JPH0693846A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH0693846A
JPH0693846A JP4245227A JP24522792A JPH0693846A JP H0693846 A JPH0693846 A JP H0693846A JP 4245227 A JP4245227 A JP 4245227A JP 24522792 A JP24522792 A JP 24522792A JP H0693846 A JPH0693846 A JP H0693846A
Authority
JP
Japan
Prior art keywords
adsorbent
exhaust gas
exhaust
amount
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4245227A
Other languages
Japanese (ja)
Inventor
Mikio Matsumoto
幹雄 松本
Tadaki Ota
忠樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4245227A priority Critical patent/JPH0693846A/en
Publication of JPH0693846A publication Critical patent/JPH0693846A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the purifying performance for HC by estimating a total amount of HC to be adsorbed on an adsorbent based on the amount of exhausted HC in exhaust, flow velocity of exhaust, and temperature of the adsorbent with high precision and controlling the degree of opening of a bypass passage provided with the adsorbent in accordance with residual amount based on the total amount. CONSTITUTION:A catalyst for purifying emission 3 is provided in an exhaust passage 2 of an internal combustion engine 1. The exhaust passage 2 in the upstream of the catalyst for purifying emission 3 is branched into a main passage 4 and a bypass passage 6 provided with an adsorbent 5. Further, each control valve 7, 8 which controls dividing flow ratio of exhaust is provided at each of upper and lower branch points of each passage 4, 6. In this case, each electromagnetic valve 7, 8 is controlled by a control unit 12 based on each detected signal from an exhaust temperature sensor 9, a water temperature sensor 10, and an air temperature and revolving speed sensor 11. That is, the total amount of HC to be adsorbed on the adsorbent 5 is estimated in accordance with the amount of exhausted HC, flow velocity of exhaust, and temperature of the adsorbent based on each detected signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に関し、特に排気中のHCを一時的に吸着する機能を
備えた装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to an improvement of an apparatus having a function of temporarily adsorbing HC in exhaust gas.

【0002】[0002]

【従来の技術】車両用の内燃機関においては排気浄化の
ため、排気通路中に排気中のHC (未燃ガス) ,COを
2 O,CO2 に酸化する一方、NOX をN2 に還元し
て浄化する三元浄化触媒と称される排気浄化用触媒が介
装されている。ところで前記排気中の有害成分の中、H
Cの排出量は特に排気温度に影響されやすい。即ち、貴
金属触媒を使用する場合でも、HCの浄化には一般に3
00°C以上の触媒温度を必要とする。そのため、前記
三元触媒を備えただけの排気浄化装置では、機関の冷温
始動直後など排気温度の低い時には、HCは前記触媒に
よって浄化されがたい。
2. Description of the Related Art In an internal combustion engine for a vehicle, in order to purify exhaust gas, HC (unburned gas) and CO in the exhaust gas are oxidized into H 2 O and CO 2 in the exhaust passage, while NO X is converted into N 2 . An exhaust gas purification catalyst called a three-way purification catalyst that reduces and purifies is installed. By the way, of the harmful components in the exhaust gas, H
The discharge amount of C is particularly susceptible to the exhaust temperature. In other words, even if a noble metal catalyst is used, it is generally 3
A catalyst temperature of 00 ° C or higher is required. Therefore, in the exhaust gas purification device only including the three-way catalyst, it is difficult to purify the HC by the catalyst when the exhaust gas temperature is low, such as immediately after the engine is started cold.

【0003】このため、車両用の排気浄化装置として、
特開昭63−68713号公報に示されるように、前記
排気浄化用触媒の上流側の排気通路にHCを吸着するた
めの吸着材を介装したものが提案されている。このもの
では、吸着材が低温時にはHCを吸着し、高温になると
吸着されたHCを脱離する特性があることを利用し、排
気浄化用触媒の上流の排気通路の一部に前記吸着材を介
装したバイパス通路を並列に接続して主通路とバイパス
通路とを選択的に開閉自由な構成とし、排気浄化用触媒
が活性化される前の低温時に前記バイパス通路を開いて
吸着材にHCを吸着しておき、一旦バイパス通路を閉じ
た後、高温になって排気浄化用触媒が活性化してから再
度バイパス通路を開いて吸着されたHCを脱離させて排
気浄化用触媒で浄化するようになっている。吸着材とし
ては、ゼオライトが吸着性に優れていることから例えば
モノリス担体にゼオライトをコーティングしたものが提
案されている。
Therefore, as an exhaust emission control device for vehicles,
As disclosed in Japanese Patent Application Laid-Open No. 63-68713, there has been proposed one in which an adsorbent for adsorbing HC is interposed in the exhaust passage on the upstream side of the exhaust purification catalyst. This one utilizes the fact that the adsorbent adsorbs HC at low temperatures and desorbs the adsorbed HC at high temperatures, so that the adsorbent is provided in a part of the exhaust passage upstream of the exhaust purification catalyst. The inserted bypass passages are connected in parallel to selectively open and close the main passage and the bypass passage, and the bypass passage is opened at a low temperature before activation of the exhaust gas purification catalyst to cause HC to be adsorbent. After adsorbing, and once closing the bypass passage, the temperature becomes high and the exhaust purification catalyst is activated, and then the bypass passage is opened again to desorb the adsorbed HC and the exhaust purification catalyst purifies it. It has become. As the adsorbent, for example, a monolith carrier coated with zeolite has been proposed because zeolite has excellent adsorbability.

【0004】[0004]

【発明が解決しようとする課題】ところで、かかる吸着
材を備えた排気浄化装置においては、従来吸着時に吸着
剤に吸着剤されたHCの量あるいは脱離時に吸着剤に残
っているHCの量を知ることなく脱離動作を行ってい
る。このため、次の吸着時における吸着能力を最大限に
確保すべく脱離を完了しておく必要があるので、脱離時
間を必要以上に長めに設定してあり、脱離後の吸着の再
開時期に遅れを来たし、また、高温の排気に晒される時
間が増大して吸着剤の温度劣化を早めたり、吸着剤通過
による排気抵抗が増大して燃費を悪化させてしまう等の
問題を生じていた。
By the way, in an exhaust gas purification apparatus provided with such an adsorbent, the amount of HC adsorbed by the adsorbent during adsorption or the amount of HC remaining in the adsorbent during desorption is conventionally determined. The desorption operation is performed without knowing it. For this reason, it is necessary to complete desorption in order to maximize the adsorption capacity during the next adsorption, so the desorption time is set longer than necessary, and adsorption is restarted after desorption. There are problems such as the timing being delayed, the time exposed to high temperature exhaust gas is increased to accelerate the temperature deterioration of the adsorbent, and the exhaust resistance due to passage of the adsorbent is increased to deteriorate fuel efficiency. It was

【0005】本発明は、このような従来の問題点に鑑み
なされたもので、吸着動作時におけるHCの吸着剤への
吸着量や脱離時における吸着剤のHCの残量等を推定
し、さらにかかる推定に基づいて脱離動作を制御するこ
とにより、HC浄化性能を可及的に高められるようにし
た内燃機関の排気浄化装置を提供することを目的とす
る。
The present invention has been made in view of such conventional problems, and estimates the amount of HC adsorbed to the adsorbent during the adsorption operation, the remaining amount of HC of the adsorbent during desorption, and the like. Further, it is an object of the present invention to provide an exhaust gas purification apparatus for an internal combustion engine in which the HC purification performance can be enhanced as much as possible by controlling the desorption operation based on such estimation.

【0006】[0006]

【課題を解決するための手段】このため本発明は、図1
に示すように機関の排気通路に排気浄化用触媒を備える
と共に、該排気浄化用触媒の上流の排気通路の一部を主
通路と該主通路に並列に接続され排気中のHCを低温時
に吸着し高温時に脱離する機能を有した吸着剤を介装し
たバイパス通路とで構成し、前記主通路とバイパス通路
との排気の分流比を制御しつつ排気浄化用触媒の活性化
前の低温状態で吸着剤に排気中のHCを吸着し、排気浄
化用触媒の活性化後の高温状態で吸着剤に吸着されたH
Cを脱離して排気浄化用触媒により浄化させるようにし
た内燃機関の排気浄化装置において、排気中のHC排出
量を検出する手段と、吸着剤を通過する排気の流速を検
出する手段と、吸着剤の温度を検出する手段と、これら
各手段により検出されるHC排出量,排気流速及び吸着
剤温度に基づいて前記HCの吸着動作時に吸着剤に吸着
されるHCの総量を推定する手段と、を含んで構成し
た。
Therefore, the present invention is based on FIG.
As shown in FIG. 3, an exhaust gas purification catalyst is provided in the exhaust gas passage of the engine, and a part of the exhaust gas passage upstream of the exhaust gas purification catalyst is connected in parallel to the main passage and the main passage to adsorb HC in the exhaust gas at low temperature. And a low temperature state before activation of the exhaust gas purification catalyst while controlling the exhaust gas flow dividing ratio between the main passage and the bypass passage, and a bypass passage having an adsorbent having a function of desorbing at a high temperature. The HC in the exhaust gas is adsorbed by the adsorbent, and the H adsorbed by the adsorbent in the high temperature state after activation of the exhaust gas purification catalyst
An exhaust gas purification apparatus for an internal combustion engine, wherein C is desorbed and purified by an exhaust gas purification catalyst, means for detecting the amount of HC emission in exhaust gas, means for detecting the flow velocity of exhaust gas passing through an adsorbent, and adsorption Means for detecting the temperature of the agent, and means for estimating the total amount of HC adsorbed by the adsorbent during the HC adsorbing operation based on the HC discharge amount, the exhaust flow velocity and the adsorbent temperature detected by these respective means, It was composed including.

【0007】また、前記各手段により検出される排気の
吸着剤を通過する流速及び吸着剤温度に基づいて前記H
Cの吸着剤からのHCの脱離動作時に吸着剤から脱離す
るHCの総量を推定する手段を含み、前記吸着剤に吸着
されたと推定されるHCの総量から前記吸着剤から脱離
したと推定されるHCの総量を差し引いて吸着剤に吸着
されているHCの残量を推定する手段と、を含んで構成
してもよい。
Further, based on the flow rate of the exhaust gas passing through the adsorbent and the adsorbent temperature detected by the respective means, the H
A means for estimating the total amount of HC desorbed from the adsorbent during the desorption operation of HC from the adsorbent of C is included, and the total amount of HC estimated to be adsorbed by the adsorbent is desorbed from the adsorbent. Means for estimating the remaining amount of HC adsorbed on the adsorbent by subtracting the estimated total amount of HC.

【0008】更に、吸着剤に吸着されていると推定され
たHCの残量に基づいて主通路とバイパス通路との排気
の分流比を制御する手段を含んで構成してもよい。ま
た、吸着剤に吸着されていると推定されたHCの残量に
基づいて脱離が完了していると判断した時には前記分流
比制御手段によりバイパス通路を全閉として脱離動作を
終了させる手段を含んで構成してもよい。
Further, it may be configured to include means for controlling the flow division ratio of the exhaust gas in the main passage and the bypass passage based on the remaining amount of HC estimated to be adsorbed by the adsorbent. Further, when it is determined that the desorption is completed based on the remaining amount of HC estimated to be adsorbed by the adsorbent, the diversion ratio control means fully closes the bypass passage to end the desorption operation. May be included.

【0009】[0009]

【作用】 HCの吸着動作時においては、HCの排出量
が機関運転状態、例えば機関回転数,負荷,水温等の運
転条件毎のHC排出特性を予め実験等により求めてお
き、逐次前記運転条件毎の値を検索することにより検出
され、吸着剤を通過する排気の流速が排気流量あるいは
吸気流量等を用いて検出され、吸着剤温度が温度センサ
等により直接的又は排気温度や機関運転条件,始動後経
過時間等から検出される。
[Advantageous Effects] During the adsorption operation of HC, the HC emission characteristic of the HC emission amount for each operating condition such as the engine operating condition, for example, engine speed, load, water temperature, etc. is previously obtained by an experiment or the like, and the operating conditions are successively calculated. It is detected by searching each value, the flow velocity of the exhaust gas passing through the adsorbent is detected by using the exhaust gas flow rate or the intake air flow rate, and the adsorbent temperature is detected directly by a temperature sensor or the like, or the exhaust gas temperature or engine operating conditions, It is detected from the elapsed time after starting.

【0010】ここでHCの排出量は吸着剤に供給される
HC量であり、また、排気の流速,吸着剤温度によって
吸着剤のHC吸着性能が定められる。具体的には、排気
流速が高いほど、また、吸着剤温度が高いほど吸着しに
くくなるので、これらの傾向を予め求めておいて、検出
値に応じた吸着剤のHC吸着性能を割り出し、供給され
るHC量と吸着性能との関係から、単位時間毎に吸着剤
に吸着されるHC量を積算すれば、吸着動作時において
吸着されたHCの総量が求められる。
Here, the amount of HC discharged is the amount of HC supplied to the adsorbent, and the HC adsorption performance of the adsorbent is determined by the flow rate of exhaust gas and the temperature of the adsorbent. Specifically, the higher the exhaust flow rate and the higher the adsorbent temperature, the more difficult it is to adsorb. Therefore, these tendencies are determined in advance, and the HC adsorbing performance of the adsorbent according to the detected value is calculated and supplied. The total amount of HC adsorbed during the adsorption operation can be obtained by integrating the amount of HC adsorbed by the adsorbent per unit time based on the relationship between the amount of HC adsorbed and the adsorption performance.

【0011】また、脱離動作時においては、吸着剤を通
過する排気の流速は吸着時とは逆に流速の増大によって
単位時間内に基準クランク角度に流入する排気の熱エネ
ルギを増大させるからHCが脱離しやすくなり、吸着剤
温度の上昇もHC分子の運動エネルギーを増加させるた
めHCが脱離しやすくなる。そこで、これらの傾向を予
め求めておいて、検出値に応じた吸着剤からのHC脱離
性能を割り出し、単位時間毎に吸着剤から脱離するHC
量を積算すれば、脱離動作時において脱離されたHCの
総量が求められる。そして、前記吸着動作時に吸着剤に
吸着されたと推定されるHCの総量から、脱離動作時に
吸着剤から脱離されたと推定されるHCの総量を差し引
けば、脱離動作中に吸着剤に残存しているHCの量を推
定することができる。
In addition, during desorption operation, the flow velocity of the exhaust gas passing through the adsorbent increases the flow velocity of the exhaust gas, which increases the thermal energy of the exhaust gas flowing into the reference crank angle within a unit time, as opposed to the adsorption flow velocity. Are easily desorbed, and a rise in the adsorbent temperature also increases the kinetic energy of HC molecules, so that HC is easily desorbed. Therefore, by predetermining these tendencies, the HC desorption performance from the adsorbent according to the detected value is calculated, and the HC desorbing from the adsorbent at every unit time is calculated.
If the amounts are integrated, the total amount of HC desorbed during the desorption operation can be obtained. Then, by subtracting the total amount of HC estimated to be desorbed from the adsorbent during the desorption operation from the total amount of HC estimated to be adsorbed to the adsorbent during the adsorption operation, The amount of HC remaining can be estimated.

【0012】また、前記のようにして吸着剤に吸着され
ているHCの残量がわかれば、脱離時に排気浄化用触媒
のHC浄化性能を考慮して、主通路とバイパス通路との
排気の分流比を制御することにより、排気浄化用触媒で
処理しうるだけのHCが過不足なく脱離されるようにバ
イパス通路,即ち、吸着剤への排気流量を制御すること
ができ、HC浄化性能を確保しつつ脱離動作時間を短縮
して、吸着剤の再生を早めることができる。
Further, if the residual amount of HC adsorbed on the adsorbent is known as described above, in consideration of the HC purification performance of the exhaust purification catalyst during desorption, the exhaust gas of the main passage and the bypass passage will be considered. By controlling the split ratio, the exhaust flow rate to the bypass passage, that is, the adsorbent can be controlled so that the HC that can be processed by the exhaust purification catalyst is desorbed without excess or deficiency, and the HC purification performance can be improved. It is possible to shorten the desorption operation time while ensuring the speed, and accelerate the regeneration of the adsorbent.

【0013】そして、推定された吸着剤のHC残量が十
分少なくなって脱離が完了されたと判定された場合に、
バイパス通路を閉じ主通路を全開とすることによって、
吸着剤への排気流通を停止して排気抵抗を減少させて燃
費を改善できると共に、吸着剤の熱的劣化を抑制でき
る。
When it is determined that the desorbed HC is sufficiently low and the desorption is completed,
By closing the bypass passage and fully opening the main passage,
The exhaust gas flow to the adsorbent can be stopped to reduce the exhaust resistance to improve the fuel economy and suppress the thermal deterioration of the adsorbent.

【0014】[0014]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。本発明の一実施例の構成を示す図2において、内燃
機関1の排気通路2には、排気浄化用触媒 (三元触媒)
3が介装され、該排気浄化用触媒3より上流側の排気通
路2の一部が主通路4と、該主通路4と並列に接続され
吸着材5を介装したバイパス通路6とで構成されてい
る。前記主通路4とバイパス通路6との上流側と下流側
の分岐点には、これら主通路4とバイパス通路6との開
度比を連続的に連動制御して排気の分流比を制御する手
段として例えば電磁式の制御弁7,8が介装されてい
る。尚、簡易的には上流側又は下流側の分岐点の一方の
みに制御弁を設けてもよい。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2 showing the configuration of an embodiment of the present invention, an exhaust gas purification catalyst (three-way catalyst) is provided in an exhaust passage 2 of an internal combustion engine 1.
3, a part of the exhaust passage 2 upstream of the exhaust purification catalyst 3 is composed of a main passage 4 and a bypass passage 6 connected in parallel with the main passage 4 and having an adsorbent 5 interposed therein. Has been done. Means for continuously controlling the opening ratio between the main passage 4 and the bypass passage 6 at the branch points of the main passage 4 and the bypass passage 6 on the upstream side and the downstream side to control the exhaust flow dividing ratio. For example, electromagnetic control valves 7 and 8 are interposed. Note that, for simplicity, the control valve may be provided only at one of the branch points on the upstream side or the downstream side.

【0015】また、前記吸着剤5下流のバイパス通路6
には排気温度TE を検出することにより吸着剤の温度を
検出する手段となる温度センサ9が装着されている。前
記温度センサ9の他、機関冷却水温度 (水温) TW を検
出する水温センサ10、機関回転数Nを検出する回転数セ
ンサ11が設けられ、これらセンサ類からの各検出信号及
び別途演算された基本燃料噴射量TP が機関負荷の検出
信号としてコントロールユニット12に出力され、コント
ロールユニット12は、これら信号に基づいて排気中HC
の吸着及び脱離制御を行う。
A bypass passage 6 downstream of the adsorbent 5 is also provided.
A temperature sensor 9 serving as a means for detecting the temperature of the adsorbent by detecting the exhaust temperature T E is attached to the. In addition to the temperature sensor 9, a water temperature sensor 10 for detecting the engine cooling water temperature (water temperature) T W, and a rotation speed sensor 11 for detecting the engine rotation speed N are provided. Each detection signal from these sensors and separately calculated. The basic fuel injection amount T P is output to the control unit 12 as an engine load detection signal. Based on these signals, the control unit 12 discharges HC in the exhaust gas.
Adsorption and desorption control of

【0016】前記コントロールユニット10による排気中
HCの吸着及び脱離制御を図3に示したフローチャート
に従って説明する。ステップ (図ではSと記す。以下同
様) 1では、前記各センサ類で検出された水温TW ,機
関回転数N及び別ルーチンで演算された基本燃料噴射量
P を読み込む。
The control of adsorption and desorption of HC in exhaust gas by the control unit 10 will be described with reference to the flow chart shown in FIG. In step (denoted as S in the drawing. The same applies hereinafter) 1, the water temperature T W detected by the sensors, the engine speed N, and the basic fuel injection amount T P calculated in another routine are read.

【0017】ステップ2では、吸着剤5にHCを吸着す
る運転条件か否かを判定する。具体的には、水温TW
所定値以下であって、排気浄化用触媒3が非活性状態で
HCの浄化性能が低く、かつ、吸着剤5のHC吸着剤能
力は十分高い条件をHCの吸着条件とする。前記ステッ
プ2でHCの吸着条件と判定された場合は、ステップ3
へ進み、制御弁7,8をバイパス通路6側を全開 (この
時主通路4側は全閉、以下バイパス通路6側を基準とす
る) として吸着動作を開始する。
In step 2, it is judged whether or not the operating conditions are such that the adsorbent 5 adsorbs HC. Specifically, when the water temperature T W is equal to or lower than a predetermined value, the exhaust gas purification catalyst 3 is in an inactive state, the HC purification performance is low, and the HC adsorbent capacity of the adsorbent 5 is sufficiently high. Use adsorption conditions. When it is determined in step 2 that the HC adsorption condition is satisfied, step 3
Then, the control valve 7, 8 is set to fully open the bypass passage 6 side (at this time, the main passage 4 side is fully closed, and hereinafter, the bypass passage 6 side is used as a reference) to start the adsorption operation.

【0018】次いでステップ4へ進み、HCの (単位時
間当りの) 排出量を演算する。具体的には、燃料噴射量
(最終的な燃料噴射量TI 又は基本燃料噴射量TP )
に、運転条件に応じて設定される補正係数を乗じて求め
る。ここで補正係数は、前記ステップ1で読み込んだ水
温TW ,基本燃料噴射量TP (負荷) ,機関回転数Nに
基づいて設定する。これら水温TW ,基本燃料噴射量T
P ,機関回転数NとHC排出量との関係について説明す
ると、水温TW が低いほど燃料の気化が悪い等の理由で
HCの発生量が大であり、基本燃料噴射量TP (負荷)
が大であるほど、機関に供給される燃料が増大する等の
理由でHC発生量が大であり、機関回転数Nが大である
ほど排気流量が増大するので比例的に大となる傾向があ
る。そこで、例えばこれらの各条件をパラメータとして
実験等により予め設定された補正係数の4次元マップテ
ーブルからの検索により求めるか、或いは記憶データ量
を少なくするため図4に示すような補正係数K1
2 ,K3 を個別のマップテーブルとして設定しておい
て、各検出値に基づいて検索した補正係数K1 ,K2
3 を乗じて求めるようにすればよい。また、この他
に、空燃比や点火時期等によってもHC排出量が影響さ
れるので、これらの値を考慮してより高精度に求めるこ
ともできる。
Next, in step 4, the HC
Calculate the emissions (per unit). Specifically, the fuel injection amount
 (Final fuel injection amount TIOr basic fuel injection amount TP)
Is calculated by multiplying by the correction coefficient set according to the operating conditions.
It Here, the correction coefficient is the water read in step 1 above.
Temperature TW, Basic fuel injection amount TP (Load), engine speed N
Set based on These water temperature TW, Basic fuel injection amount T
P, Explain the relationship between engine speed N and HC emissions
Then, the water temperature TWThe lower the value, the poorer the fuel vaporization
The amount of generated HC is large, and the basic fuel injection amount TP (Load)
Is larger, the fuel supplied to the engine increases, etc.
For this reason, the amount of generated HC is large and the engine speed N is large.
As the exhaust flow rate increases, it tends to increase proportionally.
It So, for example, using each of these conditions as parameters
A four-dimensional map table of correction factors preset by experiments
Table or search data or stored data amount
Correction coefficient K as shown in FIG.1
K2, K3As a separate map table
Then, the correction coefficient K retrieved based on each detected value1, K2
K 3It may be obtained by multiplying by. Also this
In addition, HC emissions are also affected by the air-fuel ratio and ignition timing.
Therefore, it is necessary to take these values into consideration to obtain a more accurate
I can do it.

【0019】次に、ステップ5では、吸着剤5を通過す
る排気の流速を演算する。基本的には制御弁7,8が全
開であり、排気の略全量がバイパス通路6に流れるの
で、排気の単位時間当りの流量に比例する値として求め
られ、排気流量は簡単のため略吸入空気流量に等しいと
すれば、基本燃料噴射量TP と機関回転数Nとの積に比
例する値として求められる吸入空気流量Q又は図示しな
いエアフローメータによって検出される吸入空気流量Q
に、流速換算の係数を乗じて演算すればよい。ここで、
前記係数は、吸着剤5の取付位置や容量を考慮して設定
するとより精度が向上する。
Next, in step 5, the flow velocity of the exhaust gas passing through the adsorbent 5 is calculated. Basically, since the control valves 7 and 8 are fully opened and almost the entire amount of exhaust gas flows into the bypass passage 6, it is obtained as a value proportional to the flow rate of exhaust gas per unit time. If equal to the flow rate, the intake air flow rate Q obtained as a value proportional to the product of the basic fuel injection amount T P and the engine speed N or the intake air flow rate Q detected by an air flow meter (not shown)
Can be calculated by multiplying by a coefficient for flow velocity conversion. here,
If the coefficient is set in consideration of the mounting position and capacity of the adsorbent 5, the accuracy is further improved.

【0020】ステップ6では、前記温度センサ9により
検出された吸着剤5下流の排気温度に基づいて吸着剤5
の温度を検出する。尚、吸着剤にセンサ部を挿入して直
接吸着剤温度を検出するセンサを設けて検出してもよ
く、或いは、機関運転条件、始動後経過時間等からの推
定により求めてもよい。ステップ7では、このようにし
て求められたHCの排出量,排気流速,吸着剤温度に基
づいて単位時間 (例えば、本ルーチンの実行周期) 当り
の吸着剤5へのHC吸着量を演算する。ここで、前記各
条件とHCの吸着量との関係を説明すると、HC吸着量
はHC排出量に比例的に増大することは明らかであり、
また、排気流速が大きくなるほどHCの吸着材5を通過
する時間が短くなるため、吸着しにくくなり、また、吸
着剤温度が大きいほどHC分子の内部エネルギーが大き
いため吸着しにくくなる。そこで、前記各条件をパラメ
ータとして実験的に設定されたHC吸着量の4次元マッ
プテーブルからの検索により求めるか、簡易的に図5に
示すような補正係数K4 ,K5 ,K6 を個別のマップテ
ーブルとして設定しておいて、各検出値に基づいて検索
した補正係数K4 ,K5 ,K6 を乗じて求めるようにす
ればよい。
In step 6, the adsorbent 5 is detected based on the exhaust gas temperature downstream of the adsorbent 5 detected by the temperature sensor 9.
Detects the temperature of. The sensor may be inserted into the adsorbent to directly detect the temperature of the adsorbent, and the temperature may be detected. Alternatively, the temperature may be estimated from the engine operating conditions, the elapsed time after starting, or the like. In step 7, the amount of HC adsorbed to the adsorbent 5 per unit time (for example, the execution cycle of this routine) is calculated on the basis of the amount of discharged HC, the exhaust flow velocity, and the adsorbent temperature thus obtained. Here, explaining the relationship between each of the above conditions and the amount of adsorbed HC, it is clear that the amount of adsorbed HC increases in proportion to the amount of discharged HC,
Further, the higher the exhaust flow velocity, the shorter the time for which the HC passes through the adsorbent 5, so that it becomes difficult to adsorb, and the higher the adsorbent temperature, the greater the internal energy of the HC molecules, so that it becomes difficult to adsorb. Therefore, the HC adsorption amount is experimentally set by using each of the above conditions as a parameter, and is obtained by a search from a four-dimensional map table, or the correction coefficients K 4 , K 5 , and K 6 shown in FIG. It is only necessary to set it as the map table of No. 1 and multiply it by the correction coefficients K 4 , K 5 and K 6 retrieved based on each detected value.

【0021】ステップ8では、上記のようにして求めら
れた単位時間当りのHC吸着量を積算して現在吸着剤5
に吸着されているHC量を求める。ステップ9では、脱
離の終了時に1にセットされるパージフラグFを0にリ
セットする。このようにして吸着剤5への吸着が遂行さ
れ、水温の上昇と共に吸着剤5温度が上昇してステップ
2での吸着条件が満たされなくなったと判定されると、
ステップ10へ進み、今度は吸着剤5から吸着されている
HCを脱離する条件を満たしているか否かを判定する。
具体的には水温TW や排気温度TE が所定温度以上であ
ることの検出或いは始動後の所定時間が経過しているこ
と等から排気浄化用触媒3が活性化される温度に達して
いることが検出され、かつ、空燃比センサや運転条件の
検出値等から空燃比が過濃でないことが検出され、か
つ、吸着剤5に流入する排気の温度が所定値以上である
ことが検出され、かつ、機関回転数及び負荷等で検出さ
れる排気流量が所定値以上であることを検出されたとき
等を脱離条件とする。
In step 8, the amount of HC adsorbed per unit time obtained as described above is integrated to obtain the present adsorbent 5
The amount of HC adsorbed on is determined. In step 9, the purge flag F, which is set to 1 at the end of desorption, is reset to 0. In this way, the adsorption to the adsorbent 5 is performed, and when it is determined that the adsorbent 5 temperature rises as the water temperature rises and the adsorption condition in step 2 is no longer satisfied,
In step 10, it is determined whether or not the condition for desorbing the adsorbed HC from the adsorbent 5 is satisfied.
Specifically, the exhaust purification catalyst 3 has reached a temperature at which it is activated, for example, by detecting that the water temperature T W or the exhaust temperature T E is equal to or higher than a predetermined temperature, or a predetermined time has elapsed after the start. It is detected that the air-fuel ratio is not too rich from the air-fuel ratio sensor and the detected value of the operating condition, and that the temperature of the exhaust gas flowing into the adsorbent 5 is equal to or higher than a predetermined value. Also, the desorption condition is set when it is detected that the exhaust gas flow rate detected by the engine speed, the load, etc. is equal to or more than a predetermined value.

【0022】前記ステップ2の吸着剤5への吸着条件が
満たされなくなってから、前記脱離条件が満たされるま
でには通常時間があり、その間はステップ11へ進んで、
制御弁7,8を主通路4全開側に切り換え、バイパス通
路6を閉じる。これにより、吸着剤5には排気が流れな
いので、その後吸着剤5温度上昇は抑えられてHCを脱
離する温度に達しないのでHCを脱離することなく、H
Cを保持している。
There is a normal time from when the adsorption condition for the adsorbent 5 in step 2 is not satisfied until the desorption condition is satisfied, during which time the process proceeds to step 11.
The control valves 7 and 8 are switched to the fully open side of the main passage 4 and the bypass passage 6 is closed. As a result, since the exhaust gas does not flow to the adsorbent 5, the temperature rise of the adsorbent 5 is suppressed and the temperature for desorbing HC is not reached.
Holds C.

【0023】その後、水温TW や排気温度等の上昇によ
って排気浄化用触媒3が活性化されるなどしてステップ
10の脱離条件が満たされると、ステップ12以降に進んで
脱離動作が開始される。まず、ステップ12では前記パー
ジフラグFの値をみて脱離が完了しているか否かを判定
する。
After that, the exhaust purification catalyst 3 is activated by an increase in the water temperature T W , the exhaust temperature, etc.
When the desorption conditions of 10 are satisfied, the process proceeds to step 12 and subsequent steps to start the desorption operation. First, in step 12, the value of the purge flag F is checked to determine whether desorption has been completed.

【0024】脱離の完了前はステップ13へ進んで、吸着
剤5を通過する排気の流速を演算する。該排気の流速
は、吸着時の場合と同様吸入空気流量Qに係数を乗じて
得られる値に、制御弁7,8による主通路4とバイパス
通路6との開度比から求められる係数を乗じて求められ
る。該開度比に応じた係数は、バイパス通路6側の開度
が大であるほど大で全開時に1に設定されており、この
係数を乗じることでバイパス通路6に流入する排気流量
に比例した値として排気流速を求めることができる。
尚、脱離開始時は制御弁7,8がバイパス通路6を全閉
としているので、前記開度比に応じた係数は0となる。
Before completion of desorption, the routine proceeds to step 13, where the flow velocity of exhaust gas passing through the adsorbent 5 is calculated. As for the flow velocity of the exhaust gas, a value obtained by multiplying the intake air flow rate Q by a coefficient is multiplied by a coefficient obtained from the opening ratio between the main passage 4 and the bypass passage 6 by the control valves 7 and 8 as in the case of adsorption. Required. The coefficient corresponding to the opening ratio is set to be larger when the opening on the side of the bypass passage 6 is larger, and is set to 1 at the time of full opening. Multiplying this coefficient is proportional to the flow rate of exhaust gas flowing into the bypass passage 6. The exhaust flow velocity can be obtained as a value.
Since the control valves 7 and 8 fully close the bypass passage 6 at the start of desorption, the coefficient according to the opening ratio becomes zero.

【0025】ステップ14では、吸着剤5下流の排気温度
E から吸着剤5の温度を検出する。ステップ15では、
前記吸着剤5を通過する排気の流速と、前記吸着剤5の
温度と、現在吸着剤5に吸着しているHCの残量とに基
づいて単位時間 (例えば本ルーチンの実行周期) 当りの
HCの脱離量を演算する。尚、HCの残量は、後述する
演算により求められるように脱離が進むに連れて減少す
る。ここで、排気の流速が大のとき、吸着剤温度が高い
とき、HC残量が大であるときほど夫々HCの脱離量は
大となる傾向があるから、これら各条件をパラメータと
して実験等により予め設定されたHC脱離量の4次元マ
ップテーブルからの検索により求めるか、簡易的に図6
に示すような補正係数K7 ,K8 ,K9 を個別のマップ
テーブルとして設定しておいて、各検出値に基づいて検
索した補正係数K7 ,K8 ,K9を乗じて求めるように
すればよい。
In step 14, the temperature of the adsorbent 5 is detected from the exhaust temperature T E downstream of the adsorbent 5. In step 15,
Based on the flow rate of the exhaust gas passing through the adsorbent 5, the temperature of the adsorbent 5, and the remaining amount of HC currently adsorbed to the adsorbent 5, the HC per unit time (for example, the execution cycle of this routine) Calculate the desorption amount of. The remaining amount of HC decreases as desorption progresses, as determined by the calculation described later. Here, the amount of desorbed HC tends to increase as the flow velocity of exhaust gas increases, the adsorbent temperature increases, and the HC remaining amount increases. The calculated HC desorption amount can be obtained by searching the four-dimensional map table by
The correction factors K 7 , K 8 and K 9 as shown in (4) are set as individual map tables, and the correction factors K 7 , K 8 and K 9 retrieved based on the respective detected values are multiplied to obtain. do it.

【0026】ステップ16では、上記のようにして求めら
れた単位時間当りのHC脱離量を積算して脱離開始後吸
着剤5から脱離されたHCの総量を求める。ステップ17
では、前記吸着動作時に吸着剤5に吸着されたHCの総
量ΣHCaから前記ステップ16で求められた脱離開始後
に脱離されたHCの総量ΣHCp を差し引くことによ
り、現在HCに吸着されているHCの残量を求める。
In step 16, the total amount of HC desorbed from the adsorbent 5 after the start of desorption is calculated by integrating the amount of desorbed HC per unit time obtained as described above. Step 17
Then, by subtracting the total amount ΣHC p of HC desorbed after the start of desorption obtained in step 16 from the total amount ΣHC a of HC adsorbed on the adsorbent 5 during the adsorption operation, Find the remaining amount of HC present.

【0027】ステップ18では、ステップ17で求められた
HCの残量が0であるか否かによってHCの吸着剤5か
らの脱離が完了したか否かを判定する。脱離の完了前
は、ステップ19へ進み、HCの残量に基づいて制御弁
7,8の開度比を制御して主通路4とバイパス通路6と
の分流比を制御する。ここで、排気浄化用触媒3の活性
化され状態でのHC浄化能力に見合った量のHCが過不
足なく脱離されるようにバイパス通路6への排気流量を
制御すべく、制御弁7,8の開度比を制御して分流比が
制御される。具体的には、吸着剤5へのHCの残量が多
いときほど、脱離量が増大するので、脱離量を浄化能力
に見合った所定値に保持すべく図7に示すように設定さ
れた分流比 (バイパス通路6の全開を1,全閉を0とす
る) に制御する。
In step 18, it is determined whether or not the desorption of HC from the adsorbent 5 is completed depending on whether the remaining amount of HC obtained in step 17 is 0 or not. Before completion of desorption, the routine proceeds to step 19, where the opening ratio of the control valves 7 and 8 is controlled based on the remaining amount of HC to control the diversion ratio between the main passage 4 and the bypass passage 6. Here, in order to control the exhaust gas flow rate to the bypass passage 6 so that the amount of HC commensurate with the HC purification capacity in the activated state of the exhaust purification catalyst 3 is desorbed without excess or deficiency, the control valves 7, 8 The split ratio is controlled by controlling the opening ratio. Specifically, as the amount of HC remaining in the adsorbent 5 increases, the desorption amount increases. Therefore, the desorption amount is set as shown in FIG. 7 in order to maintain the desorption amount at a predetermined value commensurate with the purification capacity. Further, the split flow ratio is controlled so that the bypass passage 6 is fully opened 1 and fully closed 0.

【0028】かかる脱離を継続して行うことにより、ス
テップ18で脱離が完了したと判定されると、ステップ20
へ進んで制御弁7,8によりバイパス通路6を全閉と
し、主通路4を全開とするように制御する。これによ
り、排気の略全量が主通路4に流れ、バイパス通路6に
は排気が流れないので、吸着剤5に高温な排気が無駄に
流れることを防止して吸着剤5の熱的劣化を抑制できる
と共に、吸着剤5通過時の排気抵抗増大による燃費の悪
化を抑制できる。
When it is determined in step 18 that the desorption is completed by continuing the desorption, step 20
Then, the control valves 7 and 8 are controlled to fully close the bypass passage 6 and fully open the main passage 4. As a result, substantially the entire amount of exhaust gas flows into the main passage 4 and exhaust gas does not flow into the bypass passage 6, so that high-temperature exhaust gas is prevented from flowing unnecessarily to the adsorbent 5 and thermal deterioration of the adsorbent 5 is suppressed. In addition, it is possible to suppress deterioration of fuel consumption due to an increase in exhaust resistance when passing through the adsorbent 5.

【0029】次いでステップ21に進み、前記パージフラ
グFを1にセットする。これにより、ステップ12でパー
ジフラグFが1であると判定された場合は、HC残量の
推定演算を行うことなくステップ11へ進んで主通路4を
全開 (バイパス通路を全閉)に保持する。尚、以上の説
明では、吸着材5上流に触媒 (所謂プーリ触媒) を配す
る既述を含んでいないが、更に排気浄化性能を高めるた
め、このプーリ触媒があってもよい。
Next, in step 21, the purge flag F is set to 1. As a result, when it is determined in step 12 that the purge flag F is 1, the process proceeds to step 11 without performing the HC remaining amount estimation calculation, and the main passage 4 is held fully open (the bypass passage is fully closed). Although the above description does not include the above description in which a catalyst (a so-called pulley catalyst) is arranged upstream of the adsorbent 5, this pulley catalyst may be provided in order to further enhance the exhaust gas purification performance.

【0030】[0030]

【発明の効果】以上説明してきたように本発明によれ
ば、吸着動作時に吸着剤に吸着されるHCの総量を排気
中のHC排出量,吸着剤を通過する排気の流速及び吸着
剤温度に基づいて推定する構成としたため、該吸着され
るHCの総量を高精度に推定することができる。
As described above, according to the present invention, the total amount of HC adsorbed by the adsorbent during the adsorption operation is determined by the amount of HC discharged in the exhaust gas, the flow rate of the exhaust gas passing through the adsorbent, and the adsorbent temperature. Since the configuration is based on the estimation, the total amount of the adsorbed HC can be estimated with high accuracy.

【0031】また、脱離動作時に吸着剤から脱離するH
Cの総量も吸着剤を通過する排気の流速及び吸着剤温度
に基づいて高精度に推定し、前記吸着されたHCの総量
から脱離されたHCの総量を差し引くことにより、脱離
動作中の吸着剤へのHCの残量も高精度に推定できる。
そして、前記推定されたHCの残量に基づいて主通路と
バイパス通路との開度比を制御し、残量が十分少なくな
って脱離の完了を検出したときにバイパス通路を全閉と
することにより、排気浄化用触媒のHC浄化能力に見合
った量のHCを過不足なく脱離させることができ、HC
浄化性能を良好に維持しつつ、可及的に脱離時間を短縮
でき、吸着剤の再生を早めることができる。
Further, H desorbed from the adsorbent during the desorption operation
The total amount of C is also estimated with high accuracy based on the flow rate of the exhaust gas passing through the adsorbent and the adsorbent temperature, and the total amount of desorbed HC is subtracted from the total amount of adsorbed HC, thereby The remaining amount of HC in the adsorbent can also be estimated with high accuracy.
Then, the opening ratio between the main passage and the bypass passage is controlled based on the estimated remaining amount of HC, and the bypass passage is fully closed when the remaining amount becomes sufficiently small and the completion of desorption is detected. As a result, an amount of HC commensurate with the HC purification capacity of the exhaust purification catalyst can be desorbed without excess or deficiency.
While maintaining good purification performance, the desorption time can be shortened as much as possible, and the regeneration of the adsorbent can be accelerated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成,機能を示すブロック図FIG. 1 is a block diagram showing the configuration and function of the present invention.

【図2】本発明の一実施例のシステム構成を示す図FIG. 2 is a diagram showing a system configuration of an embodiment of the present invention.

【図3】同上実施例のHCの吸着,脱離制御ルーチンを
示すフローチャート
FIG. 3 is a flowchart showing an HC adsorption / desorption control routine of the above embodiment.

【図4】同上吸着制御ルーチンの中で排気中のHCの排
出量を演算するための各運転条件とHC排出量との関係
を示す線図
FIG. 4 is a diagram showing a relationship between each operating condition for calculating an amount of discharged HC in exhaust gas and an amount of discharged HC in the adsorption control routine.

【図5】同じく単位時間当りのHC吸着量を推定するた
めの各状態量とHC吸着量との関係を示す線図
FIG. 5 is a diagram showing the relationship between each state quantity and the HC adsorption amount for estimating the HC adsorption amount per unit time.

【図6】同じく単位時間当りのHC脱離量を推定するた
めの各状態量とHC脱離量との関係を示す線図
FIG. 6 is a diagram showing the relationship between each state quantity and the amount of desorbed HC for estimating the amount of desorbed HC per unit time.

【図7】同じく、推定されたHC残量に対する主通路と
バイパス通路との分流比を設定した線図
FIG. 7 is a diagram similarly setting the split flow ratio of the main passage and the bypass passage with respect to the estimated HC remaining amount.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 排気通路 3 排気浄化用触媒 4 主通路 5 吸着材 6 バイパス通路 7,8 制御弁 9 温度センサ 10 水温センサ 11 回転数センサ 12 コントロールユニット 1 Internal Combustion Engine 2 Exhaust Passage 3 Exhaust Purification Catalyst 4 Main Passage 5 Adsorbent 6 Bypass Passage 7, 8 Control Valve 9 Temperature Sensor 10 Water Temperature Sensor 11 Rotation Speed Sensor 12 Control Unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 358 Z 7536−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 45/00 358 Z 7536-3G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】機関の排気通路に排気浄化用触媒を備える
と共に、該排気浄化用触媒の上流の排気通路の一部を主
通路と該主通路に並列に接続され排気中のHCを低温時
に吸着し高温時に脱離する機能を有した吸着剤を介装し
たバイパス通路とで構成し、前記主通路とバイパス通路
との排気の分流比を制御しつつ排気浄化用触媒の活性化
前の低温状態で吸着剤に排気中のHCを吸着し、排気浄
化用触媒の活性化後の高温状態で吸着剤に吸着されたH
Cを脱離して排気浄化用触媒により浄化させるようにし
た内燃機関の排気浄化装置において、排気中のHC排出
量を検出する手段と、吸着剤を通過する排気の流速を検
出する手段と、吸着剤の温度を検出する手段と、これら
各手段により検出されるHC排出量,排気流速及び吸着
剤温度に基づいて前記HCの吸着動作時に吸着剤に吸着
されるHCの総量を推定する手段と、を含んで構成した
ことを特徴とする内燃機関の排気浄化装置。
1. An exhaust gas purification catalyst is provided in an exhaust gas passage of an engine, and a part of an exhaust gas passage upstream of the exhaust gas purification catalyst is connected in parallel to a main passage and the main passage to keep HC in the exhaust gas at a low temperature. A low temperature before activation of the exhaust gas purification catalyst, which is composed of a bypass passage through which an adsorbent having a function of adsorbing and desorbing at a high temperature is interposed and which controls an exhaust flow dividing ratio between the main passage and the bypass passage. In the state, the adsorbent adsorbs HC in the exhaust gas, and after the exhaust purification catalyst is activated, the adsorbent adsorbs H in the high temperature state.
An exhaust gas purification apparatus for an internal combustion engine, wherein C is desorbed and purified by an exhaust gas purification catalyst, means for detecting the amount of HC emission in exhaust gas, means for detecting the flow velocity of exhaust gas passing through an adsorbent, and adsorption Means for detecting the temperature of the agent, and means for estimating the total amount of HC adsorbed by the adsorbent during the HC adsorbing operation based on the HC discharge amount, the exhaust flow velocity and the adsorbent temperature detected by these respective means, An exhaust gas purification apparatus for an internal combustion engine, characterized in that
【請求項2】前記各手段により検出される排気の吸着剤
を通過する流速及び吸着剤温度に基づいて前記HCの吸
着剤からのHCの脱離動作時に吸着剤から脱離するHC
の総量を推定する手段を含み、前記吸着剤に吸着された
と推定されるHCの総量から前記吸着剤から脱離したと
推定されるHCの総量を差し引いて吸着剤に吸着されて
いるHCの残量を推定する手段と、を含んで構成したこ
とを特徴とする請求項1に記載の内燃機関の排気浄化装
置。
2. The HC desorbed from the adsorbent during the desorption operation of the HC from the adsorbent of the HC based on the flow rate of the exhaust gas passing through the adsorbent and the adsorbent temperature detected by the respective means.
And subtracting the total amount of HC estimated to be desorbed from the adsorbent from the total amount of HC estimated to be adsorbed to the adsorbent by subtracting the total amount of HC adsorbed to the adsorbent. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, further comprising: a means for estimating the amount.
【請求項3】吸着剤に吸着されていると推定されたHC
の残量に基づいて主通路とバイパス通路との排気の分流
比を制御する手段を含んで構成したことを特徴とする請
求項2に記載の内燃機関の排気浄化装置。
3. HC presumed to be adsorbed by an adsorbent
3. The exhaust gas purification device for an internal combustion engine according to claim 2, further comprising means for controlling an exhaust flow dividing ratio of the main passage and the bypass passage based on the remaining amount of the exhaust gas.
【請求項4】吸着剤に吸着されていると推定されたHC
の残量に基づいて脱離が完了していると判断した時には
前記分流比制御手段によりバイパス通路を全閉として脱
離動作を終了させる手段を含んで構成したことを特徴と
する請求項3に記載の内燃機関の排気浄化装置。
4. HC presumed to be adsorbed by an adsorbent
4. When the desorption is judged to be completed based on the remaining amount, the diversion ratio control means is configured to fully close the bypass passage to complete the desorption operation. An exhaust gas purification device for an internal combustion engine as described.
JP4245227A 1992-09-14 1992-09-14 Exhaust emission control device for internal combustion engine Pending JPH0693846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245227A JPH0693846A (en) 1992-09-14 1992-09-14 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245227A JPH0693846A (en) 1992-09-14 1992-09-14 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0693846A true JPH0693846A (en) 1994-04-05

Family

ID=17130545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245227A Pending JPH0693846A (en) 1992-09-14 1992-09-14 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0693846A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789730A1 (en) 1999-02-12 2000-08-18 Toyota Motor Co Ltd Measurement device and method for defining quantity of adsorbed combustion residue in adsorbent in exhaust gas includes sensors placed around engine and attached to electronic control unit
US6370872B1 (en) 1999-05-26 2002-04-16 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine
US7527126B2 (en) * 2004-07-07 2009-05-05 Sango Co., Ltd. Exhaust apparatus of an internal combustion engine
USRE42056E1 (en) 1996-11-20 2011-01-25 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas purification system of internal combustion engine
EP2354504A3 (en) * 2010-02-09 2014-09-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device for internal combustion engine
CN115773172A (en) * 2023-02-10 2023-03-10 潍柴动力股份有限公司 HC poisoning judgment method and device in SCR system, electronic device and medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42056E1 (en) 1996-11-20 2011-01-25 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas purification system of internal combustion engine
FR2789730A1 (en) 1999-02-12 2000-08-18 Toyota Motor Co Ltd Measurement device and method for defining quantity of adsorbed combustion residue in adsorbent in exhaust gas includes sensors placed around engine and attached to electronic control unit
US6253547B1 (en) 1999-02-12 2001-07-03 Toyota Jidosha Kabushiki Kaisha Apparatus and method for determining amount of unburned fuel component adsorbed by an adsorbent in an internal combustion engine
DE10005623B4 (en) * 1999-02-12 2005-07-28 Toyota Jidosha K.K., Toyota Apparatus and method for determining the amount of unburned fuel components adsorbed on an adsorbent of an internal combustion engine
US6370872B1 (en) 1999-05-26 2002-04-16 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine
US7527126B2 (en) * 2004-07-07 2009-05-05 Sango Co., Ltd. Exhaust apparatus of an internal combustion engine
EP2354504A3 (en) * 2010-02-09 2014-09-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device for internal combustion engine
CN115773172A (en) * 2023-02-10 2023-03-10 潍柴动力股份有限公司 HC poisoning judgment method and device in SCR system, electronic device and medium

Similar Documents

Publication Publication Date Title
JP3832022B2 (en) Engine exhaust gas purification device
US8468805B2 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
US6401451B1 (en) Degradation discrimination system of internal combustion engine exhaust gas purification system
US6378296B1 (en) Degradation discrimination system of internal combustion engine exhaust gas purification system
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
JPH0693846A (en) Exhaust emission control device for internal combustion engine
JPH10159543A (en) Deterioration diagnosing method of exhaust gas emission control device
JP2002332830A (en) Exhaust emission control device of internal combustion engine
JP2950077B2 (en) Exhaust gas purification device for internal combustion engine
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JP3360568B2 (en) Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device
JP3772554B2 (en) Engine exhaust purification system
JP2806170B2 (en) Exhaust gas purification device for internal combustion engine
JP3413997B2 (en) Degradation diagnosis device for HC adsorbent in internal combustion engine
JP3409647B2 (en) Degradation diagnosis device for HC adsorbent of engine
JPH0666131A (en) Self-diagnosis device of adsorbent for internal combustion engine
JP2800579B2 (en) Exhaust gas purification device for internal combustion engine
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
JP3116588B2 (en) Exhaust gas purification device for internal combustion engine
JPH0693847A (en) Exhaust emission control device for internal combustion engine
JP2894141B2 (en) Adsorption amount estimation device for hydrocarbon adsorption / desorption device of internal combustion engine
JP2000008838A (en) Device and method for diagnosing degradation of hc adsorbent in internal combustion engine
JPH0693840A (en) Exhaust emission control device for internal combustion engine
JP3596450B2 (en) Exhaust gas purification device for internal combustion engine
JP2850664B2 (en) Exhaust gas purification device for internal combustion engine