JPH0686299B2 - Method for producing silica-based glass - Google Patents

Method for producing silica-based glass

Info

Publication number
JPH0686299B2
JPH0686299B2 JP12004490A JP12004490A JPH0686299B2 JP H0686299 B2 JPH0686299 B2 JP H0686299B2 JP 12004490 A JP12004490 A JP 12004490A JP 12004490 A JP12004490 A JP 12004490A JP H0686299 B2 JPH0686299 B2 JP H0686299B2
Authority
JP
Japan
Prior art keywords
gel
silica
base
hydrofluoric acid
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12004490A
Other languages
Japanese (ja)
Other versions
JPH0416519A (en
Inventor
誠 堀
清 永野
Original Assignee
株式会社コロイドリサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コロイドリサーチ filed Critical 株式会社コロイドリサーチ
Priority to JP12004490A priority Critical patent/JPH0686299B2/en
Publication of JPH0416519A publication Critical patent/JPH0416519A/en
Publication of JPH0686299B2 publication Critical patent/JPH0686299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ファイバープリフォーム等に使用し得るF
がドープされた高純度シリカ系ガラスをゾル・ゲル法に
より簡便かつ安価に製作できる方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is applicable to optical fiber preforms and the like.
The present invention relates to a method for easily and inexpensively manufacturing a high-purity silica glass doped with sol-gel method.

〔従来の技術〕[Conventional technology]

石英系光ファイバーは、従来純シリカ系クラッド材とこ
れにGeをドープしたコア材の組合せが主流であったが、
最近の傾向としてより高性能化のためFをドープしたク
ラッド材と純シリカ系ガラスのコア材からなるタイプの
ものが望まれている。このタイプの光ファイバーを従来
からの気相法(VAD法)により合成する場合、原料ガス
として用いるF含有化合物は、概して蒸気圧が高いた
め、飛散の問題からFの収率が低く、またその分布の制
御という面でも難点を有する。
Conventionally, a silica-based optical fiber was mainly a combination of a pure silica-based clad material and a core material doped with Ge.
As a recent tendency, a type of a cladding material doped with F and a core material of pure silica glass is desired for higher performance. When synthesizing this type of optical fiber by the conventional vapor phase method (VAD method), the F-containing compound used as a raw material gas generally has a high vapor pressure, so that the yield of F is low due to the problem of scattering and its distribution. There is also a problem in terms of control.

これらの問題点を解決するためゾル・ゲル法でFを含有
する光ファイバープリフォームを合成する試みも多くな
されている。
In order to solve these problems, many attempts have been made to synthesize an optical fiber preform containing F by the sol-gel method.

例えば、F源としてトリエトキシフルオロシラン〔Si(O
C2H5)3F〕をシリコンエトキシドをアンモニア水で加水
分解したコロイド状のシリカゾルと混合、反応せしめ、
Fを含有する円筒状シリカゲルを作成し、これを焼成し
て円筒ガラスとした後、高温で再加熱して中空部表層か
らFを飛散させかつ中空部を潰すことにより純シリカの
コア部とシリカ−F組成のクラッド部を有するプリフォ
ームを合成する方法が知られている。
For example, triethoxyfluorosilane [Si (O
C 2 H 5 ) 3 F] with silicon ethoxide hydrolyzed with aqueous ammonia and mixed with colloidal silica sol to react,
A cylindrical silica gel containing F was prepared and fired to form a cylindrical glass, which was then reheated at a high temperature to scatter F from the surface layer of the hollow portion and crush the hollow portion to form a core portion of pure silica and silica. A method of synthesizing a preform having a clad portion having a -F composition is known.

また、粉末シリカを水に分散させたコロイド溶液から円
筒状ゲルをつくりこれを乾燥した後、四フッ化珪素(Si
F4)雰囲気で焼成して得たF含有円筒状シリカガラスを
光ファイバープリフォームのクラッド部とし、中空部に
従来の気相法でコア材となるスートを堆積させるかもし
くは棒状コア材を挿入した後、これを加熱してコア部の
ガラス化を行うと同時に中空部を潰すことによりプリフ
ォームを合成する方法が知られている。
Also, after forming a cylindrical gel from a colloidal solution in which powdered silica is dispersed in water and drying it, silicon tetrafluoride (Si
F 4 ) Cylindrical silica glass containing F obtained by firing in an atmosphere was used as a clad portion of an optical fiber preform, and soot as a core material was deposited in the hollow portion by a conventional vapor phase method or a rod-shaped core material was inserted. After that, a method is known in which the preform is synthesized by heating this to vitrify the core and simultaneously crushing the hollow.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前述のゾル・ゲル法によるF含有光ファイバープリフォ
ーム合成は以下のような問題点を有する。
The above-described F-containing optical fiber preform synthesis by the sol-gel method has the following problems.

F源として高価なトリエトキシフルオロシラン〔Si(O
C2H5)3F〕、四フッ化珪素(SiF4)を用いる必要があ
る。
Triethoxyfluorosilane [Si (O
C 2 H 5 ) 3 F] and silicon tetrafluoride (SiF 4 ) must be used.

Fのドープ量に限界がある。即ち、トリエトキシフル
オロシラン〔Si(OC2H5)3F〕を用いた場合、コロイダル
シリカ表面部のみにFがドーピングされるため、多量導
入が困難であると同時に焼成時にFが飛散しやすい。更
に、Si(OC2H5)3Fの添加量が増すとゲル化が著しく促進
されるため、反応制御も困難となる。一方、四フッ化珪
素(SiF4)等のガスとしてFを導入する場合、ゲル骨格
中へのガスの拡散はあまり期待できず、主として表面部
のOH基とFの交換反応によってのみFがドープされる形
となる。
There is a limit to the F doping amount. That is, when triethoxyfluorosilane [Si (OC 2 H 5 ) 3 F] is used, F is doped only in the surface portion of the colloidal silica, so that it is difficult to introduce a large amount and at the same time F is easily scattered during firing. . Furthermore, as the amount of Si (OC 2 H 5 ) 3 F added increases, gelation is significantly promoted, which makes it difficult to control the reaction. On the other hand, when F is introduced as a gas such as silicon tetrafluoride (SiF 4 ), diffusion of the gas into the gel skeleton cannot be expected so much, and F is mainly doped only by the exchange reaction between the OH group and F on the surface portion. It will be in the form of being.

いずれもコロイダルシリカの表面部にFをドープする
形になるため、Fの均一分散性に問題がある。
In either case, since the surface of colloidal silica is doped with F, there is a problem in the uniform dispersibility of F.

更にゾル・ゲル法によるシリカ系ガラス製造における共
通の課題として、ゲルの乾燥割れおよび多量のOH基の残
存が挙げられる。
Further, common problems in the production of silica-based glass by the sol-gel method include dry cracking of the gel and a large amount of residual OH groups.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、シリコンアルコキシドを含む混合物を加水分
解してゲルを作製し、これを乾燥、焼成してシリカ系ガ
ラスを製造する方法において、フッ化水素酸をHF/塩基
モル比で2〜5の比率で塩基と予混合してシリコンアル
コキシドを含む混合物に添加した後、これを加水分解、
ゲル化せしめることを特徴とするシリカ系ガラスの製造
方法であり、これにより、上記問題点を解決することが
できる。
The present invention is a method of producing a gel by hydrolyzing a mixture containing a silicon alkoxide, and drying and firing the gel to prepare a silica-based glass, wherein hydrofluoric acid has a HF / base molar ratio of 2-5. After premixing with the base in a ratio and adding to the mixture containing the silicon alkoxide, it is hydrolyzed,
This is a method for producing a silica-based glass which is characterized by gelling, whereby the above problems can be solved.

即ち、本発明は、安価なフッ化水素酸をF源として用
い、これを塩基、好ましくは、アミン系強塩基、より好
ましくはピペリジンと予め混合してシリコンアルコキシ
ドを含む混合物に加え、これを加水分解して得られたゲ
ルは比較的大きな気孔径と低比表面積を有するため、容
易に乾燥、焼成でき、Fが多量かつ均一にドープされた
シリカ系ガラスを製造しうることを見出したものであ
る。
That is, the present invention uses inexpensive hydrofluoric acid as an F source, which is added to a mixture containing a silicon alkoxide premixed with a base, preferably an amine-based strong base, more preferably piperidine, and then hydrolyzed. Since the gel obtained by decomposition has a relatively large pore size and a low specific surface area, it has been found that it can be easily dried and calcined, and a silica-based glass in which a large amount of F is uniformly doped can be produced. is there.

本発明に使用されるフッ化水素酸(フッ酸)とは、HFの
水溶液を意味し、HFの濃度としては、20〜70重量%、好
ましくは40〜50重量%の範囲であり、市販の最も高濃度
品である46〜50重量%のものを使用することもできる。
The hydrofluoric acid (hydrofluoric acid) used in the present invention means an aqueous solution of HF, and the concentration of HF is in the range of 20 to 70% by weight, preferably 40 to 50% by weight, and commercially available. It is also possible to use the one having the highest concentration of 46 to 50% by weight.

本発明において、仮に塩基と予混合しないでフッ化水素
酸を単独で使用してシリコンエトキシドと混合すると局
部的なゲル化、沈澱が生じ、均質なゲルを作製すること
ができない。塩基とフッ化水素酸を予混合することによ
りフッ化水素酸の酸性度が緩和されて、均質な湿潤ゲル
が得られる。
In the present invention, if hydrofluoric acid is used alone without being premixed with a base and mixed with silicon ethoxide, localized gelation and precipitation occur, and a homogeneous gel cannot be prepared. Premixing the base with hydrofluoric acid mitigates the acidity of hydrofluoric acid and results in a homogeneous wet gel.

本発明においてフッ化水素酸と塩基と予混合における配
合割合のHF/塩基モル比のHFはフッ化水素酸に含有され
るHF分子を意味し、その値は、2〜5、好ましくは、3
〜4であり、同比が2より小さいと、即ち、塩基量が多
い場合は、ゲル化が速すぎてゲル合成の制御が困難であ
る。同比が5より大きく、HFが多過ぎる場合には酸性度
が高い湿潤ゲルが生成し、乾燥時のゲルの収縮、割れが
問題となる。
In the present invention, HF in the mixing ratio of hydrofluoric acid and a base in a premixing / HF ratio means a HF molecule contained in hydrofluoric acid, and its value is 2 to 5, preferably 3
When the ratio is less than 2, that is, when the amount of base is large, gelation is too fast and control of gel synthesis is difficult. If the ratio is greater than 5 and the HF content is too high, a wet gel with high acidity is produced, and shrinkage and cracking of the gel during drying become a problem.

本発明に用いられる塩基としては、本発明の目的に反し
ない限り、特に使用できる化合物に制限はない。
The base used in the present invention is not particularly limited as long as it does not violate the object of the present invention.

例えば、アンモニアを単独で用いるとアルコールに溶け
にくいフッ化アンモニウム塩が析出するため均質なゲル
合成が難しいので、このような塩基を単独で用いること
は本発明において好ましくない。
For example, if ammonia is used alone, ammonium fluoride salt, which is difficult to dissolve in alcohol, precipitates, and thus homogeneous gel synthesis is difficult. Therefore, use of such a base alone is not preferable in the present invention.

本発明に用いられる好ましい塩基としては、アミン系強
塩基、例えば、ピペリジン、ピロリジン、ピペラジン、
ピリジン、イソプロピルアミン、N−エチル−n−プロ
ピルアミン、n−プロピルアミン、イソプロピルアミ
ン、ジエチルアミンが挙げられ、特に、ピペリジンが好
ましい。
Preferred bases used in the present invention include strong amine bases such as piperidine, pyrrolidine, piperazine,
Examples thereof include pyridine, isopropylamine, N-ethyl-n-propylamine, n-propylamine, isopropylamine and diethylamine, with piperidine being particularly preferred.

これらのアミン系強塩基は、ゲルの気孔径を大きくし、
乾燥時に割れにくいものとする効果も有する。
These amine-based strong bases increase the pore size of the gel,
It also has the effect of making it difficult to crack when dried.

これら塩基とフッ化水素酸との混合法は、特に制限はな
く、塩基は、そのままの形でも、水溶液もしくは有機溶
剤溶液、好ましくは、アルコール溶液の形で用いること
もできる。又、フッ化水素酸も同様に水、有機溶媒に希
釈して用いることもできる。
The method of mixing these bases and hydrofluoric acid is not particularly limited, and the bases can be used as they are or in the form of an aqueous solution or an organic solvent solution, preferably an alcohol solution. Similarly, hydrofluoric acid may be diluted with water or an organic solvent before use.

本発明において、予混合されたフッ化水素酸と塩基とが
添加されるシリコンアルコキシドを含む混合物は、シリ
コンアルコキシドのみ、または、シリコンアルコキシド
を主体に、シリコン以外の他の金属を含む副添加物から
構成される。
In the present invention, the mixture containing the silicon alkoxide to which the premixed hydrofluoric acid and the base are added is a silicon alkoxide alone, or a silicon alkoxide as a main component and a sub-addition containing a metal other than silicon. Composed.

本発明において、シリコンアルコキシドとしては、式Si
(OR)4(Rは、メチル、エチル、プロピル、ブチル等を
表す)で表される化合物、およびこれらの部分加水分解
生成多量体が挙げられる。
In the present invention, the silicon alkoxide has the formula Si
Examples thereof include compounds represented by (OR) 4 (R represents methyl, ethyl, propyl, butyl and the like), and partially hydrolyzed multimers thereof.

本発明においては、前記シリコンアルコキシド単量体の
みを使用することも可能であるが、気孔径の大きなゲル
の形成、乾燥割れの抑制、高純度ガラス化の観点から、
使用するシリコンアルコキシドのうちの30モル%以上、
より好ましくは、50モル%以上が平均重合度3以上の多
量体から構成されていることが好ましい(ここで言うシ
リコンアルコキシドとは、前記シリコンアルコキシド単
量体に換算した場合を意味し、多量体とは前記部分加水
分解生成多量体を意味する)。
In the present invention, it is also possible to use only the silicon alkoxide monomer, but from the viewpoint of forming a gel having a large pore diameter, suppressing dry cracking, and high-purity vitrification,
30 mol% or more of the silicon alkoxide used,
More preferably, 50 mol% or more is composed of a multimer having an average degree of polymerization of 3 or more (the silicon alkoxide as used herein means the case of being converted into the above-mentioned silicon alkoxide monomer, Means the above-mentioned partially hydrolyzed polymer).

本発明に使用される該副添加物としては、他の元素のア
ルコキシド、例示すれば、トリエトキシボラン[B(OC2H
5)3]等のアルコキシド、金属塩、金属単体、例えば、N
a、Mg、Ba、Sr等のアルカリ、アルカリ土類金属等、そ
の他、ホウ酸(H3BO3)等のB含有化合物を挙げることが
できる。
Examples of the auxiliary additive used in the present invention include alkoxides of other elements, for example, triethoxyborane [B (OC 2 H
5 ) 3 ] etc., alkoxides, metal salts, simple metals such as N
Examples thereof include alkali metals such as a, Mg, Ba and Sr, alkaline earth metals and the like, and B-containing compounds such as boric acid (H 3 BO 3 ).

本発明においてゲル形成のための加水分解に用いられる
水の量は、シリコンアルコキシド等の加水分解可能な化
合物の種類によって異なるが、通常、それら化合物の加
水分解可能な基に対して0.2〜5倍モル、好ましくは、
0.5〜1.5倍モルの範囲である。この場合の水の量は、フ
ッ化水素酸等の水の量も含めたものである。
In the present invention, the amount of water used for hydrolysis for gel formation varies depending on the type of hydrolyzable compound such as silicon alkoxide, but is usually 0.2 to 5 times the hydrolyzable group of those compounds. Mol, preferably
It is in the range of 0.5 to 1.5 times mol. The amount of water in this case includes the amount of water such as hydrofluoric acid.

本発明において形成されたゲルの乾燥法にも特に制限は
なく、従来公知の方法が適用できる。
The method for drying the gel formed in the present invention is not particularly limited, and a conventionally known method can be applied.

具体的には、常温常圧乾燥、超臨界乾燥等が例示され
る。
Specific examples include room temperature and normal pressure drying, supercritical drying and the like.

該超臨界乾燥には以下の2種が挙げられる。The supercritical drying includes the following two types.

ゲル溶媒(例えば、アルコール)そのものの超臨界乾
燥条件下で乾燥 エタノールの場合;243℃以上、64気圧以上 メタノールの場合;240℃以上、81気圧以上 CO2−ゲル溶媒混合系の超臨界乾燥条件下で乾燥 CO2−エタノール混合系の場合;31℃以上、180気圧以上 〔作用〕 本発明は、安価なフッ化水素酸をF源として用い、これ
を塩基、好ましくは、アミン系強塩基、より好ましくは
ピペリジンと所定量予め混合してシリコンアルコキシド
を含む混合物に加え、これを加水分解して得られたゲル
は、フッ化水素酸とアミン系強塩基の組合せに起因す
る、Fの存在により強固なシリカ骨格構造が形成され、
かつ強塩基の存在によりゲルの収縮、緻密化が抑制され
るため比較的大きな気孔径と低比表面積を有するので、
乾燥割れを防止しかつ容易に乾燥、焼成でき、しかもF
が多量かつ均一にドープされた高純度のシリカ系ガラス
を製造できる。
Gel solvent (eg alcohol) itself dried under supercritical drying conditions For ethanol; 243 ° C or higher, 64 atm or higher Methanol; 240 ° C or higher, 81 atm or higher CO 2 -gel solvent mixed supercritical drying conditions Under dry CO 2 -ethanol mixed system; 31 ° C or higher, 180 atm or higher [Action] The present invention uses inexpensive hydrofluoric acid as a F source, which is a base, preferably an amine-based strong base, More preferably, a gel obtained by premixing a predetermined amount with piperidine and adding it to a mixture containing silicon alkoxide, and hydrolyzing this mixture is due to the presence of F due to the combination of hydrofluoric acid and a strong amine base. A strong silica skeleton structure is formed,
And since the shrinkage and densification of the gel are suppressed by the presence of a strong base, it has a relatively large pore size and a low specific surface area.
Prevents dry cracking, can be easily dried and fired, and F
It is possible to produce a high-purity silica-based glass in which a large amount of is uniformly doped.

〔実施例〕〔Example〕

以下、本発明の具体的実施例を説明するが、本発明はこ
れにより限定されるものでない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.

(実施例1) 47重量%のHFを含有するフッ化水素酸2.3g(HFで0.053
モル)とピペリジン1g(0.012モル)をエタノール19g、
水6gの混合液に添加し、氷冷下で攪拌、混合して均一な
溶液とした。これにシリコンエトキシドの平均5量体オ
リゴマー(SiO2換算SiO2含有量40%)を21g添加し、常
温下で攪拌、混合した後、内径36mmのポリプロピレン製
の円筒容器に鋳込み、自然放置によりゲル化させた。こ
の湿潤ゲルを常温および加熱下で徐々に乾燥して25mmφ
×36mmhの一体化した乾燥ゲルを得た。この乾燥ゲルは1
08m2/gと極めて低い低表面積を有していた。これを800
℃まで酸素雰囲気中で加熱し、残存有機物を十分燃焼除
去した後、ヘリウム雰囲気中で1250℃まで加熱すること
により14mmφ×22mmhの緻密な透明ガラス体を得た。化
学分析の結果、このガラスはFを2重量%含有するシリ
カ−F系ガラスであった。
Example 1 2.3 g of hydrofluoric acid containing 47% by weight of HF (0.053 at HF)
Mol) and piperidine 1 g (0.012 mol) ethanol 19 g,
It was added to a mixed solution of 6 g of water, stirred and mixed under ice cooling to obtain a uniform solution. 21g of an average pentamer oligomer of silicon ethoxide (SiO 2 content SiO 2 content 40%) was added to this, and after stirring and mixing at room temperature, it was cast into a polypropylene cylindrical container with an inner diameter of 36 mm and left to stand naturally. Gelled. Gradually dry this wet gel at room temperature and under heating to 25 mmφ
An integrated dry gel of x36 mmh was obtained. This dry gel has 1
It had a very low surface area of 08 m 2 / g. 800 this
After heating to 0 ° C in an oxygen atmosphere to sufficiently remove residual organic matter by burning, and then heating to 1250 ° C in a helium atmosphere, a dense transparent glass body of 14 mmφ x 22 mmh was obtained. As a result of chemical analysis, this glass was a silica-F based glass containing 2% by weight of F.

(実施例2) 47重量%のHFを含有するフッ化水素酸23g(HFで0.53モ
ル)とピペリジン12g(0.14モル)をエタノール190g、
水60gの混合液に添加し、氷冷下で攪拌、混合して均一
な溶液とした。これにシリコンエトキシドの平均3.5量
体オリゴマー(SiO2換算SiO2含有量38%)を220g添加
し、常温下で攪拌、混合した後、中央に直径10mmのテフ
ロンロッドを垂直に固定した内径60mmのポリプロピレン
製の円筒容器に鋳込み、自然放置によりゲル化させ、こ
のテフロンロッドを引き抜いて中央に直径10mmの穴を有
する60mmφ×200mmhの円柱状ゲルを得た。その直後にシ
リコンエトキシドの平均3.5量体オリゴマー(SiO2換算S
iO2含有量38.5%)18gとエタノール18gを混合し、これ
にpH11.7に調整したピペリジン水溶液5.4gを加えて作製
したゾルを前述の穴に注ぎ、常温放置によりゲル化させ
て中心部がシリカ単味ゲル、外側がF含有シリカゲルで
構成される大型複合ゲルを得た。このゲルを常温および
60℃加温下で数日間熟成すると共にゲル内溶媒をエタノ
ールで置換した後、CO2超臨界抽出装置によりCO2−エタ
ノール混合系での超臨界条件(80℃、160kg/cm2)でゲ
ル内溶媒を抽出除去して収縮のない60mmφ×200mmhの乾
燥ゲル体を得た。この乾燥ゲルを800℃まで酸素雰囲気
中で1300℃まで加熱することにより、中央部が純シリ
カ、外側がF含有シリカガラスから成り、光ファイバー
プリフォーム等に適用可能な中央部が高屈折率ガラス
(シリカ単味)、外側が低屈折率ガラス(F含有シリカ
ガラス)から成る構造の25mmφ×85mmhの透明ガラスロ
ッドを得た。
(Example 2) 23 g of hydrofluoric acid containing 47% by weight of HF (0.53 mol of HF), 12 g of piperidine (0.14 mol), 190 g of ethanol,
It was added to a mixed solution of 60 g of water, and stirred and mixed under ice cooling to obtain a uniform solution. To this, 220 g of an average 3.5-mer oligomer of silicon ethoxide (SiO 2 content SiO 2 content 38%) was added, stirred and mixed at room temperature, and then a Teflon rod with a diameter of 10 mm was vertically fixed in the center with an inner diameter of 60 mm. It was cast into a polypropylene cylindrical container (1) and allowed to gel by leaving it to stand naturally, and this Teflon rod was pulled out to obtain a 60 mmφ × 200 mmh cylindrical gel having a hole with a diameter of 10 mm in the center. Immediately after that, an average 3.5-mer oligomer of silicon ethoxide (SiO 2 equivalent S
18 g of iO 2 content 38.5%) and 18 g of ethanol were mixed, and 5.4 g of piperidine aqueous solution adjusted to pH 11.7 was added to the sol. A large-scale composite gel composed of a plain silica gel and an F-containing silica gel on the outside was obtained. This gel at room temperature and
After the gel solvent was replaced with ethanol with aged for several days under 60 ° C. warming, CO 2 CO 2 by supercritical extraction apparatus - supercritical conditions with ethanol mixture system (80 ℃, 160kg / cm 2 ) Gel The internal solvent was extracted and removed to obtain a dry gel body of 60 mmφ × 200 mmh without shrinkage. By heating this dry gel to 800 ° C in an oxygen atmosphere to 1300 ° C, the central part is made of pure silica and the outer part is made of F-containing silica glass, and the central part applicable to optical fiber preforms is a high refractive index glass ( A transparent glass rod of 25 mmφ × 85 mmh having a structure composed of silica only) and a low refractive index glass (F-containing silica glass) on the outside was obtained.

〔発明の効果〕〔The invention's effect〕

本発明は、F源としてフッ化水素酸を使用するので高価
なトリエトキシフルオロシラン〔Si(OC2H5)3F〕、四フ
ッ化珪素(SiF4)等を用いる必要がないので、低コスト
が可能で、且つ塩基と予混合した混合物を使用すること
により、Fのドープ量を増大すると共に均一に分散せし
め、かつゲル乾燥時に割れを防止し、焼成することによ
り高純度のシリカ系ガラスを製造することができる。
In the present invention, since hydrofluoric acid is used as the F source, it is not necessary to use expensive triethoxyfluorosilane [Si (OC 2 H 5 ) 3 F], silicon tetrafluoride (SiF 4 ), etc. Highly pure silica-based glass that can be cost-effective, increases the dope amount of F and uniformly disperses it by using a mixture premixed with a base, prevents cracking during gel drying, and fires it. Can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリコンアルコキシドを含む混合物を加水
分解してゲルを作製し、これを乾燥、焼成してシリカ系
ガラスを製造する方法において、フッ化水素酸をHF/塩
基モル比で2〜5の比率で塩基と予混合してシリコンア
ルコキシドを含む混合物に添加した後、これを加水分
解、ゲル化せしめることを特徴とするシリカ系ガラスの
製造方法。
1. A method for producing a silica glass by hydrolyzing a mixture containing a silicon alkoxide to prepare a gel, and drying and firing the gel, wherein hydrofluoric acid is used in an HF / base molar ratio of 2 to 5. A method for producing a silica-based glass, which comprises premixing with a base at a ratio of 1 and adding to a mixture containing silicon alkoxide, and then hydrolyzing and gelling the mixture.
【請求項2】フッ化水素酸と混合する塩基がピペリジ
ン、ピロリジン、ピペラジン、ピリジン、イソプロピル
アミン、N−エチル−n−プロピルアミン、n−プロピ
ルアミン、イソプロピルアミン、ジエチルアミンからな
る群から選択されるアミン系強塩基であることを特徴と
する請求項1記載のシリカ系ガラスの製造方法。
2. The base mixed with hydrofluoric acid is selected from the group consisting of piperidine, pyrrolidine, piperazine, pyridine, isopropylamine, N-ethyl-n-propylamine, n-propylamine, isopropylamine, diethylamine. The method for producing silica glass according to claim 1, wherein the silica glass is an amine-based strong base.
【請求項3】使用するシリコンアルコキシドのうちの30
モル%以上が平均重合度3以上の多量体から成ることを
特徴とする請求項1または2記載のシリカ系ガラスの製
造方法。
3. 30 of the silicon alkoxides used
3. The method for producing a silica-based glass according to claim 1, wherein mol% or more comprises a multimer having an average degree of polymerization of 3 or more.
JP12004490A 1990-05-11 1990-05-11 Method for producing silica-based glass Expired - Lifetime JPH0686299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12004490A JPH0686299B2 (en) 1990-05-11 1990-05-11 Method for producing silica-based glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12004490A JPH0686299B2 (en) 1990-05-11 1990-05-11 Method for producing silica-based glass

Publications (2)

Publication Number Publication Date
JPH0416519A JPH0416519A (en) 1992-01-21
JPH0686299B2 true JPH0686299B2 (en) 1994-11-02

Family

ID=14776510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12004490A Expired - Lifetime JPH0686299B2 (en) 1990-05-11 1990-05-11 Method for producing silica-based glass

Country Status (1)

Country Link
JP (1) JPH0686299B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383590B1 (en) * 1999-12-31 2003-05-14 삼성전자주식회사 Fabrication method of flourine doped silica glass by extrusion
KR101943661B1 (en) 2010-05-28 2019-01-29 닛폰 스이산 가부시키가이샤 Process for production of oil or fat containing highly unsaturated fatty acid using lipase
JP2012056787A (en) * 2010-09-08 2012-03-22 Murata Mfg Co Ltd Method for producing dry gel, and method for producing silica glass
WO2012118173A1 (en) 2011-03-03 2012-09-07 日本水産株式会社 Method of producing oil/fat comprising highly-unsaturated fatty acids by means of lipase

Also Published As

Publication number Publication date
JPH0416519A (en) 1992-01-21

Similar Documents

Publication Publication Date Title
US5250096A (en) Sol-gel method of making multicomponent glass
JP2939889B2 (en) Manufacturing method of airgel monolith
US4840653A (en) Fabrication of high-silica glass article
CA1311127C (en) Glass body formed from a vapor-derived gel and process for producing same
JPH07507033A (en) Sol-gel method for producing germania-doped silica glass rods
JP3299950B2 (en) Composition for forming silica glass using sol-gel process
US5938805A (en) Silica glass monolith fabricating method using sol-gel process
JPS61500782A (en) Creation of high silicate glass articles
JPH0686299B2 (en) Method for producing silica-based glass
JP2923292B2 (en) Method for producing silica glass
KR100430704B1 (en) Process for fabricating fluorine-doped sol-gel article
US20090235696A1 (en) Method for Manufacturing Grin Lens
EP1061050A1 (en) Process for fabricating an article via sol-gel processing
US20020013209A1 (en) Erbium-doped multicomponent glasses manufactured by the sol-gel method
KR100337703B1 (en) Composition for making silica glass with sol-gel process
KR950008579B1 (en) Fabrication of high-silica glass article
KR100549422B1 (en) silica glass composition and manufacturing method of silica glass using the same
US6294601B1 (en) Silica glass composition
JPS6191033A (en) Production of optical fiber preform
KR100310090B1 (en) Composition for making silica glass with sol-gel process
JPH0613410B2 (en) Method for producing aluminosilicate glass
JPH02199033A (en) Production of optical glass
KR100312230B1 (en) Manufacture method of metal doped silica glass
JPS62246835A (en) Production of base material for quartz glass optical fiber
JPS62187132A (en) Production of glass for optical fiber