JPH0693810A - Combined power generating system - Google Patents

Combined power generating system

Info

Publication number
JPH0693810A
JPH0693810A JP24184292A JP24184292A JPH0693810A JP H0693810 A JPH0693810 A JP H0693810A JP 24184292 A JP24184292 A JP 24184292A JP 24184292 A JP24184292 A JP 24184292A JP H0693810 A JPH0693810 A JP H0693810A
Authority
JP
Japan
Prior art keywords
steam
gas turbine
passage
turbine
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24184292A
Other languages
Japanese (ja)
Other versions
JP3068348B2 (en
Inventor
Fumio Otomo
文雄 大友
Asako Matsuura
麻子 松浦
Yukio Shibuya
幸生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17080318&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0693810(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4241842A priority Critical patent/JP3068348B2/en
Publication of JPH0693810A publication Critical patent/JPH0693810A/en
Application granted granted Critical
Publication of JP3068348B2 publication Critical patent/JP3068348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To provide a combined power generating system which can easily control the flow rate, pressure and the temperature of steam at the inlet of a steam turbine without deteriorating the feature of a system which use a part of steam used in the steam turbine system so as to cool blades of a gas turbine. CONSTITUTION:Steam led from a high drum 143 incorporated in a gas turbine blade cooling system 34 is led through a cooling passage 150 formed in each of blades 149 in a gas turbine 11, and is then led through a passage 151 to a merging point 138 where it merges into steam led from a high pressure drum 134. The merging steam is led through a passage 139 into a high pressure heater 125 for heating the steam, and is then led through a passage 140 into a steam turbine 180.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン系統と蒸
気タービン系統とを組合せた複合発電システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined power generation system combining a gas turbine system and a steam turbine system.

【0002】[0002]

【従来の技術】最近、火力発電システムの高効率化が強
く望まれている。そして、この要望に近づくために、新
設の火力発電所は勿論のこと、既設の火力発電所におい
てもリパワリングによる複合サイクル化が進められてい
る。
2. Description of the Related Art Recently, there has been a strong demand for higher efficiency of thermal power generation systems. In order to meet this demand, not only new thermal power plants but also existing thermal power plants are being integrated into a combined cycle by repowering.

【0003】図4には代表的な複合発電システムの系統
図が示されている。この複合発電システムは、ガスター
ビン系統1と、このガスタービン系統1の排熱エネルギ
で駆動される蒸気タービン系統2とで構成されている。
FIG. 4 shows a system diagram of a typical combined power generation system. This combined power generation system is composed of a gas turbine system 1 and a steam turbine system 2 driven by exhaust heat energy of the gas turbine system 1.

【0004】ガスタービン系統1は、ガスタービン11
と、このガスタービン11に軸12を介して連結された
圧縮機13と、この圧縮機13から送り出された高圧空
気と燃料とを導入して燃焼させ、この燃焼によって得ら
れた高温高圧ガスでガスタービン11を駆動する燃焼器
14とで構成されている。すなわち、圧縮機13は、通
路15を介して導かれた常温空気を圧縮する。圧縮機1
3から送り出された高圧空気は、一部がガスタービン1
1内の翼の冷却や回転部のシール用として使用され、残
りが燃焼器14へ導かれる。燃焼器14は高圧空気を支
燃ガスとして図示しない燃料供給系統から供給された燃
料を燃焼させる。燃焼によって得られた高温ガスは、通
路16を介してガスタービン11に供給され、膨脹して
ガスタービン11に駆動力を与えた後に通路17へと流
れる。
The gas turbine system 1 includes a gas turbine 11
And a compressor 13 connected to the gas turbine 11 via a shaft 12, and the high-pressure air and fuel sent from the compressor 13 are introduced and burned, and the high-temperature high-pressure gas obtained by this combustion is used. It is composed of a combustor 14 that drives the gas turbine 11. That is, the compressor 13 compresses the room temperature air guided through the passage 15. Compressor 1
The high-pressure air sent out from No. 3 has a part of the gas turbine 1
It is used for cooling the blades in 1 and for sealing the rotating part, and the rest is guided to the combustor 14. The combustor 14 burns fuel supplied from a fuel supply system (not shown) using high-pressure air as a combustion-supporting gas. The hot gas obtained by combustion is supplied to the gas turbine 11 via the passage 16, expands to give a driving force to the gas turbine 11, and then flows to the passage 17.

【0005】一方、蒸気タービン系統2は、蒸気タービ
ン18と、軸19を介して蒸気タービン18に連結され
た発電機20と、前述したガスタービン系統1の排熱で
蒸気を発生させ、この蒸気で蒸気タービン18を駆動す
る蒸気サイクル21とで構成されている。なお、この図
では蒸気タービン18のロータとガスタービン11のロ
ータとが軸22で連結されている例が示されている。
On the other hand, the steam turbine system 2 generates steam by the steam turbine 18, a generator 20 connected to the steam turbine 18 via a shaft 19 and the exhaust heat of the gas turbine system 1 described above, and this steam is generated. And a steam cycle 21 that drives the steam turbine 18. In this figure, an example in which the rotor of the steam turbine 18 and the rotor of the gas turbine 11 are connected by a shaft 22 is shown.

【0006】蒸気サイクル21は、通路17を介して導
かれたガスタービン11の排ガスから熱を回収して蒸気
タービン18の駆動に必要な高温高圧蒸気を発生させる
排熱回収ボイラ23を備えている。排熱回収ボイラ23
を通った排ガスは、煙道27を介して大気中へ排出され
る。
The steam cycle 21 is provided with an exhaust heat recovery boiler 23 for recovering heat from the exhaust gas of the gas turbine 11 guided through the passage 17 and generating high temperature and high pressure steam necessary for driving the steam turbine 18. . Exhaust heat recovery boiler 23
The exhaust gas that has passed therethrough is discharged into the atmosphere via the flue 27.

【0007】排熱回収ボイラ23内には上流側から下流
側にかけて順に高圧加熱器24,高圧蒸発器25,高圧
予熱器26が設けてあり、これらと蒸気タービン18と
が次のような関係に接続されて蒸気サイクル21が形成
されている。すなわち、蒸気タービン18から排出され
た蒸気を、通路28を介して復水器29へ導き、この復
水器29で常温水に戻す。この戻された常温水を循環ポ
ンプ30,通路31を介して高圧予熱器26に導いて予
熱した後、通路32を介して高圧ドラム32に導入す
る。そして、高圧ドラム32内の高圧水を、循環ポンプ
34,通路35を介して高圧蒸発器25に導いて蒸発さ
せ、この蒸発によって生成された高圧高温の蒸気を通路
36を介して高圧ドラム32の上部空間に戻す。この戻
された蒸気を通路37を介して高圧加熱器24に導き、
ここで再加熱した後に通路38を介して蒸気タービン1
8に供給するようにしている。
A high-pressure heater 24, a high-pressure evaporator 25, and a high-pressure preheater 26 are provided in this order from the upstream side to the downstream side in the exhaust heat recovery boiler 23, and these and the steam turbine 18 have the following relationship. They are connected to form a steam cycle 21. That is, the steam discharged from the steam turbine 18 is guided to the condenser 29 through the passage 28, and is returned to the room temperature water by the condenser 29. The returned room temperature water is introduced into the high pressure preheater 26 through the circulation pump 30 and the passage 31 to be preheated, and then introduced into the high pressure drum 32 through the passage 32. Then, the high-pressure water in the high-pressure drum 32 is guided to the high-pressure evaporator 25 via the circulation pump 34 and the passage 35 to be evaporated, and the high-pressure high-temperature steam generated by this evaporation is passed through the passage 36 to the high-pressure drum 32. Return to the upper space. The returned steam is guided to the high pressure heater 24 through the passage 37,
After being reheated here, the steam turbine 1 is passed through the passage 38.
I am trying to supply to 8.

【0008】ところで、このような複合発電システムで
は、熱効率を一層向上させるためにガスタービン11の
入口ガス温度を高めることが望まれる。このガスタービ
ン11の入口ガス温度の上昇に伴い、燃焼器14や、ガ
スタービン11の静翼,動翼を高温に耐え得る材料で形
成する必要がある。
By the way, in such a combined cycle power generation system, it is desired to raise the inlet gas temperature of the gas turbine 11 in order to further improve the thermal efficiency. As the inlet gas temperature of the gas turbine 11 rises, it is necessary to form the combustor 14, the stationary blades and the moving blades of the gas turbine 11 with a material capable of withstanding high temperatures.

【0009】しかし、タービン用部材として使用できる
耐熱性超合金材料の限界温度は、現在のところ800〜
900℃である。一方、最近のガスタービンにおけるタ
ービン入口温度は約1300℃にも達しており、耐熱性
超合金材料の限界温度を遥かに越えている。したがっ
て、何等かの手段でタービン11の翼を耐熱性超合金材
料の限界温度まで冷却する必要があり、タービン入口温
度が1300℃級のガスタービンでは、通常、圧縮機1
3から吐出された空気の一部で翼を冷却する空冷方式を
採用している。
However, the critical temperature of the heat-resistant superalloy material that can be used as a member for turbines is currently 800-
It is 900 ° C. On the other hand, the turbine inlet temperature in a recent gas turbine reaches about 1300 ° C., which is far above the limit temperature of the heat-resistant superalloy material. Therefore, it is necessary to cool the blades of the turbine 11 to the limit temperature of the heat-resistant superalloy material by some means, and in a gas turbine with a turbine inlet temperature of 1300 ° C., the compressor 1 is usually used.
An air-cooling system is adopted in which the blades are cooled by part of the air discharged from the No. 3 air conditioner.

【0010】しかしながら、冷却媒体として空気を使う
空冷方式は本質的に冷却特性が低い。このため、ガスタ
ービン入口温度が1300℃を越えるものでは翼の冷却
に必要な冷却空気流量が著しく増大する。しかも翼内部
での対流冷却だけでは十分な冷却効果が得られず、翼有
効部の翼表面に形成した小孔から翼外に向けて冷却用空
気を吹出すフィルム冷却方式を併用せざるを得ない。こ
のフィルム冷却方式を採用すると、吹出された冷却空気
と主流ガスとが混合するため、主流ガスの温度が低下す
る。このため、燃焼器14の出口温度をより高い温度に
するための設計を余儀なくされるばかりか、高温度場で
も低NOx型の新たな燃焼器14の開発が要求され、し
かも燃焼器14で消費される空気と燃料の増加を免れ得
ない。
However, the air-cooling method using air as the cooling medium is inherently low in cooling characteristics. For this reason, if the gas turbine inlet temperature exceeds 1300 ° C., the flow rate of cooling air required for cooling the blades increases significantly. Moreover, sufficient cooling effect cannot be obtained only by convection cooling inside the blade, and there is no choice but to use a film cooling method in which cooling air is blown from the small holes formed on the blade surface of the blade effective portion to the outside of the blade. Absent. When this film cooling system is adopted, the temperature of the mainstream gas is lowered because the blown cooling air and the mainstream gas are mixed. Therefore, not only is it necessary to design to make the outlet temperature of the combustor 14 higher, but also the development of a new low NOx type combustor 14 is required even in a high temperature field, and consumption by the combustor 14 is required. Inevitably increases the amount of air and fuel used.

【0011】このように、タービンの翼を空気冷却する
方式では、ガスタービンの熱効率の低下を招き、これが
原因して複合発電システム全体の熱効率の低下を招く問
題があった。また、不純物が混在するような粗悪燃料に
対しては、翼表面に形成した小孔に目詰りの生じる恐れ
があるため適用できない問題もあった。
As described above, the method of air-cooling the blades of the turbine causes a decrease in the thermal efficiency of the gas turbine, which causes a problem of a decrease in the thermal efficiency of the entire combined cycle power generation system. Further, there is a problem that it cannot be applied to poor fuel containing impurities because it may cause clogging of the small holes formed on the blade surface.

【0012】そこで、このような不具合を解消するため
に、最近、特公昭63−40244号公報や、特開平4
−124414号公報に示されているように、空気に較
べて比熱が約2倍と大きい蒸気を冷却媒体として使用す
ることが考えられている。すなわち、蒸気タービン系で
用いる蒸気の一部をガスタービンの翼に設けられている
冷却通路に通流させて翼を冷却し、冷却に供された蒸気
を残りの蒸気と一緒に蒸気タービンに供給するようにし
ている。
Therefore, in order to solve such a problem, recently, Japanese Patent Publication No. 63-40244 and Japanese Unexamined Patent Publication (Kokai) No.
As shown in Japanese Patent No. 124414, it is considered to use a vapor having a specific heat which is about twice as large as that of air as a cooling medium. That is, part of the steam used in the steam turbine system is made to flow through the cooling passages provided in the blade of the gas turbine to cool the blade, and the steam used for cooling is supplied to the steam turbine together with the remaining steam. I am trying to do it.

【0013】このような複合発電システムでは、空気よ
り少ない量の蒸気を使い、しかもこの蒸気を翼外に吹出
さずに翼を良好に冷却でき、そのうえ翼の冷却に用いた
蒸気を回収して蒸気タービンに送込むことができる。し
たがって、この方式を採用すると、主流ガスの温度を低
下させることがなく、燃焼器での燃料および空気の増加
を抑制できるので熱効率を向上でき、しかも粗悪燃料に
も対応できる。
In such a combined power generation system, a smaller amount of steam than air is used, and the blade can be cooled well without blowing this steam out of the blade, and the steam used for cooling the blade is recovered. Can be fed to a steam turbine. Therefore, when this method is adopted, the temperature of the mainstream gas is not lowered, and the increase of fuel and air in the combustor can be suppressed, so that the thermal efficiency can be improved, and poor fuel can also be dealt with.

【0014】しかし、ガスタービンの翼を蒸気で冷却す
るようにした従来の複合発電システムにあっては、蒸気
タービン系統で用いる蒸気の一部をガスタービンの翼に
設けられた冷却通路に通流させ、この冷却通路に通流さ
せた後の蒸気と残りの蒸気とを蒸気タービンの入口にお
いて合流させ、この合流蒸気を蒸気タービンに供給する
ようにしているので、蒸気タービンの入口における蒸気
流量,蒸気圧、蒸気温度を目標値に合せることが困難
で、制御性に劣り、これが原因して最大の熱効率で運転
することが困難であった。
However, in the conventional combined cycle power generation system in which the blades of the gas turbine are cooled with steam, a part of the steam used in the steam turbine system flows through the cooling passage provided in the blades of the gas turbine. The steam that has passed through the cooling passage and the remaining steam are combined at the inlet of the steam turbine, and the combined steam is supplied to the steam turbine. It was difficult to match the steam pressure and steam temperature to the target values, and the controllability was poor, which made it difficult to operate at maximum thermal efficiency.

【0015】[0015]

【発明が解決しようとする課題】上述の如く、従来の複
合発電システム、特にガスタービンの翼を蒸気で冷却す
る方式を採用したものにあっては、蒸気タービンを最大
の熱効率で運転することが困難で、これが原因して総合
熱効率を目標通りに上げることが困難であった。そこで
本発明は、蒸気冷却方式の特徴を損なうことなく、総合
熱効率の向上を図れる複合発電システムを提供すること
を目的としている。
As described above, in the conventional combined cycle power generation system, in particular, the one that adopts the method of cooling the blades of the gas turbine with steam, it is possible to operate the steam turbine at maximum thermal efficiency. It was difficult and it was difficult to raise the total thermal efficiency to the target. Therefore, an object of the present invention is to provide a combined power generation system capable of improving the total thermal efficiency without impairing the features of the steam cooling system.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、ガスタービン系統と、このガスタービン
系統の排熱を排熱回収ボイラで回収して得た蒸気でター
ビンを駆動する蒸気サイクルを備えた蒸気タービン系統
と、前記排熱回収ボイラで得られた蒸気の一部を前記ガ
スタービンの翼に設けられている冷却通路を経由させて
前記蒸気サイクルへ戻すガスタービン翼冷却系統とを備
えた複合発電システムにおいて、前記冷却通路を通った
蒸気のほぼ全量を前記蒸気サイクルの加熱過程領域へ戻
すように前記ガスタービン翼冷却系統が構成されてい
る。
In order to achieve the above object, the present invention drives a turbine with a gas turbine system and steam obtained by recovering exhaust heat of the gas turbine system with an exhaust heat recovery boiler. A steam turbine system having a steam cycle, and a gas turbine blade cooling system for returning a part of the steam obtained by the exhaust heat recovery boiler to the steam cycle via a cooling passage provided in the blade of the gas turbine. In the combined power generation system including the above, the gas turbine blade cooling system is configured to return substantially all of the steam that has passed through the cooling passage to the heating process region of the steam cycle.

【0017】[0017]

【作用】ガスタービンの翼を冷却した後の蒸気を蒸気サ
イクルの加熱過程領域へ戻すようにガスタービン翼冷却
系統が構成されているので、ガスタービンの翼を冷却し
た後の蒸気は、蒸気サイクルの加熱過程領域において残
りの蒸気と合流し、この合流蒸気が加熱過程領域で再加
熱された後に蒸気タービンに供給されることになる。し
たがって、蒸気タービンの入口における蒸気流量,蒸気
圧力,蒸気温度を目標値に合せることが容易となり、結
局、最大の熱効率で運転することが可能となる。
[Operation] Since the gas turbine blade cooling system is configured to return the steam after cooling the blades of the gas turbine to the heating process region of the steam cycle, the steam after cooling the blades of the gas turbine is In the heating process area, the steam merges with the remaining steam, and the combined steam is supplied to the steam turbine after being reheated in the heating process area. Therefore, it becomes easy to match the steam flow rate, the steam pressure, and the steam temperature at the inlet of the steam turbine to the target values, and eventually it becomes possible to operate at the maximum thermal efficiency.

【0018】[0018]

【実施例】以下、図面を参照しながら実施例を説明す
る。
Embodiments will be described below with reference to the drawings.

【0019】図1には本発明の一実施例に係る複合発電
システムの系統図が示されている。この複合発電システ
ムは、ガスタービン系統41と、このガスタービン系統
41の排熱エネルギで駆動される蒸気タービン系統42
と、この蒸気タービン系統42の蒸気の一部を使用して
ガスタービンの翼を冷却するガスタービン翼冷却系統4
3とで構成されている。
FIG. 1 is a system diagram of a combined power generation system according to an embodiment of the present invention. This combined power generation system includes a gas turbine system 41 and a steam turbine system 42 driven by exhaust heat energy of the gas turbine system 41.
And a gas turbine blade cooling system 4 for cooling the blades of the gas turbine by using a part of the steam of the steam turbine system 42.
3 and 3.

【0020】ガスタービン系統41は、ガスタービン1
11と、このガスタービン111に軸112を介して連
結された圧縮機113と、この圧縮機113から送り出
された高圧空気と燃料とを導入して燃焼させ、この燃焼
によって得られた高温高圧ガスでガスタービン111を
駆動する燃焼器114とで構成されている。
The gas turbine system 41 includes the gas turbine 1
11, a compressor 113 connected to the gas turbine 111 via a shaft 112, and the high-pressure air and fuel sent from the compressor 113 are introduced and burned, and the high-temperature high-pressure gas obtained by this combustion is introduced. And a combustor 114 that drives the gas turbine 111.

【0021】圧縮機113は、通路115を介して導か
れた常温空気を圧縮する。圧縮機113から送り出され
た高圧空気は、燃焼器114へ導かれる。燃焼器114
は高圧空気を支燃ガスとして図示しない燃料供給系統か
ら供給された燃料を燃焼させる。燃焼によって得られた
高温ガスは、通路116を介してガスタービン111に
供給され、膨脹してガスタービン111に駆動力を与え
た後に通路117へと流れる。
The compressor 113 compresses the room temperature air introduced through the passage 115. The high pressure air sent from the compressor 113 is guided to the combustor 114. Combustor 114
Burns fuel supplied from a fuel supply system (not shown) using high-pressure air as a combustion-supporting gas. The hot gas obtained by combustion is supplied to the gas turbine 111 via the passage 116, expands to give a driving force to the gas turbine 111, and then flows to the passage 117.

【0022】蒸気タービン系統42は、蒸気タービン1
18と、軸119を介して蒸気タービン118に連結さ
れた発電機120と、前述したガスタービン系統41の
排熱で蒸気を発生させ、この蒸気で蒸気タービン118
を駆動する蒸気サイクル121とで構成されている。な
お、この図では蒸気タービン118のロータとガスター
ビン111のロータとが軸122で連結されている例が
示されている。
The steam turbine system 42 includes the steam turbine 1
18, the generator 120 connected to the steam turbine 118 via the shaft 119, and the exhaust heat of the gas turbine system 41 described above to generate steam, and the steam is used to generate steam.
And a steam cycle 121 for driving In this figure, an example in which the rotor of the steam turbine 118 and the rotor of the gas turbine 111 are connected by a shaft 122 is shown.

【0023】蒸気サイクル121は、通路117を介し
て導かれたガスタービン111の排ガスから熱を回収し
て蒸気タービン118の駆動に必要な高温高圧蒸気を発
生させる排熱回収ボイラ123を備えている。排熱回収
ボイラ123を通った排ガスは、煙道124を介して大
気中へ排出される。排熱回収ボイラ123内には上流側
から下流側にかけて順に高圧加熱器125,第2の高圧
蒸発器126,第1の高圧蒸発器127,高圧予熱器1
28が設けてあり、これらと蒸気タービン118とが次
のような関係に接続されて蒸気サイクル121が形成さ
れている。
The steam cycle 121 is provided with an exhaust heat recovery boiler 123 for recovering heat from the exhaust gas of the gas turbine 111 guided through the passage 117 and generating high temperature and high pressure steam necessary for driving the steam turbine 118. . The exhaust gas that has passed through the exhaust heat recovery boiler 123 is discharged into the atmosphere via the flue 124. In the exhaust heat recovery boiler 123, the high pressure heater 125, the second high pressure evaporator 126, the first high pressure evaporator 127, and the high pressure preheater 1 are sequentially arranged from the upstream side to the downstream side.
28 is provided, and these are connected to the steam turbine 118 in the following relationship to form a steam cycle 121.

【0024】すなわち、蒸気タービン118から排出さ
れた蒸気を、通路129を介して復水器130へ供給
し、この復水器130で常温水に戻す。この戻された常
温水を循環ポンプ131,通路132を介して高圧予熱
器128に導いて予熱した後、通路133を介して第1
の高圧ドラム134に導入する。そして、第1の高圧ド
ラム134内の高圧水を、循環ポンプ135を介して第
1の高圧蒸発器127に導いて蒸発させ、この蒸発によ
って生成された高圧高温の蒸気を通路136を介して第
1の高圧ドラム134の上部空間に戻す。この戻された
蒸気を通路137,合流点138,通路139を介して
高圧加熱器125に導き、ここで再加熱した後に通路1
40を介して蒸気タービン118に供給するようにして
いる。
That is, the steam discharged from the steam turbine 118 is supplied to the condenser 130 via the passage 129, and is returned to room temperature water by the condenser 130. The returned normal temperature water is introduced into the high-pressure preheater 128 through the circulation pump 131 and the passage 132 to be preheated, and then the first through the passage 133.
Of the high pressure drum 134. Then, the high-pressure water in the first high-pressure drum 134 is guided to the first high-pressure evaporator 127 via the circulation pump 135 to be evaporated, and the high-pressure high-temperature steam generated by this evaporation is passed through the passage 136 to the first high-pressure evaporator 127. 1. Return to the upper space of the high pressure drum 134. The returned steam is guided to the high-pressure heater 125 through the passage 137, the confluence 138, and the passage 139, and is reheated there, and then the passage 1
40 to the steam turbine 118.

【0025】一方、ガスタービン翼冷却系統43は、次
のように構成されている。すなわち、第1の高圧ドラム
134内に存在する高圧水の一部をポンプ141,通路
142を介して第2の高圧ドラム143に導き、この第
2の高圧ドラム143内の高圧水を、循環ポンプ14
4,通路145を介して第2の高圧蒸発器126に導い
て蒸発させ、この蒸発によって生成された高圧高温の蒸
気を通路146を介して第2の高圧ドラム143の上部
空間に戻す。この戻された蒸気を通路147,流量調節
弁148を介してガスタービンの翼149に形成されて
いる冷却通路150に供給する。この冷却通路150
は、主流ガスの通路とは完全に分離された構成となって
いる。そして、冷却通路150を通った蒸気を通路15
1を介して合流点138で第1の高圧ドラム134側か
ら案内された蒸気と合流させるようにしている。なお、
図中152はバイパス弁を示している。
On the other hand, the gas turbine blade cooling system 43 is constructed as follows. That is, part of the high-pressure water existing in the first high-pressure drum 134 is guided to the second high-pressure drum 143 via the pump 141 and the passage 142, and the high-pressure water in the second high-pressure drum 143 is circulated. 14
4, the gas is introduced into the second high-pressure evaporator 126 through the passage 145 to be evaporated, and the high-pressure and high-temperature vapor generated by this evaporation is returned to the upper space of the second high-pressure drum 143 through the passage 146. The returned steam is supplied to the cooling passage 150 formed in the blade 149 of the gas turbine via the passage 147 and the flow rate control valve 148. This cooling passage 150
Is completely separated from the mainstream gas passage. The steam that has passed through the cooling passage 150 is then passed through the passage 15
1 and the steam guided from the first high-pressure drum 134 side. In addition,
Reference numeral 152 in the drawing denotes a bypass valve.

【0026】このような構成であると、通路147を介
して案内された蒸気は流量調整弁148を介してガスタ
ービン111の翼149に形成されている冷却通路15
0内を流れて翼149の冷却に供される。冷却通路15
0は、外部に対して解放されていない。したがって、冷
却通路150を通流する蒸気は主流ガスに混入すること
がなく、主流ガスの温度を低下させることがないので、
燃焼器114での燃料および空気の増加を抑制でき、熱
効率の向上を図ることができる。しかも粗悪燃料にも対
応できる。
With this structure, the steam guided through the passage 147 is cooled by the cooling passage 15 formed in the blade 149 of the gas turbine 111 through the flow rate adjusting valve 148.
0 to be used for cooling the blade 149. Cooling passage 15
0 is not released to the outside world. Therefore, the steam flowing through the cooling passage 150 does not mix with the mainstream gas and does not lower the temperature of the mainstream gas.
An increase in fuel and air in the combustor 114 can be suppressed, and thermal efficiency can be improved. Moreover, it can handle poor fuel.

【0027】そして、特にこの例においては、冷却通路
150を通った蒸気を通路151を介して合流点13
8、つまり蒸気サイクル121の加熱過程領域において
第1の高圧ドラム134側から案内された蒸気と合流さ
せ、この合流蒸気を高圧加熱器125で再加熱した後に
蒸気タービン118に供給するようにしているので、ガ
スタービン翼冷却系統43の影響を受けずに蒸気タービ
ン118の入口における蒸気流量、蒸気圧力,蒸気温度
を目標値に容易に合せることができ、結局、最大の熱効
率で運転することが可能となる。
In particular, in this example, the steam that has passed through the cooling passage 150 passes through the passage 151 and meets the confluence 13
8. That is, in the heating process region of the steam cycle 121, the steam guided from the first high-pressure drum 134 side is combined, and the combined steam is reheated by the high-pressure heater 125 and then supplied to the steam turbine 118. Therefore, the steam flow rate, the steam pressure, and the steam temperature at the inlet of the steam turbine 118 can be easily adjusted to the target values without being affected by the gas turbine blade cooling system 43, and eventually, the operation can be performed with the maximum thermal efficiency. Becomes

【0028】図3には本発明に係る複合発電システムの
総合効率と従来のシステムのそれとが示されている。こ
の図から判るように、本発明に係る複合発電システムで
は蒸気タービン側の効率を向上させることができるの
で、特にガスタービン入口温度の高い領域において総合
効率を大幅に向上させることができる。
FIG. 3 shows the total efficiency of the combined power generation system according to the present invention and that of the conventional system. As can be seen from this figure, in the combined power generation system according to the present invention, the efficiency on the steam turbine side can be improved, so that the overall efficiency can be greatly improved especially in the region where the gas turbine inlet temperature is high.

【0029】図2には本発明の他の実施例に係る複合発
電システムの系統図が示されている。この図では図1と
同一部分が同一符号で示されている。したがって、重複
する部分の詳しい説明は省略する。
FIG. 2 is a system diagram of a combined power generation system according to another embodiment of the present invention. In this figure, the same parts as those in FIG. 1 are designated by the same reference numerals. Therefore, detailed description of the overlapping portions will be omitted.

【0030】この実施例に係るシステムが図1に示すも
のと異なる点は、ガスタービン翼冷却系統43aの構成
にある。すなわち、このガスタービン翼冷却系統43a
では、流量調整弁148と冷却通路150との間に位置
する通路を流量調整弁153を介して圧縮機113の出
口に接続可能にするとともに、バイパス弁152と合流
点138との間に位置する通路に弁154を介在させ、
さらにバイパス弁152と弁154との間に位置する通
路を弁155を介して通路117に接続可能としてい
る。
The system according to this embodiment differs from that shown in FIG. 1 in the configuration of the gas turbine blade cooling system 43a. That is, this gas turbine blade cooling system 43a
Then, the passage located between the flow rate adjusting valve 148 and the cooling passage 150 can be connected to the outlet of the compressor 113 via the flow rate adjusting valve 153, and is located between the bypass valve 152 and the confluence point 138. Intervening the valve 154 in the passage,
Further, the passage located between the bypass valve 152 and the valve 154 can be connected to the passage 117 via the valve 155.

【0031】このような構成であると、図1に示した実
施例と同様の効果が得られることは勿論のこと、タービ
ンの起動・停止時や部分負荷運転時のように、第2の高
圧ドラム143から翼冷却用の蒸気を供給することが著
しく困難なときに、蒸気に代えて圧縮機113から吐出
された空気の一部を冷却通路150に通流させて翼14
9を空気冷却することができる。すなわち、流量調節弁
148,バイパス弁152,弁154を“閉”に制御す
るとともに、流量調節弁153,弁155を“開”に制
御すると、圧縮機113から吐出された高圧空気の一部
を流量調節弁153〜冷却通路150〜弁155〜通路
117の経路で通流させることができ、蒸気経路を完全
に切り離して翼149を空気冷却することができる。
With such a structure, the same effect as that of the embodiment shown in FIG. 1 can be obtained, and the second high pressure can be obtained, for example, when the turbine is started / stopped or at the partial load operation. When it is extremely difficult to supply the steam for cooling the blades from the drum 143, instead of the steam, a part of the air discharged from the compressor 113 is caused to flow through the cooling passage 150, and the blades 14 are cooled.
9 can be air cooled. That is, when the flow rate control valve 148, the bypass valve 152, and the valve 154 are controlled to be “closed” and the flow rate control valve 153 and the valve 155 are controlled to be “open”, a part of the high pressure air discharged from the compressor 113 is controlled. Flow can be made to flow through the path of the flow rate control valve 153 to the cooling passage 150 to the valve 155 to the passage 117, and the steam passage can be completely separated to air-cool the blade 149.

【0032】したがって、上記のように構成するするこ
とによって、タービンの起動・停止時、部分負荷運転
時、定常運転時のいかなる運転状況においても、ガスタ
ービン111の翼149を良好に冷却することができ
る。
Therefore, with the above-described structure, the blades 149 of the gas turbine 111 can be satisfactorily cooled under any operating conditions such as starting and stopping of the turbine, partial load operation, and steady operation. it can.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
蒸気タービン系統で用いる蒸気の一部を使用してガスタ
ービンの翼を冷却する方式の特徴を損なうことなく、蒸
気タービンの入口における蒸気流量、圧力、温度を容易
に制御できるので、蒸気タービンの熱効率向上に寄与で
き、もって総合熱効率を一層向上させることができる。
As described above, according to the present invention,
The steam flow rate, pressure, and temperature at the inlet of the steam turbine can be easily controlled without impairing the characteristics of the method of cooling the blades of the gas turbine using part of the steam used in the steam turbine system. This can contribute to the improvement, and thus the total thermal efficiency can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る複合発電システムの系
統図
FIG. 1 is a system diagram of a combined power generation system according to an embodiment of the present invention.

【図2】本発明の他の実施例に係る複合発電システムの
系統図
FIG. 2 is a system diagram of a combined power generation system according to another embodiment of the present invention.

【図3】本発明に係る複合発電システムの総合熱効率と
従来の複合発電システムのそれとを示す図
FIG. 3 is a diagram showing the total thermal efficiency of the combined cycle power generation system according to the present invention and that of a conventional combined cycle power generation system.

【図4】従来の複合発電システムの系統図FIG. 4 is a system diagram of a conventional combined cycle power generation system.

【符号の説明】[Explanation of symbols]

41…ガスタービン系統 42…蒸気タ
ービン系統 43,43a…ガスタービン翼冷却系統 111…ガス
タービン 113…圧縮機 114…燃焼
器 118…蒸気タービン 120…発電
機 121…蒸気サイクル 123…排熱
回収ボイラ 125…高圧加熱器 126…第2
の高圧蒸発器 127…第1の高圧蒸発器 128…高圧
予熱器 130…復水器 134…第1
の高圧ドラム 138…合流点 143…第2
の高圧ドラム 148,153…流量調整弁 152…バイ
パス弁 154,155…弁
41 ... Gas turbine system 42 ... Steam turbine system 43, 43a ... Gas turbine blade cooling system 111 ... Gas turbine 113 ... Compressor 114 ... Combustor 118 ... Steam turbine 120 ... Generator 121 ... Steam cycle 123 ... Exhaust heat recovery boiler 125 … High-pressure heater 126… Second
High pressure evaporator 127 ... first high pressure evaporator 128 ... high pressure preheater 130 ... condenser 134 ... first
High-pressure drum 138 ... Confluence 143 ... Second
High pressure drum 148, 153 ... Flow rate adjusting valve 152 ... Bypass valve 154, 155 ... Valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガスタービン系統と、このガスタービン系
統の排熱を排熱回収ボイラで回収して得た蒸気でタービ
ンを駆動する蒸気サイクルを備えた蒸気タービン系統
と、前記排熱回収ボイラで得られた蒸気の一部を前記ガ
スタービンの翼に設けられた冷却通路を経由させて前記
蒸気サイクルへ戻すガスタービン翼冷却系統とを備えた
複合発電システムにおいて、前記ガスタービン翼冷却系
統は、前記冷却通路を通った蒸気のほぼ全量を前記蒸気
サイクルの加熱過程領域へ戻すように構成されているこ
とを特徴とする複合発電システム。
1. A gas turbine system, a steam turbine system having a steam cycle for driving a turbine with steam obtained by recovering exhaust heat of the gas turbine system with an exhaust heat recovery boiler, and the exhaust heat recovery boiler. In a combined power generation system with a gas turbine blade cooling system for returning a part of the obtained steam to the steam cycle via a cooling passage provided in the blade of the gas turbine, the gas turbine blade cooling system, A combined power generation system configured to return substantially all of the steam that has passed through the cooling passage to a heating process region of the steam cycle.
【請求項2】前記ガスタービン翼冷却系統は、前記蒸気
サイクルから前記冷却通路を切離し、この状態で前記ガ
スタービン系統で発生した高圧空気の一部を上記冷却通
路に通流可能とする切換手段を備えていることを特徴と
する請求項1に記載の複合発電システム。
2. A switching means for disconnecting the cooling passage from the steam cycle in the gas turbine blade cooling system, and allowing a part of high pressure air generated in the gas turbine system to flow through the cooling passage in this state. The combined power generation system according to claim 1, further comprising:
JP4241842A 1992-09-10 1992-09-10 Combined power generation system Expired - Fee Related JP3068348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4241842A JP3068348B2 (en) 1992-09-10 1992-09-10 Combined power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4241842A JP3068348B2 (en) 1992-09-10 1992-09-10 Combined power generation system

Publications (2)

Publication Number Publication Date
JPH0693810A true JPH0693810A (en) 1994-04-05
JP3068348B2 JP3068348B2 (en) 2000-07-24

Family

ID=17080318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4241842A Expired - Fee Related JP3068348B2 (en) 1992-09-10 1992-09-10 Combined power generation system

Country Status (1)

Country Link
JP (1) JP3068348B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778657A (en) * 1995-09-22 1998-07-14 Kabushiki Kaisha Toshiba Combined cycle power plant
WO1999015765A1 (en) * 1997-09-22 1999-04-01 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
WO1999045321A1 (en) * 1998-03-03 1999-09-10 Siemens Westinghouse Power Corporation An improved heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle
US6279308B1 (en) 1997-04-23 2001-08-28 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
EP1612375A2 (en) 2004-06-30 2006-01-04 Hitachi, Ltd. Cooling in a humid air turbine power plant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778657A (en) * 1995-09-22 1998-07-14 Kabushiki Kaisha Toshiba Combined cycle power plant
US6000213A (en) * 1995-09-22 1999-12-14 Kabushiki Kaisha Toshiba Combined cycle power plant
US6279308B1 (en) 1997-04-23 2001-08-28 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
WO1999015765A1 (en) * 1997-09-22 1999-04-01 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
WO1999045321A1 (en) * 1998-03-03 1999-09-10 Siemens Westinghouse Power Corporation An improved heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle
US6125623A (en) * 1998-03-03 2000-10-03 Siemens Westinghouse Power Corporation Heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle
EP1612375A2 (en) 2004-06-30 2006-01-04 Hitachi, Ltd. Cooling in a humid air turbine power plant
US7587887B2 (en) 2004-06-30 2009-09-15 Hitachi, Ltd. Advanced humid air turbine power plant
EP1612375A3 (en) * 2004-06-30 2012-02-29 Hitachi, Ltd. Cooling in a humid air turbine power plant

Also Published As

Publication number Publication date
JP3068348B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
US6089012A (en) Steam cooled gas turbine system
EP2535542B1 (en) Systems and methods for improving the efficiency of a combined cycle power plant
JP3239128B2 (en) Gas turbine power plant and cooling method in gas turbine power plant
US5794431A (en) Exhaust recirculation type combined plant
US6393822B2 (en) Cooling steam supply method of a combined cycle power generation plant
CA2324162C (en) Gas turbine combined cycle system
JPH0586898A (en) Halfopen cycle operation type natural gas steam turbine system
JPS6340244B2 (en)
KR20020020834A (en) Compressor discharge bleed air circuit in gas turbine plants and related method
KR20010092653A (en) Apparatus and methods of reheating gas turbine cooling steam and hp steam turbine exhaust in a combined cycle power generating system
JPH10196314A (en) Method to cool mechanical unit which belongs to gas turbo group and thermally bears heavy load
JP3716188B2 (en) Gas turbine combined plant
JP2001289058A (en) Steam injection type gas turbine device
KR20010012497A (en) Partial oxidation powerplant with sequential combustion
JP3973688B2 (en) Method for expanding flue gas flow in a turbine and the turbine
US6038851A (en) Exhaust re-combustion type combined cycle power generation plant
JP3068348B2 (en) Combined power generation system
JP3614949B2 (en) Combined power plant
JPH10331610A (en) Combined cycle power generating system
US20150121871A1 (en) Forced cooling in steam turbine plants
JP2001055906A (en) Combined power generating method and system therefor
JPH05141267A (en) Steam cooling method for gas turbine
JPS62294724A (en) Turbine casing cooler for turbocharger
JP2003148166A (en) Combined power plant, and closed air cooling gas turbine system
WO2024111435A1 (en) Control method for gas turbine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees