するテストピース
を重ね合わせてX線を照射し、X線フイルムにX線透過
画像を形成し、 このX線透過画像をイメージセンサで読み取り、読み取
った画像のテストピースの凹み位置の濃度からその近傍
の濃度を差引いて標準凹み濃度を算出し、標準凹み濃度
と標準凹み深さとの回帰式を算出し、 被検部の無減厚位置の濃度分布より被検部の母材推定濃
度分布を回帰式により作成し、母材推定濃度分布から被
検部の測定濃度を差引き凹み濃度を算出し、 算出した凹み濃度を使用して上記標準凹み濃度と標準凹
み深さとの回帰式より被検部の凹み深さを算出し、算出
した凹み深さ分布を表示することを特徴とする。
[Means for Solving the Problems] A method for diagnosing corrosion of an inner surface of a pipe according to the present invention irradiates an X-ray with a test piece having a plurality of standard recesses having different depths stacked in the vicinity of an inspected portion of the pipe. , An X-ray transmission image is formed on the X-ray film, the X-ray transmission image is read by an image sensor, and the standard dent density is calculated by subtracting the density in the vicinity of the dent position of the test piece of the read image, A regression equation of standard dent concentration and standard dent depth is calculated, and the estimated base metal concentration distribution of the test area is created by the regression equation from the concentration distribution of the non-thickened position of the test area. Subtract the measured density of the test area to calculate the dent density, use the calculated dent density to calculate the dent depth of the test area from the regression equation of the standard dent density and the standard dent depth, and calculate the dent depth. It is characterized by displaying the distribution of height.

また、被検部の凹み深さを凹み形状により補正すること
により、より精度よく凹み深さ分布を求めることができ
る。
Further, by correcting the dent depth of the test portion by the dent shape, the dent depth distribution can be obtained more accurately.

[作用] この発明においては、深さが異なる複数の標準凹みを有
するテストピースを管の被検部周囲に重ね合わせてX線
を照射し、X線フイルムにテストピースと被検部のX線
透過画像を形成する。このX線透過画像をイメージセン
サで読み取り画像処理手段に入力する。
[Operation] In the present invention, a test piece having a plurality of standard recesses having different depths is overlapped around the test portion of the tube and irradiated with X-rays, and the X-ray film is irradiated with X-rays of the test piece and the test portion. Form a transmission image. This X-ray transmission image is read by the image sensor and input to the image processing means.

画像処理手段は読み取った画像のテストピースの凹み位
置の濃度からその近傍の濃度を差引いて標準凹み濃度を
算出し、X線フイルムのフイルム面の位置により画像濃
度や写真コントラストが異なることにより生じる誤差を
修正する。
The image processing means calculates the standard dent density by subtracting the density in the vicinity of the dent position of the test piece of the read image to calculate the standard dent density, and the error caused by the difference in the image density and the photographic contrast depending on the position of the film surface of the X-ray film. To fix.

この標準凹み濃度と標準凹み深さとの回帰式を算出し、
被検部の設置状況に応じた画像濃度と凹み深さとの関係
を算出する。
Calculate the regression equation of this standard dent concentration and standard dent depth,
The relationship between the image density and the depth of the depression is calculated according to the installation status of the part to be inspected.

また、画像処理手段は読み取った画像の被検部の無減厚
位置の濃度分布より被検部の母材推定濃度分布を回帰式
により作成し、X線透過画像のフイルム面の位置により
異なる画像濃度を補正する。
Further, the image processing means creates an estimated concentration distribution of the base material of the test portion from the density distribution at the non-thickened position of the test portion of the read image by a regression equation, and an image that differs depending on the position of the film surface of the X-ray transmission image. Correct the density.

そして、母材推定濃度分布と被検部各部の濃度の差から
腐食による凹み濃度を算出し、この凹み濃度と上記標準
凹み濃度と標準凹み深さとの回帰式より被検部の凹み深
さを算出する。
Then, the dent concentration due to corrosion is calculated from the difference between the base metal estimated concentration distribution and the concentration of each part of the test part, and the dent depth of the test part is calculated from the regression equation of this dent concentration and the standard dent concentration and the standard dent depth. calculate.

また、同じ凹み深さでも、凹みの幾何学的寸法によりそ
の濃度が異なるため、算出した被検部の凹み深さを凹み
の形状により補正することにより、凹み深さ検知精度を
高めることができる。
Further, even with the same dent depth, since the density varies depending on the geometrical dimension of the dent, it is possible to improve the dent depth detection accuracy by correcting the calculated dent depth of the test portion by the shape of the dent. .

[実施例] 第1図,第2図はこの発明の一実施例を示し、第1図は
調査する管のX線撮影を行なうときの配置図、第2図は
画像処理装置を示すブロック図である。
[Embodiment] FIGS. 1 and 2 show an embodiment of the present invention. FIG. 1 is a layout view when an X-ray is taken of a tube to be investigated, and FIG. Is.

第1図に示すように、管1の腐食を調査するときは、管
1の被検部2にテストピース3を重ね合わせ、この被検
部2にX線装置4からX線を照射してX線フイルム5に
被検部2とテストピース3のX線透過画像を形成する。
As shown in FIG. 1, when investigating the corrosion of the pipe 1, a test piece 3 is placed on the test portion 2 of the pipe 1, and the test portion 2 is irradiated with X-rays from an X-ray device 4. An X-ray transmission image of the test portion 2 and the test piece 3 is formed on the X-ray film 5.

テストピース3は管1と同じ材料で形成され、第3図に
示すように、試験視野部31の周囲に深さが異なる複数の
標準凹み32を有する。この標準凹み32の内部は管1の内
容物と同質の物質により充填されている。なお、第3図
において、標準凹み32内に記載した数字はそれぞれ凹み
深さを示す。この標準凹み32の深さはX線フイルム5に
X線透過画像を形成したときに、X線フイルム5の位置
により濃度やコントラストが異なるため、それを補正す
るために同じ深さの標準凹み32がそれぞれ中央部と周辺
部に設けられている。
The test piece 3 is formed of the same material as the tube 1, and has a plurality of standard recesses 32 having different depths around the test visual field portion 31, as shown in FIG. The inside of this standard recess 32 is filled with a substance of the same quality as the contents of the tube 1. In FIG. 3, the numbers in the standard recesses 32 indicate the recess depths. The depth of the standard depression 32 is different from that of the standard depression 32 of the same depth when the X-ray transmission image is formed on the X-ray film 5 because the density and the contrast differ depending on the position of the X-ray film 5. Are provided in the central part and the peripheral part, respectively.

このテストピース3と被検部2のX線透過画像を画像処
理装置に読込み処理する。画像処理装置は第2図に示す
ように、X線フイルム5に撮影されたX線透過画像を読
取る画像認識手段6と、入力手段7,画像処理手段8,表示
手段9及びプリンタ10を有する。
The X-ray transmission image of the test piece 3 and the test portion 2 is read into the image processing device and processed. As shown in FIG. 2, the image processing apparatus has an image recognition means 6 for reading an X-ray transmission image photographed on the X-ray film 5, an input means 7, an image processing means 8, a display means 9 and a printer 10.

画像認識手段6は、例えば撮像管等のイメージセンサを
有し、X線透過画像を読取りデジタル化する。
The image recognition means 6 has an image sensor such as an image pickup tube, and reads an X-ray transmission image and digitizes it.

画像処理手段8は標準凹み濃度算出部11と、特徴抽出部
12,母材濃度算出部13,凹み濃度算出部14,凹み深さ算出
部15,画像メモリ16及びテストピース登録記録部17とを
有する。
The image processing means 8 includes a standard depression density calculation unit 11 and a feature extraction unit.
12, a base material density calculation unit 13, a dent density calculation unit 14, a dent depth calculation unit 15, an image memory 16, and a test piece registration recording unit 17.

標準凹み濃度算出部11は、画像認識手段6から送られる
テストピース3の画像、あるいはテストピース登録記録
部17に格納されたテストピース3の画像を入力し、標準
凹み32の画像濃度からその近傍の画像濃度を差引いて標
準凹み濃度を算出する。
The standard dent density calculating unit 11 inputs the image of the test piece 3 sent from the image recognizing means 6 or the image of the test piece 3 stored in the test piece registration recording unit 17, and from the image density of the standard dent 32 to the vicinity thereof. The standard image density is calculated by subtracting the image density of.

特徴抽出部12は算出した標準凹み濃度と入力手段7から
入力される標準凹み32の深さとの回帰式を算出し、管1
の設置状況に応じた画像濃度と凹み深さとの関係を得る 母材濃度算出部13は画像認識手段6から送られる被検部
2の画像から無減厚位置の濃度を抽出して被検部2の母
材推定濃度分布を回帰式により作成する。
The feature extraction unit 12 calculates a regression equation between the calculated standard dent concentration and the depth of the standard dent 32 input from the input means 7, and the pipe 1
The base material concentration calculating unit 13 that obtains the relationship between the image density and the dent depth according to the installation status of the base material is extracted from the image of the target portion 2 sent from the image recognition means 6 and the density at the non-thinning position is extracted. The estimated base metal concentration distribution of No. 2 is created by the regression equation.

凹み濃度算出部14は母材推定濃度分布と被検部2の各部
の濃度の差を求めて、腐食による凹み濃度を算出する。
The dent concentration calculating unit 14 calculates the dent concentration due to corrosion by obtaining the difference between the estimated base metal concentration distribution and the densities of the respective portions of the inspected portion 2.

凹み深さ算出部15は算出した凹み濃度と特徴抽出部12で
得た標準凹み濃度と標準凹み深さとの回帰式より被検部
2の凹み深さを算出する。
The dent depth calculation unit 15 calculates the dent depth of the test portion 2 from the regression equation of the calculated dent concentration, the standard dent concentration and the standard dent depth obtained by the feature extraction unit 12.

次に、この実施例により管1の腐食の状況を調査する場
合の動作を説明する。
Next, the operation for investigating the corrosion condition of the pipe 1 according to this embodiment will be described.

管1の腐食を調査するときは、第1図に示すように、テ
ストピース3とX線フイルム5を管1の被検部2に重ね
合わせて設置し、X線装置4からX線を照射して、テス
トピース3と被検部2のX線透過画像をX線フイルム5
に形成する。このX線フイルム5のX線透過画像を画像
認識手段6の撮像管等のイメージセンサで読取り、画像
処理手段8でに送り画像処理する。このように、撮像管
等でX線透過画像を読取ることにより、瞬時にX線透過
画像を入力することができる。また、撮像管等では、濃
度計で読取った濃度と同程度の濃度で画像を読取ること
ができる。
When investigating the corrosion of the tube 1, as shown in FIG. 1, the test piece 3 and the X-ray film 5 are placed on the inspected part 2 of the tube 1 so as to overlap with each other, and the X-ray device 4 irradiates the X-ray. Then, the X-ray transmission images of the test piece 3 and the portion to be inspected 2 are transferred to the X-ray film 5
To form. The X-ray transmission image of the X-ray film 5 is read by an image sensor such as an image pickup tube of the image recognition means 6 and sent to the image processing means 8 for image processing. In this way, the X-ray transmission image can be instantaneously input by reading the X-ray transmission image with the image pickup tube or the like. Further, with an image pickup tube or the like, an image can be read at a density similar to that read by a densitometer.

X線透過画像を画像処理するときは、第4図のフローチ
ャートに示すように、まずテストピース登録記録部17に
格納されている登録済のテストピース3を使用するか否
かを判断し(ステップS1)、登録済のテストピース3を
使用するときは、ただちにテストピース登録記録部17か
ら登録済のテストピース3と画像認識手段6から被検部
の情報を読み込む(ステップS7)。
When the X-ray transmission image is image-processed, as shown in the flowchart of FIG. 4, it is first determined whether or not the registered test piece 3 stored in the test piece registration recording unit 17 is used (step S1) When the registered test piece 3 is used, the registered test piece 3 is immediately read from the test piece registration recording section 17 and the information of the test section is read from the image recognition means 6 (step S7).

登録済のテストピース3を使用しないときは、X線透過
画像のテストピース3の標準凹み32部を標準凹み濃度算
出部11に読み込み格納し、同時に表示手段9に表示する
(ステップS2)。次に、入力手段7から各標準凹み32の
位置と外径を標準凹み濃度算出部11に入力し、かつ表示
手段7に標準凹み32の輪郭を描く(ステップS3)。その
後、入力手段7から各標準凹み32の深さを入力し特徴抽
出部12に格納する(ステップS4)。次に、表示手段7に
表示された各標準凹み32の近傍のテストピース母材濃度
測定位置を複数点入力手段7あるいは不図示のマウスに
より標準凹み濃度算出部11に入力する。(ステップS
5)。これらの操作を標準凹み32の全数に繰り返し行な
いその情報を登録する(ステップS6)。
When the registered test piece 3 is not used, 32 standard dents of the test piece 3 of the X-ray transmission image are read and stored in the standard dent density calculation unit 11 and simultaneously displayed on the display means 9 (step S2). Next, the position and outer diameter of each standard recess 32 are input from the input means 7 to the standard recess density calculating section 11, and the contour of the standard recess 32 is drawn on the display means 7 (step S3). Then, the depth of each standard recess 32 is input from the input means 7 and stored in the feature extraction unit 12 (step S4). Next, the test piece base metal concentration measuring position in the vicinity of each standard recess 32 displayed on the display means 7 is input to the standard recess density calculating section 11 by the plural-point input means 7 or a mouse (not shown). (Step S
Five). These operations are repeated for all the standard depressions 32 to register the information (step S6).

次に、標準凹み32と被検部の情報を読込み(ステップS
7)、標準凹み32部の画像信号と標準凹み32の位置,大
きさ,テストピース母材濃度測定位置から標準凹み濃度
算出部11で標準凹み濃度を算出する(ステップS8)。す
なわち、X線フイルム5の濃度分布や写真コントラスト
が一様でないので、それによる誤差を小さくするため
に、各標準凹み32の画像濃度からテストピース母材濃度
測定位置の画像濃度を差引いて各標準凹み32の標準凹み
濃度を算出する。
Next, read the information about the standard depression 32 and the test area (step S
7), the standard recess density calculator 11 calculates the standard recess density from the image signal of the standard recess 32, the position and size of the standard recess 32, and the test piece base material density measurement position (step S8). That is, since the density distribution of the X-ray film 5 and the photographic contrast are not uniform, in order to reduce the error due to it, the image density at the test piece base material density measurement position is subtracted from the image density of each standard depression 32 to obtain each standard. The standard recess density of the recess 32 is calculated.

この標準凹み濃度をそれぞれ特徴抽出部12に送り、先に
入力されている各標準凹み32の深さとから標準凹み濃度
と標準凹み深さとの回帰式を算出して、調査する管1の
周囲状況に応じた凹み濃度と凹み深さの相関関係を求め
る(ステップS9)。
The standard dent concentration is sent to the feature extraction unit 12, and a regression equation of the standard dent concentration and the standard dent depth is calculated from the depth of each standard dent 32 that has been previously input, and the surrounding conditions of the pipe 1 to be investigated. Correlation between the dent density and the dent depth according to is obtained (step S9).

次に、腐食等により凹みが生じている被検部2の位置を
確認し、入力手段7あるいはマウスにより凹みがない被
検部2の複数の位置を指定し母材濃度算出部13に入力す
る(ステップS10)。母材濃度算出部13は被検部2の画
像から指示された母材の位置の濃度を抽出して被検部2
の母材推定濃度分布を回帰式により作成し、X線透過画
像の中央部と端部の濃度差を補正する(ステップS1
1)。
Next, the position of the inspected portion 2 in which the dent is generated due to corrosion or the like is confirmed, and a plurality of positions of the inspected portion 2 in which there is no indentation are designated by the input means 7 or the mouse and input to the base metal concentration calculating section 13. (Step S10). The base metal concentration calculation unit 13 extracts the concentration at the position of the base metal designated from the image of the inspection unit 2 and then the inspection unit 2
The estimated density distribution of the base material is created by the regression equation, and the density difference between the central portion and the end portion of the X-ray transmission image is corrected (step S1
1).

この母材推定濃度分布が凹み濃度算出部14に送られ、凹
み濃度算出部14で母材推定濃度分布と被検部2の各部の
濃度の差を求めて、腐食による凹み濃度を算出して凹み
深さ算出部15に送る(ステップS12)。凹み深さ算出部1
5は送られた凹み濃度と、特徴抽出部12で得た標準凹み
濃度と標準凹み深さとの回帰式とにより被検部2の凹み
深さを算出する(ステップS13)。そして、凹みの幾何
学的寸法によっては、同じ深さの凹みでもX線透過画像
の濃度が異なる場合があるので、凹みの幾何学的寸法と
濃度との関係を実験により求めておき、凹み深さを補正
した後、凹みの深さに応じた凹み分布を作成し、画像メ
モリ16に格納するとともに、表示手段9に凹み分布をカ
ラー凹み分布図,3次元のプロフィール図として表示する
(ステップS14,S15)。これらの処理を被検部全体にわ
たって行なったのち、プリンタ10で印刷する(ステップ
S16)。
The estimated base metal concentration distribution is sent to the dent concentration calculation unit 14, and the dent concentration calculation unit 14 calculates the difference between the estimated base metal concentration distribution and the densities of the respective parts of the inspected portion 2 to calculate the dent concentration due to corrosion. It is sent to the pit depth calculation unit 15 (step S12). Depth depth calculator 1
Reference numeral 5 calculates the dent depth of the test portion 2 based on the sent dent concentration and the regression equation of the standard dent concentration and the standard dent depth obtained by the feature extraction unit 12 (step S13). Depending on the geometrical dimensions of the depressions, the density of the X-ray transmission image may differ even if the depressions have the same depth. Therefore, the relationship between the geometrical dimensions of the depressions and the density may be found by experiments to determine the depth of the depressions. After correcting the depth, a dent distribution corresponding to the depth of the dent is created and stored in the image memory 16, and the dent distribution is displayed on the display means 9 as a color dent distribution diagram and a three-dimensional profile diagram (step S14). , S15). After performing these processes over the entire test area, printing is performed by the printer 10 (step
S16).

凹み深さを補正するときは、例えば、画像処理手段8に
形状補正部を設け、作成した凹み分布を表示手段9の画
面で確認しながら、凹み形状による補正を行なう範囲と
凹み径を形状補正部に指示し、次式で算出した係数Yを
凹み測定深さに乗算して、凹み深さを補正する。
When correcting the dent depth, for example, a shape correction unit is provided in the image processing unit 8, and while confirming the created dent distribution on the screen of the display unit 9, the range for performing the dent shape correction and the dent diameter are shape-corrected. And the coefficient Y calculated by the following equation is multiplied by the dent measurement depth to correct the dent depth.

Y=f(X) ……(1) ここで、X;凹み径を変数とする数 このように、凹みの形状により凹み深さを補正すること
により、より精度よく凹み深さとその分布を得ることが
できる。
Y = f (X) (1) Here, X; a number with the diameter of the recess as a variable In this way, by correcting the depth of the recess by the shape of the recess, the depth of the recess and its distribution can be obtained more accurately. be able to.

[発明の効果] この発明は以上説明したように、深さが異なる複数の標
準凹みを有するテストピースを管の被検部周囲に重ね合
わせてX線を照射し、X線フイルムにテストピースと被
検部のX線透過画像を形成し、このX線透過画像をイメ
ージセンサで読み取り画像処理手段に入力するようにし
たから、短時間でX線透過画像を画像処理手段に入力す
ることができる。
[Effects of the Invention] As described above, according to the present invention, a test piece having a plurality of standard recesses having different depths is overlapped around a test portion of a tube and irradiated with X-rays, and the X-ray film is used as a test piece. Since the X-ray transmission image of the test portion is formed and this X-ray transmission image is read by the image sensor and input to the image processing means, the X-ray transmission image can be input to the image processing means in a short time. .

また、画像処理手段に入力された画像のテストピースの
標準凹みと標準凹み濃度の調査環境に応じた関係と腐食
等による凹み濃度とから被検部の凹み深さを算出し、凹
み分布を表示するようにしたから、内部にガス等の流体
がある活管の状態で、腐食等による凹みの状態を確実に
検知することができる。
In addition, the pit depth of the test area is calculated from the relationship between the standard dent of the test piece and the standard dent density of the image input to the image processing means according to the investigation environment and the dent density due to corrosion etc., and the dent distribution is displayed. By doing so, it is possible to reliably detect the state of the recess due to corrosion or the like in the state of the active tube in which the fluid such as gas is present.

さらに、X線フイルムの濃度の不均一を補正して、被検
部の凹み深さを算出するようにしたから、凹み深さの検
出精度を高めることができる。
Furthermore, since the unevenness of the density of the X-ray film is corrected to calculate the depth of the recess of the portion to be inspected, the accuracy of detecting the depth of the recess can be improved.

また、シミュレーション実験なしで凹み深さを求めるこ
とができるから、地上あるいは水中に設置された管の腐
食調査を短時間で行なうことができるとともに、専門家
でなくても管の調査,診断を行なうことができる。
Further, since the depth of the depression can be obtained without a simulation experiment, it is possible to perform a corrosion inspection of a pipe installed on the ground or in water in a short time, and even a non-specialist can perform a pipe inspection and diagnosis. be able to.

また、算出した被検部の凹み深さを凹みの形状により補
正することにより、凹み深さ検知精度をより高めること
ができる。
Further, by correcting the calculated dent depth of the portion to be inspected by the shape of the dent, the dent depth detection accuracy can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図はこの発明の実施例を示し、第1図は調
査する管のX線撮影を行なうときの配置図、第2図は画
像処理装置を示すブロック図、第3図は上記実施例のテ
ストピースを示す正面図、第4図は上記実施例の動作を
示すフローチャトである。 1……管、2……被検部、3……テストピース、31……
試験視野部、32……標準凹み、4……X線装置、5……
X線フイルム、6……画像認識手段、7……入力手段、
8……画像処理手段、9……表示手段、10……プリン
タ、11……標準凹み濃度算出部、12……特徴抽出部、13
……母材濃度算出部、14……凹み濃度算出部、15……凹
み深さ算出部、16……画像メモリ、17……テストピース
登録記録部。
FIGS. 1 and 2 show an embodiment of the present invention, FIG. 1 is a layout diagram when an X-ray is taken of a tube to be investigated, FIG. 2 is a block diagram showing an image processing apparatus, and FIG. FIG. 4 is a front view showing the test piece of the above embodiment, and FIG. 4 is a flow chart showing the operation of the above embodiment. 1 ... Pipe, 2 ... Inspected part, 3 ... Test piece, 31 ...
Test field of view, 32: standard depression, 4: X-ray device, 5:
X-ray film, 6 ... Image recognition means, 7 ... Input means,
8 ... Image processing means, 9 ... Display means, 10 ... Printer, 11 ... Standard pit density calculation section, 12 ... Feature extraction section, 13
…… Base material density calculator, 14 dent density calculator, 15 dent depth calculator, 16 image memory, 17 test piece registration recorder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】管の被検部近傍に、深さが異なる複数の標
準凹みを有するテストピースを重ね合わせてX線を照射
し、X線フイルムにX線透過画像を形成し、 X線透過画像をイメージセンサで読み取り、 読み取った画像のテストピースの凹み位置の濃度からそ
の近傍の濃度を差引いて標準凹み濃度を算出し、標準凹
み濃度と標準凹み深さとの回帰式を算出し、 被検部の無減厚位置の濃度分布より被検部の母材推定濃
度分布を回帰式により作成し、 母材推定濃度分布から被検部の測定濃度を差引き凹み濃
度を算出し、 算出した凹み濃度を使用して上記標準凹み濃度と標準凹
み深さとの回帰式より被検部の凹み深さを算出し、 算出した凹み深さ分布を表示することを特徴とする管内
面の腐食診断法。
1. A test piece having a plurality of standard depressions having different depths is superposed in the vicinity of a portion to be inspected of a tube and irradiated with X-rays to form an X-ray transmission image on an X-ray film, and X-ray transmission is performed. The image is read by the image sensor, the standard dent density is calculated by subtracting the density in the vicinity of the dent position of the test piece of the read image, and the regression equation of the standard dent density and standard dent depth is calculated. The estimated concentration distribution of the base metal of the test area is created by a regression equation from the concentration distribution at the non-reduced thickness position of the test area, and the measured concentration of the test area is subtracted from the estimated base material concentration distribution of the base material to calculate the dent concentration, and the calculated dent A method for diagnosing corrosion of an inner surface of a pipe, which comprises calculating a dent depth of an inspected portion from a regression equation of the standard dent concentration and the standard dent depth using concentration, and displaying the calculated dent depth distribution.
【請求項2】被検部の凹み深さを凹み形状により補正す
る請求項1記載の管内面の腐食診断法。
2. The method for diagnosing corrosion of the inner surface of a pipe according to claim 1, wherein the depth of the recess of the test portion is corrected by the recess shape.
JP2157768A 1990-06-18 1990-06-18 Corrosion diagnosis method for inner surface of pipe Expired - Lifetime JPH0695016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157768A JPH0695016B2 (en) 1990-06-18 1990-06-18 Corrosion diagnosis method for inner surface of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157768A JPH0695016B2 (en) 1990-06-18 1990-06-18 Corrosion diagnosis method for inner surface of pipe

Publications (2)

Publication Number Publication Date
JPH0448205A JPH0448205A (en) 1992-02-18
JPH0695016B2 true JPH0695016B2 (en) 1994-11-24

Family

ID=15656888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157768A Expired - Lifetime JPH0695016B2 (en) 1990-06-18 1990-06-18 Corrosion diagnosis method for inner surface of pipe

Country Status (1)

Country Link
JP (1) JPH0695016B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153256B2 (en) 2003-03-07 2006-12-26 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US8118722B2 (en) 2003-03-07 2012-02-21 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US8280145B2 (en) 2007-02-01 2012-10-02 Kovarik James J System for non-destructively examining degradation of an interior of a device
US7912273B2 (en) 2007-02-01 2011-03-22 Florida Power & Light Company Radiography test system and method
JP2011052333A (en) * 2009-08-31 2011-03-17 Rushian:Kk Mother's milk pad and nursing brassiere

Also Published As

Publication number Publication date
JPH0448205A (en) 1992-02-18

Similar Documents

Publication Publication Date Title
JP6031339B2 (en) Perspective image density correction method, nondestructive inspection method, and image processing apparatus
JP5029424B2 (en) Tension stiffness measurement method and apparatus
US5864601A (en) Method and apparatus for inspecting pipes using a digitized radiograph
JP7385529B2 (en) Inspection equipment, inspection methods, and inspection programs
US6618689B2 (en) Method for the non-destructive inspection of wall strength
JP2009210339A (en) Defect inspection method and defect inspection device
JPH0695016B2 (en) Corrosion diagnosis method for inner surface of pipe
JP4981433B2 (en) Inspection device, inspection method, inspection program, and inspection system
JP2007271434A (en) Inspection apparatus, inspection method, inspection program, and inspection system
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
CN103282938A (en) Method and evaluation device for determining the position of a structure located in an object to be examined by means of x-ray computer tomography
JP3219565B2 (en) Defect depth position detection apparatus and method
JPH06221840A (en) Method for diagnosing corrosion of surface inside pipe
JP3810270B2 (en) Ultrasonic inspection apparatus and method
JPS63198862A (en) Eddy current flaw detecting device capable of inspecting thickness reduction
CN115343365B (en) Test piece perfection rate detection method based on ultrasonic C-scanning digital image processing
JPH08212341A (en) Method and device for image processing of radiograph
JP2001124708A (en) Durability judgment method of existing metal piping by radiation transmission inspection method and test piece for it
JP4676300B2 (en) RT three-dimensional sizing device
JP7410606B1 (en) Non-destructive testing method and non-destructive testing equipment
JP7260996B2 (en) Pipe thickness estimation method and pipe thickness estimation device
CN116577356A (en) Defect depth positioning method and detection device for ray detection
Fleming et al. Electronic area and perimeter measurement of ultrasonic images
JP2004205303A (en) Evaluation method and evaluation system for damage
JP6220033B2 (en) Perspective image density correction method, nondestructive inspection method, and image processing apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 15

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 16