JPH0681361A - Control method for working machine - Google Patents

Control method for working machine

Info

Publication number
JPH0681361A
JPH0681361A JP25537392A JP25537392A JPH0681361A JP H0681361 A JPH0681361 A JP H0681361A JP 25537392 A JP25537392 A JP 25537392A JP 25537392 A JP25537392 A JP 25537392A JP H0681361 A JPH0681361 A JP H0681361A
Authority
JP
Japan
Prior art keywords
bucket
working machine
angle
excavation direction
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25537392A
Other languages
Japanese (ja)
Other versions
JP3273575B2 (en
Inventor
Mamoru Tochisawa
守 栃沢
Shu Takeda
周 武田
Seiji Kamata
誠治 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP25537392A priority Critical patent/JP3273575B2/en
Priority to PCT/JP1992/001400 priority patent/WO1993009300A1/en
Priority to US08/232,177 priority patent/US5446981A/en
Priority to EP92922196A priority patent/EP0609445A4/en
Priority to EP98250010A priority patent/EP0835964A2/en
Publication of JPH0681361A publication Critical patent/JPH0681361A/en
Application granted granted Critical
Publication of JP3273575B2 publication Critical patent/JP3273575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

PURPOSE:To prevent an operation miss by automatically judging whether the excavation direction of a working machine is the extrusion side or the retreat side in response to the working conditions such as the posture or position of the working machine when automatic control is started. CONSTITUTION:The boom angle detection value alphaa, arm angle detection value betaa, and bucket angle detection angle gammaa are inputted to an excavation direction judging device 9' from working machine posture detecting means 10a, 10b, 10c respectively when automatic control is started. The judging device 9' judges whether the excavation direction of a bucket 3 is the extrusion side or the retreat side and outputs it to an actuator operation quantity calculating means 9. The calculating means 9 calculates the target tilt angle of the bucket 3, the target locus of a tip, and the actual tilt angle and actual locus of the bucket 3. The calculating means 9 calculates the flow command values Valpha, Vbeta, Vgamma, of fluids fed to actuators of a boom 1, an arm 2, and the bucket 3 to be moved on the target locus at the given bucket tilt angle, and it controls flow control valves 11a, 11b, 11c to drive cylinders 4, 5, 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パワーショベル等掘削
用の作業機の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a work machine for excavating a power shovel or the like.

【0002】[0002]

【従来の技術】従来の上記作業機で、例えばパワーショ
ベルにおける自動運転に関する技術としては、特開平2
−221527号公報に示されるように、パワーショベ
ルの掘削機用の各アクチェエータを制御するアクチェエ
ータ制御手段と、掘削作業機のブーム、アーム、先端作
業機のそれぞれの姿勢角を検出する作業機姿勢検出手段
と、上記先端作業機にて掘削しようとする掘削面の目標
とする掘削勾配を与える勾配入力手段と、先端作業機の
基準平面からの目標傾角を与える先端傾角入力手段と、
上記作業機姿勢検出手段からの検出値と勾配入力手段及
び先端傾角入力手段とからの指令値を受けて、先端作業
機が上記先端傾角入力手段にて与えられた傾角で、か
つ、勾配入力手段で与えられた掘削勾配を、きめられた
固有の速度で移動するための操作量を演算して、その値
を上記各アクチェエータ制御手段へ出力するアクチェエ
ータ操作量演算手段とを備えた構成となっているものが
ある。
2. Description of the Related Art As a conventional technique relating to automatic operation of a power shovel, for example, in the above-mentioned working machine, Japanese Patent Application Laid-Open No. Hei 2
As disclosed in JP-A-221527, an actuator control means for controlling each actuator for an excavator of a power shovel and a work implement posture detection for detecting respective posture angles of a boom, an arm and a tip work implement of an excavator. Means, slope input means for giving a target excavation slope of the excavation surface to be excavated by the tip working machine, tip inclination input means for giving a target inclination from a reference plane of the tip working machine,
In response to the detected value from the working machine attitude detecting means and the command values from the gradient input means and the tip inclination angle input means, the tip working machine has the inclination angle given by the tip inclination input means and the gradient input means. The operation amount for moving the excavation gradient given in 1. at the specified specific speed is calculated, and the value is output to the above-mentioned actuator control means. There is something.

【0003】[0003]

【発明が解決しようとする課題】上記従来の作業機の制
御装置にあっては、自動運転を開始するまでに、法面の
掘削条件に対する入力信号、例えば勾配入力、先端傾角
入力、掘削方向入力等の入力信号を指定する必要があ
る。自動運転を考えたときに、オペレータの運転操作の
労力ができるだけ少ない方がよいが、上記従来の装置に
あっては入力信号の入力を忘れたためにトラブルが発生
する。このため自動運転の開始に際してはその都度全部
の入力が正しいかどうかを確認しなければならないとい
う問題があった。
In the above-described conventional control device for a working machine, an input signal for excavation conditions on a slope, for example, slope input, tip inclination input, excavation direction input, before starting automatic operation. It is necessary to specify the input signal such as. When considering automatic driving, it is preferable that the operator's driving effort is as small as possible, but in the above-mentioned conventional apparatus, a trouble occurs because the input signal is forgotten. Therefore, there is a problem that it is necessary to confirm whether or not all the inputs are correct each time the automatic operation is started.

【0004】本発明は上記のことにかんがみなされたも
ので、掘削作業時における入力信号のうちの掘削方向の
ための入力操作をなして、掘削作業時におけるオペレー
タの操作労力をできるだけ少なくできて、操作ミスをな
くすことができるようにした作業機の制御方法を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an input operation for an excavation direction in an input signal during excavation work can be performed, so that an operator's operation labor during excavation work can be minimized. It is an object of the present invention to provide a work machine control method capable of eliminating an operation error.

【0005】[0005]

【課題を解決するための手段】パワーショベル等におけ
る掘削作業では、掘削開始における作業機(バケット)
先端の位置が、作業範囲内で奥の方にあるときの掘削方
向は引き側であり、手前の方にあるときは押し出し側と
略決まっており、本発明はこのことに着目してなされた
もので、作業機による作業範囲をある境界により2つの
領域A,Bに分けておき、自動運転可能な作業機が有し
ている位置検出手段を使うことにより、作業機の角度あ
るいは位置等の作業条件が、上記した2つの領域A,B
のどちらかに入るかを判断してその結果により掘削方向
を押し出し側か引き側かを決定する。
[Means for Solving the Problems] In excavation work with a power shovel or the like, a work machine (bucket) at the start of excavation
The excavation direction is the pulling side when the position of the tip is in the inner part of the working range, and when it is in the front part, it is almost decided to be the extruding side, and the present invention was made with this point in mind. The working range of the working machine is divided into two regions A and B by a certain boundary, and the position detecting means of the working machine capable of automatic operation is used to determine the angle or position of the working machine. The working conditions are the two areas A and B described above.
It is determined which of the two is to be entered, and the result is used to determine whether the excavation direction is the push side or the pull side.

【0006】[0006]

【作 用】自動制御開始時の作業機の姿勢あるいは位
置等の作業条件により、作業機による掘削方向が押し側
か、引き側を掘削方向判別装置9aにて自動的に判別さ
れる。
[Operation] Depending on work conditions such as the posture or position of the work machine at the start of automatic control, the excavation direction of the work machine is automatically discriminated by the excavation direction discrimination device 9a as to whether the excavation direction is the push side or the pull side.

【0007】[0007]

【実 施 例】本発明の実施例を図面に基づいて説明す
る。図1は本発明の一実施例を示すブロック図であり、
この図1におけるパワーショベルの構成は一般のパワー
ショベルと同一である。なお、以下の説明のために、上
記構成のパワーショベルの各部材の角度、位置を図2に
示すように定義する。すなわち、ブーム1の回転角を
α、アーム2の回転角をβ、バケット3の回転角をγ、
バケット3の水平面(基準面)に対する傾角をδ、ブー
ム1の長さをL1 、アーム2の長さをL2 、バケット3
の長さをL3 、バケット3の先端の前後方向の位置を
x、上下方向の位置をy、掘削勾配をφとする。
EXAMPLES Examples of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention.
The structure of the power shovel in FIG. 1 is the same as that of a general power shovel. For the following description, the angle and position of each member of the power shovel having the above configuration will be defined as shown in FIG. That is, the rotation angle of the boom 1 is α, the rotation angle of the arm 2 is β, the rotation angle of the bucket 3 is γ,
The inclination of the bucket 3 with respect to the horizontal plane (reference plane) is δ, the length of the boom 1 is L 1 , the length of the arm 2 is L 2 , and the bucket 3 is
Is L 3 , the front-back position of the tip of the bucket 3 is x, the vertical position is y, and the excavation gradient is φ.

【0008】図1に示す構成において、勾配入力手段7
から勾配指令φγを、先端傾角入力手段8からバケット
傾角指令δγを、また作業機姿勢検出手段10a,10
b,10cからブーム各検出値αa 、アーム各検出値β
a 、バケット各検出値γa をそれぞれアクチェエータ操
作量演算手段9に入力し、このアクチェエータ操作量演
算手段9では、バケット3の目標傾角、刃先の目標軌跡
及びバケット3の実傾角と実軌跡を演算し、これらから
与えられたバケット傾角で目標軌跡上を移動するための
ブーム1、アーム2、バケット3への各アクチェエータ
へ供給する流体の流量指令値Vα,Vβ,Vγを演算
し、これに基づいて流量制御弁11a,11b,11c
を制御して各シリンダ4,5,6を駆動する。一方9a
は掘削方向判別装置であり、この掘削方向判別装置9a
は、上記各作業機姿勢検出手段10a,10b,10c
から入力される各検出値αa ,βa ,γa に基づいてバ
ケット3の掘削方向を判別してその結果を上記演算手段
9に出力されるようになっている。
In the configuration shown in FIG. 1, the gradient input means 7
A gradient command phi gamma from the bucket tilt command [delta] gamma from the tip-angle input means 8, also work implement orientation detection means 10a, 10
From b and 10c, boom detection values α a and arm detection values β
a, enter the bucket detection values gamma a to Akucheeta operation amount calculating means 9, respectively, in the Akucheeta operation amount calculation means 9, operation target inclination angle of the bucket 3, the actual inclination and the actual trajectory of the target locus and the bucket 3 of the cutting edge Then, the flow rate command values V α , V β , and V γ of the fluid to be supplied to the actuators to the boom 1, arm 2, and bucket 3 for moving on the target locus with the bucket tilt angle given from these are calculated, Based on this, the flow control valves 11a, 11b, 11c
Is controlled to drive each cylinder 4, 5, 6. On the other hand, 9a
Is an excavation direction discrimination device, and this excavation direction discrimination device 9a
Are the working machine posture detecting means 10a, 10b, 10c.
The excavation direction of the bucket 3 is discriminated based on the respective detected values α a , β a , γ a input from and the result is output to the arithmetic means 9.

【0009】上記掘削方向判別装置9aでの掘削方向の
判別はアーム2の角度β、アーム2の角度βとブーム1
の角度α、さらにアーム2の先端のx−y座標系のいず
れかの入力値が用いられるようになっている。 (a)アームの角度βで判別する。 図3に示すように、アーム2による作業範囲を、あるア
ーム角度βo を基準に2分する。そしてこの基準角度β
o を掘削方向判別装置9aにあらかじめ設定しておき、
これとアーム用の作業機姿勢検出機10bからのアーム
検出値βとを比較して掘削方向を判別する。 βo =εo …(1) εo :設定値 ここでβ≦βo の場合は遠い方の領域Aとなり、掘削方
向は引き側となる。またβ≧βo の場合は近い方の領域
Bとなり、掘削方向は押し側となる。一例として、βo
=100[deg]のときを示す。制御開始点がβ=1
35[deg]であったとすると、β>βo となり掘削
方向は押し側となる。これを2次元的に表わすと図4に
示すようになる。
The excavation direction discriminating device 9a discriminates the excavation direction by the angle β of the arm 2, the angle β of the arm 2 and the boom 1.
And the input value of any one of the xy coordinate system of the tip of the arm 2 are used. (A) The determination is made based on the arm angle β. As shown in FIG. 3, the working range of the arm 2 is divided into two parts based on a certain arm angle β o . And this reference angle β
o is set in advance in the excavation direction discrimination device 9a,
This is compared with the arm detection value β from the working machine posture detector 10b for the arm to determine the excavation direction. β o = ε o (1) ε o : Set value Here, when β ≦ β o , it is the far area A and the excavation direction is the pulling side. When β ≧ β o , the area B is closer, and the excavation direction is the push side. As an example, β o
= 100 [deg] is shown. The control start point is β = 1
If it is 35 [deg], β> β o and the excavation direction is the push side. This is expressed two-dimensionally as shown in FIG.

【0010】 (b)アーム角度とブーム角度で判別する。 図5に示すように、作業範囲を2分割する境界 f(αo ,βo )=0 …(2) をあらかじめ設定しておく。そして(2)式にブーム角
度αとアーム角度βを代入し、左辺が正か負かでA,B
のどちらかの領域に属するかを判別し、Aの領域の場合
の掘削方向は引き側、Bの領域の場合の掘削方向は押し
側となる。一例として f(αo ,βo )=αo +βo −160=0 …(3) となる境界線を設定する。そこで、制御開始点のα,β
が、(α,β)=(100,55)とすると、 f(α,β)=100+55−160<0 …(4) となり遠い方の領域Aと判断され、掘削方向は引き側と
なる。
(B) Judging by the arm angle and the boom angle. As shown in FIG. 5, a boundary f (α o , β o ) = 0 (2) that divides the work range into two is set in advance. Then, by substituting the boom angle α and the arm angle β into the equation (2), A and B are determined depending on whether the left side is positive or negative.
It is determined which of the two areas belongs to, the digging direction in the area A is the pulling side, and the digging direction in the area B is the pushing side. As an example, a boundary line is set such that f (α o , β o ) = α o + β o −160 = 0 (3). Therefore, the control start points α and β
However, if (α, β) = (100,55), then f (α, β) = 100 + 55−160 <0 (4) and it is determined that the region A is the far side, and the excavation direction is the pulling side.

【0011】 (c)x−y座標系に換算して判別する(その1)。 図2よりアーム先端の位置(x−y)は x=L1 sinα+L2 sin(α+β), y=L1 cosα+L2 cos(α+β) …(5) で求まる。そして図6に示すように作業範囲を2分割す
る境界 f(xo ,yo )=0 …(6) をあらかじめ設定しておく。そこで(6)式にx,yを
代入し、左辺が正か負かでどちらかの領域に属するか判
別し、Aの領域の場合は掘削方向は引き側、Bの領域の
場合は掘削方向は押し出し側とする。一例として、f
(xo ,yo )=xo 2 +yo 2 −50002 =0を設
定し、制御開始点の(x,y)が(5)式を用いて (x,y)=(7000,200) と求まったとすると、 f(x,y)=(70002 +2002 −50002 )>0 となりAと判断されて掘削作業は引き側となる。
(C) Converting to an xy coordinate system for determination (part 1). From FIG. 2, the position (x-y) of the arm tip is obtained by x = L 1 sin α + L 2 sin (α + β), y = L 1 cos α + L 2 cos (α + β) (5). Then, as shown in FIG. 6, a boundary f (x o , y o ) = 0 (6) for dividing the work range into two is set in advance. Then, by substituting x and y into the equation (6), it is determined whether the left side belongs to the positive side or the negative side and belongs to either of the regions. For the region A, the excavation direction is the pulling side, and for the region B, the excavation direction. Is on the extrusion side. As an example, f
(X o, y o) = x o 2 + y o 2 Set -5000 2 = 0, the control start point (x, y) using the equation (5) (x, y) = (7000,200 ), F (x, y) = (7000 2 +200 2 −5000 2 )> 0 and it is judged that A and the excavation work is on the pulling side.

【0012】(c)x−y座標系に換算して判別する
(その2)。 図7(a)より、ブームトップピン点0を座標中心とし
たバケット刃先の位置は、 x=L2 sin(α+β−φ)+L3 sin(α+β+γ−φ) より求まる。あらかじめ図7(b)に示すように定めて
おいたx0 ,(例えばx0 =0)と、上記xを比較する
ことにより、x≧x0 のときは、引き側となり、x<x
0 のときは押し側となる。
(C) It is converted to the xy coordinate system for determination (part 2). From FIG. 7A, the position of the bucket blade edge with the boom top pin point 0 as the coordinate center is obtained by x = L 2 sin (α + β−φ) + L 3 sin (α + β + γ−φ). X 0 had been determined as shown in advance FIG. 7 (b), the (e.g. x 0 = 0), by comparing the x, when the x ≧ x 0, becomes pulling side, x <x
When it is 0 , it is the push side.

【0013】以上述べたことは、作業機ブームバケット
1においても可能である。また上記各式で表わされる境
界は固定であってもよいし、勾配や作業機の角度によっ
て変わるものでもよい。例えば、勾配がφ≦30°,φ
>30°,のときはβo =100°,βo =70°とあ
らかじめ設定しておく。またオペレータの自由意思によ
って掘削方向を決めたい場合は図7に示すように切換ス
イッチ12、あるいはアームレバーなどの外部入力スイ
ッチが優先となるようにして掘削方向を決定する。この
ときのフローは図8に示すようになる。
The above description is also applicable to the work implement boom bucket 1. The boundary represented by each of the above equations may be fixed or may change depending on the gradient and the angle of the working machine. For example, if the gradient is φ ≦ 30 °, φ
When> 30 °, β o = 100 ° and β o = 70 ° are preset. Further, when it is desired to determine the excavation direction by the operator's free will, the excavation direction is determined by giving priority to the changeover switch 12 or an external input switch such as an arm lever as shown in FIG. The flow at this time is as shown in FIG.

【0014】[0014]

【発明の効果】本発明によれば、作業機のを自動運転す
るにあたって、掘削作業時における入力信号のうちの掘
削方向のための入力操作が不要となり、掘削作業時にお
けるオペレータの操作労力をできるだけ少なくできて操
作ミスをなくすことができる。
According to the present invention, when the work machine is automatically operated, the input operation for the excavation direction out of the input signals during excavation work is unnecessary, and the operator's operation effort during excavation work is minimized. You can reduce the number of mistakes and eliminate operational mistakes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】作業機の各部材の姿勢説明図である。FIG. 2 is a posture explanatory view of each member of the work machine.

【図3】アーム角度に応じて作業方向を2分割する場合
の作用説明図である。
FIG. 3 is an explanatory view of an operation when the work direction is divided into two according to the arm angle.

【図4】アーム角度に応じて作業方向を判別する場合を
2次元的に示す説明図である。
FIG. 4 is an explanatory view two-dimensionally showing a case where a working direction is determined according to an arm angle.

【図5】アーム角度とブーム角度で作業方向を判別する
場合を2次元的に示す説明図である。
FIG. 5 is an explanatory view two-dimensionally showing a case where the working direction is discriminated by an arm angle and a boom angle.

【図6】x−y座標系に換算して作業方向を判別する場
合を2次元的に示す説明図である。
FIG. 6 is an explanatory diagram two-dimensionally showing a case where the work direction is determined by converting it into an xy coordinate system.

【図7】(a),(b)はx−y座標系に換算して作業
方向を判別する場合を2次元的に示す他の説明図であ
る。
7 (a) and 7 (b) are other two-dimensional explanatory views showing a case where the working direction is determined by converting it into an xy coordinate system.

【図8】外部入力スイッチにて作業方向を判別する場合
の構成を示すブロック図である。
FIG. 8 is a block diagram showing a configuration in a case where a work direction is determined by an external input switch.

【図9】外部入力スイッチにて作業方向を判別する場合
のフローチャートである。
FIG. 9 is a flowchart in the case of determining a work direction by an external input switch.

【符号の説明】[Explanation of symbols]

1…ブーム、3…アーム、3…バケット、4,5,6…
シリンダ、7…勾配入力手段、8…先端傾各入力手段、
9…アクチェエータ操作量演算手段、10a,10b,
10c…姿勢検出手段、11a,11b,11c…流量
制御弁、12…切換スイッチ。
1 ... Boom, 3 ... Arm, 3 ... Bucket, 4, 5, 6 ...
Cylinder, 7 ... Gradient input means, 8 ... Tip tilt input means,
9: actuator operation amount calculation means, 10a, 10b,
10c ... Attitude detecting means, 11a, 11b, 11c ... Flow control valve, 12 ... Changeover switch.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 先端作業機の軌跡が目標軌跡とあうよう
に自動制御される作業機において、自動制御開始時の作
業機の姿勢あるいは位置等の作業条件により作業機によ
る掘削方向が押し出し側か、引き側を自動判別するよう
にしたことを特徴とする作業機の制御方法。
1. A working machine in which the locus of the tip working machine is automatically controlled so as to match the target locus, and whether the excavation direction by the working machine is the pushing side depending on working conditions such as the posture or position of the working machine at the start of automatic control. A method for controlling a working machine, wherein the pulling side is automatically determined.
【請求項2】 作業機による掘削方向の判別を、外部入
力スイッチからの指令が優先するようにしたことを特徴
とする請求項1記載の作業機の制御方法。
2. The method for controlling a work machine according to claim 1, wherein a command from an external input switch is prioritized in determining the excavation direction by the work machine.
JP25537392A 1991-10-29 1992-09-01 Work machine control method Expired - Fee Related JP3273575B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP25537392A JP3273575B2 (en) 1992-09-01 1992-09-01 Work machine control method
PCT/JP1992/001400 WO1993009300A1 (en) 1991-10-29 1992-10-29 Method of selecting automatic operation mode of working machine
US08/232,177 US5446981A (en) 1991-10-29 1992-10-29 Method of selecting automatic operation mode of working machine
EP92922196A EP0609445A4 (en) 1991-10-29 1992-10-29 Method of selecting automatic operation mode of working machine.
EP98250010A EP0835964A2 (en) 1991-10-29 1992-10-29 Method of selecting automatic operation mode of working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25537392A JP3273575B2 (en) 1992-09-01 1992-09-01 Work machine control method

Publications (2)

Publication Number Publication Date
JPH0681361A true JPH0681361A (en) 1994-03-22
JP3273575B2 JP3273575B2 (en) 2002-04-08

Family

ID=17277869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25537392A Expired - Fee Related JP3273575B2 (en) 1991-10-29 1992-09-01 Work machine control method

Country Status (1)

Country Link
JP (1) JP3273575B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446981A (en) * 1991-10-29 1995-09-05 Kabushiki Kaisha Komatsu Seisakusho Method of selecting automatic operation mode of working machine
EP0900887A1 (en) * 1996-12-03 1999-03-10 Shin Caterpillar Mitsubishi Ltd. Controller of construction machine
JP2019173472A (en) * 2018-03-29 2019-10-10 株式会社小松製作所 Work vehicle control system, method, and work vehicle
CN115288218A (en) * 2022-07-28 2022-11-04 中联重科股份有限公司 Method for controlling arm support, excavator, storage medium and processor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446981A (en) * 1991-10-29 1995-09-05 Kabushiki Kaisha Komatsu Seisakusho Method of selecting automatic operation mode of working machine
EP0900887A1 (en) * 1996-12-03 1999-03-10 Shin Caterpillar Mitsubishi Ltd. Controller of construction machine
EP0900887A4 (en) * 1996-12-03 2000-05-24 Caterpillar Mitsubishi Ltd Controller of construction machine
JP2019173472A (en) * 2018-03-29 2019-10-10 株式会社小松製作所 Work vehicle control system, method, and work vehicle
US11578473B2 (en) 2018-03-29 2023-02-14 Komatsu Ltd. Control system for work vehicle, method, and work vehicle
CN115288218A (en) * 2022-07-28 2022-11-04 中联重科股份有限公司 Method for controlling arm support, excavator, storage medium and processor

Also Published As

Publication number Publication date
JP3273575B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US5446981A (en) Method of selecting automatic operation mode of working machine
JP3091667B2 (en) Excavation control device for construction machinery
EP0735202A1 (en) Hydraulically operated machine, control therefor and method of control thereof
JP2002167794A (en) Front control device for hydraulic backhoe
JPH108490A (en) Front control device of construction machine and area setting method
JPH0681361A (en) Control method for working machine
JP3247464B2 (en) Excavation control system for hydraulic excavator
JPH076212B2 (en) Position control device for power shovel
JPH0689550B2 (en) Work machine control method and apparatus in power shovel
JP3682352B2 (en) Front control device for construction machinery
JPH0617589B2 (en) Excavator control equipment
JP2000355957A (en) Zone restrictive excavation controller for hydraulic shovel
JPH0823155B2 (en) Work machine control device
JPH076209B2 (en) Control device for work equipment in power shovel
JP2000303492A (en) Front controller for construction machinery
JP2687169B2 (en) Slope work control device for construction machinery
JP2699097B2 (en) Bucket edge depth control device for construction machinery
JPS63194030A (en) Controlling method and apparatus for service machine of power shovel
JP2871890B2 (en) Excavator excavation control device
JPH0791844B2 (en) Work machine control device
JPH10292420A (en) Excavating locus control device of hydraulic shovel
JP2614625B2 (en) Excavator
JP2966081B2 (en) Construction machinery
JP2983783B2 (en) Work machine constant speed trajectory control device
JPH0615775B2 (en) Excavator Excavation Control Device

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080201

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090201

FPAY Renewal fee payment

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100201

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees