JPH0677507A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH0677507A
JPH0677507A JP5002237A JP223793A JPH0677507A JP H0677507 A JPH0677507 A JP H0677507A JP 5002237 A JP5002237 A JP 5002237A JP 223793 A JP223793 A JP 223793A JP H0677507 A JPH0677507 A JP H0677507A
Authority
JP
Japan
Prior art keywords
layer
light
light receiving
refractive index
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5002237A
Other languages
Japanese (ja)
Other versions
JP2958204B2 (en
Inventor
Toshimasa Hamada
敏正 浜田
Takahiro Funakoshi
貴博 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5002237A priority Critical patent/JP2958204B2/en
Publication of JPH0677507A publication Critical patent/JPH0677507A/en
Application granted granted Critical
Publication of JP2958204B2 publication Critical patent/JP2958204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photodetector of high reliability which is excellent in transmittance in the light transmission band region, by setting the optical film thickness of each layer of a multilayered film so as to increase toward the outside arithmetical series-wise or geometrical series-wise. CONSTITUTION:A multilayered film 12 for shielding infrared radiation is formed on a light receiving substrate 11 for photoelectric conversion. The film 12 separates a plurality of lights different in wavelength in different optical paths, and intensively leads out only the light in a desired band region. The film 12 is constituted by laminating a plurality of dielectric films different in refractive index. When the center wavelength of a light which the multilayered film 12 is to transmit is lambda, the optical film thickness of a matched layer 13 is 0.7lambda/4, and the film is used as an antireflection film to the substrate 11. The optical film thickness of a low refractive index layer 14 is set to be 0.82lambda/8. The optical film thickness from a third layer to an eleventh layer is set to be an arithmetic series whose common difference is 0.03lambda/4. Hence the transmittance in the light transmission band region as a filter for cutting off infrared radiation is increased, and the light receiving sensitivity of a photodetector can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばカメラの自動露
光システム等に使用される半導体受光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element used in, for example, an automatic exposure system of a camera.

【0002】[0002]

【従来の技術】従来、カメラの自動露光システム等にフ
ォトダイオード等の受光素子を用いる場合には、人間の
可視光領域での光量測定が必要であるので、シリコン受
光素子上に赤外カットフィルタ等を設けて、シリコンの
持つ波長感度特性を視感度に補正したフォトダイオード
が必要となる。従来のこのようなフォトダイオードに
は、一般にガラス製光吸収フィルタが用いられている。
2. Description of the Related Art Conventionally, when a light receiving element such as a photodiode is used in a camera automatic exposure system or the like, it is necessary to measure the light amount in the visible light range of a human, so an infrared cut filter is provided on the silicon light receiving element. It is necessary to provide a photodiode in which the wavelength sensitivity characteristic of silicon is corrected to the luminosity by providing the above. A glass optical absorption filter is generally used for such a conventional photodiode.

【0003】従来の受光素子の構成図を図8に示す。こ
の構成は、セラミック基板1(ステム)の凹部2に受光
チップ3をマウントし、その上に樹脂4をコーティング
し、さらにガラス製光吸収フィルタ5を取り付けたもの
である。図中、6は金属製リードピンである。
FIG. 8 shows a configuration diagram of a conventional light receiving element. In this structure, the light receiving chip 3 is mounted in the concave portion 2 of the ceramic substrate 1 (stem), the resin 4 is coated on the light receiving chip 3, and the glass light absorption filter 5 is further attached. In the figure, 6 is a metal lead pin.

【0004】[0004]

【発明が解決しようとする課題】一般的なガラス製光吸
収フィルタ5の特性曲線を図9に示す。この特性曲線か
ら、ガラス製光吸収フィルタ5の光透過帯域での光透過
率が低いことは明らかである。そして、ガラス製光吸収
フィルタ5の光透過帯域での光透過率が低いと、透過し
たい光帯域でもあまり透過されないことになる。そうす
ると、受光チップ3の受光感度が低下し、出力特性が低
下する。
FIG. 9 shows a characteristic curve of a general glass optical absorption filter 5. From this characteristic curve, it is clear that the light transmittance of the light absorption filter 5 made of glass is low in the light transmission band. If the light transmittance of the light absorption filter 5 made of glass is low in the light transmission band, it will not be transmitted much even in the light band desired to be transmitted. Then, the light receiving sensitivity of the light receiving chip 3 is lowered and the output characteristic is lowered.

【0005】また、ガラス製光吸収フィルタ5は、その
着色材料に依存するため、設計変更が困難で、受光チッ
プ3の波長感度を変更することも困難となる。加えて、
ガラス製光吸収フィルタ5の退色も問題となる。
Further, since the glass light absorption filter 5 depends on the coloring material, it is difficult to change the design and it is also difficult to change the wavelength sensitivity of the light receiving chip 3. in addition,
Discoloration of the glass light absorption filter 5 is also a problem.

【0006】さらに、ガラス製光吸収フィルタ5自体の
コストが高くつく。
Further, the cost of the glass optical absorption filter 5 itself is high.

【0007】さらに、視感度の点から見ると次のような
問題があった。
Further, there are the following problems from the viewpoint of visibility.

【0008】図10にフィルタがない場合の受光素子の
受光感度の波長依存性を示す。また、図11に視感度を
示す。図示の如く、図10の特性をもつ受光素子の特性
を図11の視感度に近づけるためには600〜700n
mの波長に対してはなだらかに変化し、受光素子の感度
の高い800〜1000nmの光にたいしては十分透過
率の低いフィルタによって補正する必要のあることがわ
かる。
FIG. 10 shows the wavelength dependence of the light receiving sensitivity of the light receiving element when there is no filter. Further, FIG. 11 shows the luminosity. As shown in the figure, in order to bring the characteristics of the light receiving element having the characteristics shown in FIG.
It can be seen that the wavelength changes gently with respect to the wavelength m, and it is necessary to correct light having a sensitivity of 800 to 1000 nm, which has a high sensitivity of the light receiving element, by a filter having a sufficiently low transmittance.

【0009】本発明は、上記課題に鑑み、光透過帯域で
の光透過率もよく設計変更も容易であり、比較的安くで
き、退色を考慮せずに、信頼性の高い受光素子の提供を
目的とする。
In view of the above problems, the present invention provides a light receiving element which has a high light transmittance in the light transmission band, can be easily changed in design, can be made relatively inexpensive, and has high reliability without considering discoloration. To aim.

【0010】[0010]

【課題を解決するための手段】本発明請求項1,3によ
る課題解決手段は、図1,6の如く、光電変換用の受光
基板11と、該受光基板11上で赤外光を遮断する多層
膜12が形成されてなり、該多層膜12は、受光基板1
1上の第1層としての光学的整合層13と、該整合層1
3上で交互に多数回積層された低屈折率層14および高
屈折率層15とから構成され、該多層膜12の各層の光
学的膜厚は、外側に向けて等差級数的または等比級数的
に増加するよう設定されたものである。
As shown in FIGS. 1 and 6, a light receiving substrate 11 for photoelectric conversion and an infrared ray on the light receiving substrate 11 are cut off. A multi-layered film 12 is formed, and the multi-layered film 12 forms the light receiving substrate 1.
An optical matching layer 13 as a first layer on the first matching layer 1 and the matching layer 1
3 is composed of a low-refractive index layer 14 and a high-refractive index layer 15 which are alternately laminated a number of times, and the optical film thickness of each layer of the multi-layered film 12 is a geometric progression or a geometrical ratio toward the outside. It is set to increase in series.

【0011】また、視感度の点からいえば、請求項1記
載の受光素子において、多層膜12の光学的膜厚が段階
的に公差の異なる等差級数をなすように構成すると良
い。
From the viewpoint of luminosity, in the light-receiving element according to the first aspect, it is preferable that the optical film thickness of the multilayer film 12 is made to be an arithmetic series having different stepwise tolerances.

【0012】[0012]

【作用】上記請求項1,3による課題解決手段におい
て、多層膜12の各層の光学的膜厚を等差級数的あるい
は等比級数的に変化させることによって、多層膜12の
赤外遮断はなだらかな特性をあらわし、光透過帯域での
光透過率も高くなる。したがって、受光素子の光透過帯
域での受光感度もよくなる。
In the means for solving the problems according to the above claims 1 and 3, the infrared shielding of the multilayer film 12 is gently performed by changing the optical film thickness of each layer of the multilayer film 12 in a geometric progression or a geometric progression. These characteristics are exhibited, and the light transmittance in the light transmission band is also high. Therefore, the light receiving sensitivity of the light receiving element in the light transmission band is also improved.

【0013】また、本発明の受光素子は、多層膜12の
光学的膜厚が段階的に公差の異なる等差級数をなすよう
に構成すると、視感度に近い受光感度を得ることができ
る。
Further, in the light receiving element of the present invention, if the optical film thickness of the multilayer film 12 is made to have an arithmetic series having different stepwise tolerances, a light receiving sensitivity close to the luminosity can be obtained.

【0014】[0014]

【実施例】(第一実施例)図1は本発明の第一実施例を
示す受光素子の側面図である。図示の如く、本実施例の
受光素子は、光電変換用の受光基板11上に、赤外遮断
用の多層膜12が形成されたものである。
(First Embodiment) FIG. 1 is a side view of a light receiving element showing a first embodiment of the present invention. As shown in the figure, the light receiving element of this embodiment is one in which a multilayer film 12 for blocking infrared rays is formed on a light receiving substrate 11 for photoelectric conversion.

【0015】前記受光基板11は、シリコン半導体等が
用いられ、そのPN接合部にエネルギーバンドギャップ
より大きなエネルギーの光が照射されると、結晶中に生
成された電子−正孔対が拡散され、電流が流れる。
The light receiving substrate 11 is made of a silicon semiconductor or the like, and when the PN junction portion thereof is irradiated with light having an energy larger than the energy band gap, the electron-hole pairs generated in the crystal are diffused, An electric current flows.

【0016】前記多層膜12は、波長が異なる複数の光
を異なる光路に分離することで、所望帯域の光のみを強
く採り出そうとするものである。このため、屈折率が異
なる誘電体膜を複数層積層して構成するのが望ましい。
そこで、該多層膜12としては、整合層13が一層だけ
形成され、さらにその上に低屈折率層14と高屈折率層
15が等差級数的に交互に積層されたものが使用されて
いる。
The multilayer film 12 is intended to strongly extract only light in a desired band by separating a plurality of lights having different wavelengths into different optical paths. For this reason, it is desirable that a plurality of dielectric films having different refractive indexes be laminated to be configured.
Therefore, as the multilayer film 12, there is used one in which only one matching layer 13 is formed, and a low refractive index layer 14 and a high refractive index layer 15 are alternately laminated in an arithmetic series on the matching layer 13. .

【0017】前記整合層13としてはSi34やZrO
2等が、低屈折率層14としてはSiO2等が、高屈折率
層15としてはTiO2等が使用される。これらは、電
子ビーム蒸着法等にて受光基板11上に積層される。
尚、整合層13として2層以上の膜が用いられる場合に
は上記材料に限らず、さまざまな組み合わせが用いられ
ることは勿論である。
As the matching layer 13, Si 3 N 4 or ZrO is used.
2 and the like, SiO 2 and the like are used as the low refractive index layer 14, and TiO 2 and the like are used as the high refractive index layer 15. These are laminated on the light receiving substrate 11 by an electron beam evaporation method or the like.
When two or more layers are used as the matching layer 13, it goes without saying that not only the above materials but also various combinations are used.

【0018】そして、該多層膜12が透過させたい光の
中心波長の4分の1の長さをλ(例えば400〜500
nm)とした場合に、第1層としての整合層13の光学
的膜厚が0.6λ、第2層としての低屈折率層14の光
学的膜厚が0.425λ、第3層としての高屈折率層1
5の光学的膜厚が0.85λ、以降、第25層まで0.
025λずつ増やし、第26層としての低屈折率層14
が0.7λに設定されている。
Then, the length of a quarter of the center wavelength of light to be transmitted by the multilayer film 12 is set to λ (for example, 400 to 500).
nm), the optical film thickness of the matching layer 13 as the first layer is 0.6λ, the optical film thickness of the low refractive index layer 14 as the second layer is 0.425λ, and the optical film thickness as the third layer is 0.425λ. High refractive index layer 1
5 has an optical film thickness of 0.85λ, and thereafter, up to the 25th layer is 0.
The low refractive index layer 14 as the 26th layer is increased by 0.25λ.
Is set to 0.7λ.

【0019】このように、多層膜12の各層の光学的膜
厚を等差級数的に変化させることによって、多層膜12
の赤外カットフィルタとしての特性は、一定の範囲をも
ったなだらかな特性をあらわし、光透過帯域全体での光
透過率が高くなる。したがって、受光素子の光透過帯域
での受光感度がよくなる。
In this way, the optical film thickness of each layer of the multilayer film 12 is changed by arithmetic progression so that the multilayer film 12 can be obtained.
The characteristic of the infrared cut filter of (1) represents a gentle characteristic having a certain range, and the light transmittance in the entire light transmission band becomes high. Therefore, the light receiving sensitivity in the light transmission band of the light receiving element is improved.

【0020】実際に、このときの光透過率(%)と波長
(nm)との関係を実験値により検証してみると、図2
のようになった。ここでは、多層膜12への入射角を0
°、中心波長を800nmに設定している。
Actually, when the relationship between the light transmittance (%) and the wavelength (nm) at this time is verified by experimental values, FIG.
It became like. Here, the incident angle on the multilayer film 12 is 0.
The center wavelength is set to 800 nm.

【0021】図2を見ると、特に光波長が400〜60
0nmの光透過帯域での光透過率が、図9に示した従来
のガラス製光吸収フィルタよりも高くなっていることは
明らかである。具体的に、図9の従来のガラス製光吸収
フィルタでは、光波長が500nmでの光透過率が80
%以下であるのに対して、図2に示した本実施例の多層
膜12フィルタでは、100%近くになっている。
Referring to FIG. 2, in particular, the light wavelength is 400 to 60.
It is clear that the light transmittance in the 0 nm light transmission band is higher than that of the conventional glass light absorption filter shown in FIG. Specifically, in the conventional glass light absorption filter of FIG. 9, the light transmittance at a light wavelength of 500 nm is 80.
%, It is close to 100% in the multilayer film 12 filter of this embodiment shown in FIG.

【0022】したがって、受光基板11の受光感度が大
幅に向上し、出力特性が向上するのがわかる。
Therefore, it can be seen that the light receiving sensitivity of the light receiving substrate 11 is greatly improved and the output characteristics are improved.

【0023】また、赤外カットフィルタを多層膜12で
構成しているので、光透過阻止帯域等の設計変更を行い
たいときには、多層膜12の中心波長λと、これに伴う
多層膜12の膜厚を変えるだけで変更することができ
る。したがって、受光素子の波長感度を変更するのが容
易となる。
Further, since the infrared cut filter is composed of the multilayer film 12, when it is desired to change the design of the light transmission stop band and the like, the center wavelength λ of the multilayer film 12 and the film of the multilayer film 12 accompanied by this. It can be changed simply by changing the thickness. Therefore, it becomes easy to change the wavelength sensitivity of the light receiving element.

【0024】さらに、多層膜12が保護層の役割をする
ため、温度あるいは湿度等の変化に伴う素子特性の劣化
を防ぐことができる。
Furthermore, since the multilayer film 12 functions as a protective layer, it is possible to prevent the deterioration of element characteristics due to changes in temperature or humidity.

【0025】さらにまた、多層膜12の形成は一般に安
価であるため、価格面についても改善できる。
Furthermore, since the formation of the multilayer film 12 is generally inexpensive, the cost can be improved.

【0026】尚、本実施例では整合層としてZrO2
用いたが、SiO2によって構成し、第1層と第2層の
光学的膜厚を足し合わせたSiO2層によって第1層と
第2層を兼ねることも可能である。また、受光素子を樹
脂層で封止して用いる場合、多層膜の外側の屈折率が変
わるので多層膜の一番上に整合層が必要になる。
[0026] Incidentally, although this embodiment used ZrO 2 as a matching layer, constituted by SiO 2, the first layer and the SiO 2 layer obtained by adding an optical film thickness of the second layer and the first layer second It is also possible to serve as two layers. Further, when the light receiving element is used by being sealed with a resin layer, since the refractive index outside the multilayer film changes, a matching layer is required at the top of the multilayer film.

【0027】(第二実施例)図3は本発明の第二実施例
を示す受光素子の側面図である。図示の如く、本実施例
の受光素子は、第1層としての整合層13の上に、低屈
折率層14と高屈折率層15が等差級数的に交互に積層
された点で第一実施例と同様であるが、本実施例におい
ては、さらに前記低屈折率層14及び高屈折率層15の
光学的膜厚が段階的に公差の異なる等差級数をなすよう
に構成したものである。
(Second Embodiment) FIG. 3 is a side view of a light receiving element showing a second embodiment of the present invention. As shown in the figure, the light receiving element of the present embodiment is the first in that the low refractive index layers 14 and the high refractive index layers 15 are alternately laminated in a geometric progression on the matching layer 13 as the first layer. Similar to the example, but in this example, the optical film thicknesses of the low refractive index layer 14 and the high refractive index layer 15 are configured so as to form an arithmetic series having different stepwise tolerances. is there.

【0028】すなわち、多層膜12が透過させたい光の
中心波長の長さをλとした場合に、第1層としての整合
層13の光学的膜厚を0.7λ/4とする。該整合層1
3は該整合層13を除く多層膜12と受光基板11との
間の反射防止膜の役割を果たすものである。第2層の低
屈折率層14の光学的膜厚を0.82λ/8とする。第
3層から第11層までの光学的膜厚は公差0.03λ/
4の等差級数をなしている。具体的には第3層の高屈折
率層15の光学的膜厚が0.82λ/4、第4層の低屈
折率層14の光学的膜厚が0.85λ/4、第5層の高
屈折率層15の光学的膜厚が0.88λ/4、以下、第
11層までの0.03λ/4ずつ増やし、第11層の高
屈折率層15の光学的膜厚が1.06λ/4となってい
る。第12層から第27層までの光学的膜厚は公差0.
018λ/4の等差級数をなしている。具体的には第1
2層の低屈折率層14の光学的膜厚が1.078λ/
4、第13層の高屈折率層15の光学的膜厚が1.09
6λ/4、第14層の低屈折率層14の光学的膜厚が
1.114λ/4、以下、第27層まで0.018λ/
4ずつ増やし、第27層の高屈折率層15の光学的膜厚
が1.348λ/4となっている。第27層から第29
層までの光学的膜厚は同じで1.348λ/4とする。
また、第30層の低屈折率層14の光学的膜厚は1.3
48λ/8とする。尚、第27層から第29層までは公
差0の等差級数と見なすことができるので、第3層から
第29層までは段階的に公差の異なる等差級数をなす構
成になっている。
That is, when the length of the central wavelength of the light to be transmitted by the multilayer film 12 is λ, the optical film thickness of the matching layer 13 as the first layer is 0.7λ / 4. The matching layer 1
Reference numeral 3 serves as an antireflection film between the multilayer film 12 excluding the matching layer 13 and the light receiving substrate 11. The optical film thickness of the second low refractive index layer 14 is 0.82λ / 8. The optical thickness from the third layer to the eleventh layer has a tolerance of 0.03λ /
It is an arithmetic series of 4. Specifically, the optical film thickness of the high refractive index layer 15 of the third layer is 0.82λ / 4, the optical film thickness of the low refractive index layer 14 of the fourth layer is 0.85λ / 4, and the optical film thickness of the fifth layer is The optical film thickness of the high refractive index layer 15 is 0.88λ / 4, and is increased by 0.03λ / 4 up to the 11th layer, and the optical film thickness of the 11th high refractive index layer 15 is 1.06λ. It is / 4. The optical thickness from the 12th layer to the 27th layer has a tolerance of 0.
It forms an arithmetic series of 018λ / 4. Specifically, the first
The optical thickness of the two low refractive index layers 14 is 1.078λ /
4, the optical thickness of the high refractive index layer 15 of the 13th layer is 1.09
6λ / 4, the optical thickness of the low refractive index layer 14 of the 14th layer is 1.114λ / 4, and up to the 27th layer 0.018λ /
The optical film thickness of the high refractive index layer 15 of the 27th layer is 1.348λ / 4. 27th to 29th layers
The optical film thickness up to the layer is the same, and is 1.348λ / 4.
The optical film thickness of the low refractive index layer 14 of the 30th layer is 1.3.
It is set to 48λ / 8. Since the 27th layer to the 29th layer can be regarded as an arithmetic series having a tolerance of 0, the 3rd layer to the 29th layer are configured to form an arithmetic series having different tolerances stepwise.

【0029】このときの光透過率(%)と波長(nm)
との関係を実験値により検証してみると、図4のように
なった。ここでは、多層膜への入射角を0°、中心波長
を820nmに設定している。図示の如く、600〜7
00nmではなだらかに変化し、800〜1000nm
では光透過率の低いフィルタが構成されていることがわ
かる。また、光透過帯域での光透過率も、図9に示した
従来のガラス製光吸収フィルタよりも高くなっている。
Light transmittance (%) and wavelength (nm) at this time
When the relationship between and was verified by experimental values, it became as shown in FIG. Here, the incident angle to the multilayer film is set to 0 ° and the center wavelength is set to 820 nm. As shown, 600-7
At 00 nm, it changes gently, 800-1000 nm
Shows that a filter with low light transmittance is constructed. The light transmittance in the light transmission band is also higher than that of the conventional glass light absorption filter shown in FIG.

【0030】上述のように、上記受光素子は、600〜
700nmではなだらかに変化し、800〜1000n
mでは透過率の低いフィルタによって補正されるので、
図5に示す受光感度の特性が得られ、図11に示した視
感度に近い受光感度が得られる。
As described above, the light receiving element has
At 700 nm, it changes gently, 800-1000n
In m, it is corrected by a filter with low transmittance, so
The characteristic of the light receiving sensitivity shown in FIG. 5 is obtained, and the light receiving sensitivity close to the visual sensitivity shown in FIG. 11 is obtained.

【0031】(第三実施例)図6は本発明の第三実施例
を示す受光素子の側面図である。図示の如く、本実施例
の受光素子は、第1層としての整合層13の上に、低屈
折率層14と高屈折率層15が交互に積層された点で第
一実施例と同様であるが、低屈折率層14および高屈折
率層15の厚さ寸法が等比級数的に設定されている点が
異なる。
(Third Embodiment) FIG. 6 is a side view of a light receiving element showing a third embodiment of the present invention. As shown in the figure, the light receiving element of this embodiment is similar to the first embodiment in that the low refractive index layers 14 and the high refractive index layers 15 are alternately laminated on the matching layer 13 as the first layer. However, the difference is that the thickness dimensions of the low refractive index layer 14 and the high refractive index layer 15 are set in geometric progression.

【0032】すなわち、該多層膜12が透過させたい光
の中心波長の4分の1の長さをλ(例えば400〜50
0nm)とした場合に、第1層としての整合層13の光
学的膜厚が0.6λとされ、また第2層としての低屈折
率14の光学的膜厚が0.427λ、第3層としての高
屈折率層15の光学的膜厚が0.853λと、以降、第
29層まで1.02倍ずつ増やし、第30層としての低
屈折率層14が0.714λに設定されている。
That is, the length of a quarter of the center wavelength of the light to be transmitted by the multilayer film 12 is λ (for example, 400 to 50).
0 nm), the optical film thickness of the matching layer 13 as the first layer is 0.6λ, the optical film thickness of the low refractive index 14 as the second layer is 0.427λ, and the third layer is The optical film thickness of the high refractive index layer 15 is 0.853λ, and thereafter, the 29th layer is increased by 1.02 times, and the low refractive index layer 14 as the 30th layer is set to 0.714λ. .

【0033】このときの光透過率(%)と波長(nm)
との関係を実験値により検証してみると、図7のように
なった。ここでも、多層膜12への入射角を0°、中心
波長を800nmに設定している。図7での光透過帯域
での光透過率も、図9に示した従来のガラス製光吸収フ
ィルタよりも高くなっている。したがって、受光基板1
1の受光感度が大幅に向上し、出力特性が向上するのが
わかる。
Light transmittance (%) and wavelength (nm) at this time
When the relationship with and was verified by experimental values, it became as shown in FIG. Here again, the angle of incidence on the multilayer film 12 is set to 0 ° and the center wavelength is set to 800 nm. The light transmittance in the light transmission band in FIG. 7 is also higher than that of the conventional glass light absorption filter shown in FIG. Therefore, the light receiving substrate 1
It can be seen that the light receiving sensitivity of 1 is significantly improved and the output characteristics are improved.

【0034】なお、本発明は、上記実施例に限定される
ものではなく、本発明の範囲内で上記実施例に多くの修
正および変更を加え得ることは勿論である。
The present invention is not limited to the above embodiments, and it goes without saying that many modifications and changes can be made to the above embodiments within the scope of the present invention.

【0035】例えば、上記実施例では、多層膜12とし
て、Si34、ZrO2、SiO2あるいはTiO2等が
用いられていたが、これらの誘電体材料にかぎらず、他
の酸化物を選ぶことも可能である。
For example, in the above embodiment, Si 3 N 4 , ZrO 2 , SiO 2 or TiO 2 was used as the multilayer film 12, but other oxides are not limited to these dielectric materials. It is also possible to choose.

【0036】[0036]

【発明の効果】以上の説明から明らかな通り、本発明請
求項1,3によると、多層膜の各層の光学的膜厚を等差
級数的、あるいは等比級数的に変化させているので、赤
外カットフィルタとしての光透過帯域での光透過率は高
くなり、受光素子の受光感度が高まる。
As is apparent from the above description, according to claims 1 and 3 of the present invention, the optical film thickness of each layer of the multilayer film is changed in a geometric progression or a geometric progression. The light transmittance in the light transmission band as the infrared cut filter is increased, and the light receiving sensitivity of the light receiving element is increased.

【0037】また、本発明の受光素子は、前記多層膜の
光学的膜厚が段階的に公差の異なる等差級数をなすよう
に構成すると、視感度に近い受光感度が得られる。
Further, in the light-receiving element of the present invention, if the optical film thickness of the multilayer film is configured to have an arithmetic series having different stepwise tolerances, a light-receiving sensitivity close to the visual sensitivity can be obtained.

【0038】さらに、多層膜の光透過阻止帯域等の設計
変更を行いたいときには、多層膜の中心波長に伴う膜厚
を変えるだけで変更することができ、受光素子の波長感
度の変更が容易となる。
Further, when it is desired to change the design of the light transmission stop band of the multilayer film, it can be changed only by changing the film thickness according to the central wavelength of the multilayer film, and the wavelength sensitivity of the light receiving element can be easily changed. Become.

【0039】さらに、多層膜が保護層の役割をするた
め、温度変化または湿度変化等に伴う素子特性劣化を防
ぎ得る。
Furthermore, since the multilayer film functions as a protective layer, it is possible to prevent deterioration of device characteristics due to temperature change or humidity change.

【0040】さらに、多層膜のみを形成するだけですむ
ので、部品点数の軽減により製造コストを軽減できると
いった優れた効果がある。
Further, since only the multilayer film is required to be formed, there is an excellent effect that the manufacturing cost can be reduced by reducing the number of parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例を示す受光素子の側面図で
ある。
FIG. 1 is a side view of a light receiving element showing a first embodiment of the present invention.

【図2】本発明の第一実施例による多層膜の光波長に対
する光透過率を示す特性図である。
FIG. 2 is a characteristic diagram showing a light transmittance with respect to a light wavelength of a multilayer film according to the first embodiment of the present invention.

【図3】本発明の第二実施例を示す受光素子の側面図で
ある。
FIG. 3 is a side view of a light receiving element showing a second embodiment of the present invention.

【図4】本発明の第二実施例による多層膜の光波長に対
する光透過率を示す特性図である。
FIG. 4 is a characteristic diagram showing the light transmittance of the multilayer film according to the second embodiment of the present invention with respect to the light wavelength.

【図5】図3に示す受光素子の受光感度を示す特性図で
ある。
5 is a characteristic diagram showing the light receiving sensitivity of the light receiving element shown in FIG.

【図6】本発明の第三実施例を示す受光素子の側面図で
ある。
FIG. 6 is a side view of a light receiving element showing a third embodiment of the present invention.

【図7】本発明の第三実施例による多層膜の光波長に対
する光透過率を示す特性図である。
FIG. 7 is a characteristic diagram showing light transmittance with respect to light wavelengths of a multilayer film according to a third embodiment of the present invention.

【図8】従来の受光素子の断面図である。FIG. 8 is a sectional view of a conventional light receiving element.

【図9】従来で使用されていたガラス製光吸収フィルタ
の光透過率を示す特性図である。
FIG. 9 is a characteristic diagram showing the light transmittance of a glass light absorption filter that has been conventionally used.

【図10】フィルタを有しない受光素子の受光感度を示
す特性図である。
FIG. 10 is a characteristic diagram showing the light receiving sensitivity of a light receiving element having no filter.

【図11】視感度特性を示す図である。FIG. 11 is a diagram showing luminosity characteristics.

【符号の説明】[Explanation of symbols]

11 受光基板 12 多層膜 13 整合層 14 低屈折率層 15 高屈折率層 11 Photoreceptive Substrate 12 Multilayer Film 13 Matching Layer 14 Low Refractive Index Layer 15 High Refractive Index Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光電変換用の受光基板と、該受光基板上
で赤外光を遮断する多層膜が形成されてなり、該多層膜
は、受光基板上の第1層としての光学的整合層と、該整
合層上で交互に多数回積層された低屈折率層および高屈
折率層とから構成され、該多層膜の各層の光学的膜厚
は、外側に向けて等差級数的に増加するよう設定された
ことを特徴とする受光素子。
1. A light receiving substrate for photoelectric conversion, and a multilayer film for blocking infrared light formed on the light receiving substrate, wherein the multilayer film is an optical matching layer as a first layer on the light receiving substrate. And a low-refractive index layer and a high-refractive index layer, which are alternately laminated many times on the matching layer, and the optical film thickness of each layer of the multilayer film increases in an arithmetic progression toward the outside. A light-receiving element characterized by being set to
【請求項2】 請求項1記載の受光素子において、前記
多層膜の光学的膜厚が段階的に公差の異なる等差級数を
なすように構成したことを特徴とする請求項1記載の受
光素子。
2. The light-receiving element according to claim 1, wherein the optical film thickness of the multi-layer film is configured so as to form an arithmetic series having different tolerances stepwise. .
【請求項3】 光電変換用の受光基板と、該受光基板上
で赤外光を遮断する多層膜が形成されてなり、該多層膜
は、受光基板上の第1層としての光学的整合層と、該整
合層上で交互に多数回積層された低屈折率層および高屈
折率層とから構成され、該多層膜の各層の光学的膜厚
は、外側に向けて等比級数的に増加するよう設定された
ことを特徴とする受光素子。
3. A light receiving substrate for photoelectric conversion, and a multilayer film for blocking infrared light formed on the light receiving substrate, wherein the multilayer film is an optical matching layer as a first layer on the light receiving substrate. And a low-refractive index layer and a high-refractive index layer that are alternately laminated many times on the matching layer, and the optical film thickness of each layer of the multilayer film increases in a geometric progression toward the outside. A light-receiving element characterized by being set to
JP5002237A 1992-06-29 1993-01-11 Light receiving element Expired - Fee Related JP2958204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002237A JP2958204B2 (en) 1992-06-29 1993-01-11 Light receiving element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-170588 1992-06-29
JP17058892 1992-06-29
JP5002237A JP2958204B2 (en) 1992-06-29 1993-01-11 Light receiving element

Publications (2)

Publication Number Publication Date
JPH0677507A true JPH0677507A (en) 1994-03-18
JP2958204B2 JP2958204B2 (en) 1999-10-06

Family

ID=26335588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002237A Expired - Fee Related JP2958204B2 (en) 1992-06-29 1993-01-11 Light receiving element

Country Status (1)

Country Link
JP (1) JP2958204B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644124A (en) * 1993-07-01 1997-07-01 Sharp Kabushiki Kaisha Photodetector with a multilayer filter and method of producing the same
US7605354B2 (en) 2006-05-19 2009-10-20 Sharp Kabushiki Kaisha Color sensor, production method thereof, sensor, and electronics device
KR101395266B1 (en) * 2004-03-31 2014-05-27 오스람 옵토 세미컨덕터스 게엠베하 Radiation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644124A (en) * 1993-07-01 1997-07-01 Sharp Kabushiki Kaisha Photodetector with a multilayer filter and method of producing the same
KR101395266B1 (en) * 2004-03-31 2014-05-27 오스람 옵토 세미컨덕터스 게엠베하 Radiation detector
US7605354B2 (en) 2006-05-19 2009-10-20 Sharp Kabushiki Kaisha Color sensor, production method thereof, sensor, and electronics device

Also Published As

Publication number Publication date
JP2958204B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US3996461A (en) Silicon photosensor with optical thin film filter
US9322965B2 (en) Optical member
US4229066A (en) Visible transmitting and infrared reflecting filter
US4293732A (en) Silicon solar cell and 350 nanometer cut-on filter for use therein
KR102061477B1 (en) Near-infrared cut-off filter
WO2016171219A1 (en) Optical filter and imaging device
JP3242495B2 (en) Photodetector with multilayer filter and method of manufacturing the same
JPS60191548A (en) Image sensor
US8044443B2 (en) Photosensitive integrated circuit equipped with a reflective layer and corresponding method of production
US7544975B2 (en) Photodiode
JP4213379B2 (en) UV bandpass filter
EP1628146B1 (en) Optical low pass filter
JPH0677507A (en) Photodetector
JPH10332919A (en) Low pass filter for uv region of electromagnetic spectrum
JPH05241017A (en) Optical interference multilayered film having yellow filter function
JPS6238402A (en) Optical filter
JPH06138317A (en) Interference filter and photodetector with interference filter
JPS59230123A (en) Optical sensor
JP3315494B2 (en) Reflective film
US11315975B2 (en) Image sensor and method for manufacturing the same
JP6374820B2 (en) Optical filter and optical measuring device
TWI761774B (en) Optical film, optical lens, lens module and electronic devices
JPS63207184A (en) Semiconductor photodetector
JP5821400B2 (en) Spectroscopic sensor and angle limiting filter
JPS63150976A (en) Infrared ray detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees