JPH0677483A - Thin-film transistor and its manufacture - Google Patents

Thin-film transistor and its manufacture

Info

Publication number
JPH0677483A
JPH0677483A JP10720392A JP10720392A JPH0677483A JP H0677483 A JPH0677483 A JP H0677483A JP 10720392 A JP10720392 A JP 10720392A JP 10720392 A JP10720392 A JP 10720392A JP H0677483 A JPH0677483 A JP H0677483A
Authority
JP
Japan
Prior art keywords
amorphous silicon
film
silicon film
layer
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10720392A
Other languages
Japanese (ja)
Other versions
JP2924441B2 (en
Inventor
Wakahiko Kaneko
若彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10720392A priority Critical patent/JP2924441B2/en
Publication of JPH0677483A publication Critical patent/JPH0677483A/en
Application granted granted Critical
Publication of JP2924441B2 publication Critical patent/JP2924441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enhance the transistor characteristic and the throughput of the title transistor by a method wherein an island layer is formed as a composite- layer structure composed of a first amorphous silicon film whose film quality is good and of a second amorphous silicon film whose film formation speed is fast. CONSTITUTION:A silicon nitride film 4 used for a gate insulating film, a first amorphous silicon film 3-a, a second amorphous silicon film 3-b and an n-type amorphous silicon film 7 are formed continuously in a vacuum. Then, the first and second amorphous silicon films 3-a, 3-b and the n-type amorphous silicon film 7 are worked to be a prescribed pattern on a gate electrode and other required parts, and an island layer 3 is formed. Then, in order to form a channel, the n-type amorphous silicon film 7 and the second amorphous silicon film 3-b are removed together. The digging depth of an etching operation has a distribution of about + or -50nm. A layer to be used as a digging margin is formed at high speed and the time for a film formation is shortened. Thereby, it is possible to form a thin-film transistor whose throughput is not spoiled and whose characteristic is good.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアモルファスシリコンを
用いた薄膜トランジスタの構造に関し、特にアクティブ
マトリクス型液晶ディスプレイの駆動用素子として用い
られる薄膜トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a thin film transistor using amorphous silicon, and more particularly to a thin film transistor used as a driving element of an active matrix type liquid crystal display.

【0002】[0002]

【従来の技術】従来の薄膜トランジスタの構造を図3に
示す。
2. Description of the Related Art The structure of a conventional thin film transistor is shown in FIG.

【0003】ガラス等の絶縁基板1上にアルミ、クロ
ム、タンタル等の金属をスパッタ法により成膜し、これ
をフォトリソグラフィとウエットエッチングの方法によ
りゲート電極2にパターニングする。
A metal such as aluminum, chromium or tantalum is formed on an insulating substrate 1 such as glass by a sputtering method, and the gate electrode 2 is patterned by photolithography and wet etching.

【0004】次にアモルファス窒化シリコン膜等のゲー
ト絶縁膜(500nm)と、アモルファスシリコン膜
(300nm)3と、リンをドープしたn型アモルファ
スシリコン膜(60nm)7をプラズマCVD法により
真空中で連続成膜する。この時アモルファスシリコン膜
の成膜条件はSiH4 =30SCCM、H2 =200S
CCM、圧力=100Pa、高周波放電出力=0.01
W/cm2 で成膜時間は約45分である。
Next, a gate insulating film (500 nm) such as an amorphous silicon nitride film, an amorphous silicon film (300 nm) 3, and a phosphorus-doped n-type amorphous silicon film (60 nm) 7 are continuously formed in a vacuum by a plasma CVD method. Form a film. At this time, the film forming conditions of the amorphous silicon film are SiH 4 = 30 SCCM, H 2 = 200S
CCM, pressure = 100 Pa, high frequency discharge output = 0.01
The film formation time is about 45 minutes at W / cm 2 .

【0005】次にアモルファスシリコンとn型アモルフ
ァスシリコン膜をフォトリソグラフィとドライエッチン
グの方法により島状に加工してアイランド層3及びオー
ミックコンタクト層7を形成し、さらに窒化シリコン膜
4も同様の方法により電極接続用のコンタクトホール
(図示省略)を形成する。その後、これらの上に再度ア
ルミ、クロム等の金属を成膜しこれをフォトリソグラフ
ィの方法によりソース電極5及びドレイン電極配線6を
パターニングする。
Next, the amorphous silicon and the n-type amorphous silicon film are processed into an island shape by a method of photolithography and dry etching to form an island layer 3 and an ohmic contact layer 7, and a silicon nitride film 4 is also formed by the same method. A contact hole (not shown) for electrode connection is formed. After that, a metal such as aluminum or chromium is again formed on these, and the source electrode 5 and the drain electrode wiring 6 are patterned by the method of photolithography.

【0006】次にチャネル形成のため、ゲート電極2上
のアイランド層上に残ったn型アモルファスシリコン膜
をドライエッチング法により除去する(以下、チャネル
エッチングと称する)。このときn型アモルファスシリ
コン膜7の除去が十分でないと薄膜トランジスタがOF
F動作出来なくなるため、アモルファスシリコン層3ま
で堀込む必要がある。
Next, in order to form a channel, the n-type amorphous silicon film remaining on the island layer on the gate electrode 2 is removed by a dry etching method (hereinafter referred to as channel etching). At this time, if the removal of the n-type amorphous silicon film 7 is not sufficient, the thin film transistor becomes OF
Since the F operation cannot be performed, it is necessary to dig up to the amorphous silicon layer 3.

【0007】最後に堀込んだチャネルを保護するための
パシベーション膜8として窒化シリコン膜をプラズマC
VD法により成膜し電極接続用のコンタクトホール(図
示省略)をフォトリソグラフィの方法により形成してこ
の薄膜トランジスタは完成する。
A silicon nitride film is used as plasma C as a passivation film 8 for protecting the finally dug channel.
The thin film transistor is completed by forming a film by the VD method and forming a contact hole (not shown) for electrode connection by the photolithography method.

【0008】[0008]

【発明が解決しようとする課題】上述の薄膜トランジス
タはチャネルエッチングにおける堀込み深さとそのばら
つきを考慮して、アモルファスシリコンの膜厚を必要膜
厚に堀込みマージンを加えたかなり厚いものを用いてい
る。そのため、成膜時間が長くなりスループットが低下
すると言う問題点があった。
The thin film transistor described above uses a considerably thick film obtained by adding the necessary margin to the required film thickness of amorphous silicon in consideration of the etching depth and its variation in channel etching. . Therefore, there is a problem that the film formation time becomes long and the throughput is lowered.

【0009】[0009]

【課題を解決するための手段】本発明の薄膜トランジス
タとその製造方法は、以下に示す特徴を持つ。 (1)絶縁基板上にゲート電極、ゲート絶縁膜、島状に
加工したアモルファスシリコン半導体層、オーミックコ
ンタクト層、ソース及びドレイン電極を順次積層、パタ
ーニングしチャネル部分にオーミックコンタクト層をエ
ッチング除去した後パシベーション膜を積層、パターニ
ングして形成される逆スタガー型チャネル堀込み構造薄
膜トランジスタにおいて、前記アモルファスシリコン半
導体層を複数の異なる膜質のアモルファスシリコン膜の
積層構造とする。 (2)前記の内容加え、前記アモルファスシリコン半導
体層のゲート絶縁膜に接する側のアモルファスシリコン
膜厚が50nm以上である。 (3)高周波放電出力0.01W/cm2 以下の低パワ
ー且つ成膜圧力70Pa以下且つSiH4 /H2 流量比
1:10以上の高水素希釈率条件のプラズマCVD法で
アモルファスシリコン膜を形成し、その上に高周波放電
出力0.03W/cm2 以上の高パワー条件且つ成膜圧
力120Pa以上且つSiH4 /H2 流量比1:3以下
の低水素希釈率条件のプラズマCVD法でアモルファス
シリコン膜を積層して2層構造のアモルファスシリコン
半導体層を形成する。
The thin film transistor and the manufacturing method thereof according to the present invention have the following features. (1) A gate electrode, a gate insulating film, an island-shaped amorphous silicon semiconductor layer, an ohmic contact layer, a source and drain electrode are sequentially laminated on an insulating substrate, patterned, and then the ohmic contact layer is removed by etching from the channel portion, followed by passivation. In an inverted stagger type channel engraving structure thin film transistor formed by stacking and patterning films, the amorphous silicon semiconductor layer has a stacked structure of a plurality of amorphous silicon films having different film qualities. (2) In addition to the above contents, the amorphous silicon film thickness of the amorphous silicon semiconductor layer on the side in contact with the gate insulating film is 50 nm or more. (3) Amorphous silicon film is formed by plasma CVD method under the conditions of high power of 0.01 W / cm 2 or less of high-frequency discharge, film forming pressure of 70 Pa or less and SiH 4 / H 2 flow ratio of 1:10 or more and high hydrogen dilution ratio. Amorphous silicon is then formed by plasma CVD under high power conditions with a high-frequency discharge output of 0.03 W / cm 2 or more, a film forming pressure of 120 Pa or more, and a SiH 4 / H 2 flow ratio of 1: 3 or less. The films are stacked to form an amorphous silicon semiconductor layer having a two-layer structure.

【0010】[0010]

【作用】アモルファスシリコン半導体層を複層化し、チ
ャネル界面に接する層は良質のアモルファスシリコンを
十分時間をかけて成膜し、その上のチャネルエッチング
の堀込みマージンとなる層は高速に成膜して成膜時間を
短縮することにより、スループットを損なわずに特性の
良い薄膜トランジスタを作製できる。
[Function] The amorphous silicon semiconductor layer is made into a multi-layer, and the layer in contact with the channel interface is formed by depositing good quality amorphous silicon for a sufficient time, and the layer overlying the channel etching margin is formed at high speed. By shortening the film formation time by this, a thin film transistor with excellent characteristics can be manufactured without impairing throughput.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例である薄膜トランジスタの
縦断面図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view of a thin film transistor which is an embodiment of the present invention.

【0012】厚さ約1mmの低アルカリガラス基板1上
に金属クロム(100nm)をスパッタ法で成膜しこれ
をフォトリソグラフィとウエットエッチングの方法によ
り所定のパターンに加工してゲート電極(配線)2を形
成する。
A metal chromium (100 nm) film is formed on a low-alkali glass substrate 1 having a thickness of about 1 mm by a sputtering method, and this is processed into a predetermined pattern by photolithography and wet etching, and a gate electrode (wiring) 2 is formed. To form.

【0013】次にプラズマCVD法によりゲート絶縁膜
用の窒化シリコン膜(500nm)4、第1アモルファ
スシリコン膜(100nm)3−a、第2アモルファス
シリコン膜(200nm)3−b、オーミックコンタク
ト層となるn型アモルファスシリコン膜(60nm)7
を真空中で連続成膜する。この時、第1アモルファスシ
リコン膜3−aの成膜条件はSiN4 =20SCCM、
2 =200SCCM、圧力=60Pa、高周波放電出
力=0.01W/cm2 、第2アモルファスシリコン膜
3−bの成膜条件はSiH4 =100SCCM、H2
200SCCM、圧力=100Pa、高周波放電出力=
0.03W/cm2 とする。
Next, a silicon nitride film (500 nm) 4 for a gate insulating film, a first amorphous silicon film (100 nm) 3-a, a second amorphous silicon film (200 nm) 3-b, and an ohmic contact layer are formed by plasma CVD. N-type amorphous silicon film (60 nm) 7
Is continuously formed in vacuum. At this time, the film formation conditions for the first amorphous silicon film 3-a are SiN 4 = 20 SCCM,
H 2 = 200 SCCM, pressure = 60 Pa, high frequency discharge output = 0.01 W / cm 2 , film forming conditions for the second amorphous silicon film 3-b are SiH 4 = 100 SCCM, H 2 =
200SCCM, pressure = 100Pa, high frequency discharge output =
It is set to 0.03 W / cm 2 .

【0014】次に第1、第2アモルファスシリコン膜及
びn型アモルファスシリコン膜をフォトリソグラフィと
ドライエッチングの方法によりゲート電極2及びその他
必要な部分上に所定のパターンに加工してアイランド層
3を形成する。そして残った窒化シリコン膜の所定の位
置にをフォトリソグラフィとドライエッチングの方法に
より電極接続用のコンタクトホール(図示省略)を開け
てゲート絶縁層4を形成する。この上に電極材として金
属クロム膜(200nm)をスパッタ法により成膜しフ
ォトリソグラフィとドライエッチングの方法により所定
のパターンに加工してソース電極5及びドレイン電極6
を形成する。
Next, the first and second amorphous silicon films and the n-type amorphous silicon film are processed into a predetermined pattern on the gate electrode 2 and other necessary portions by a method of photolithography and dry etching to form an island layer 3. To do. Then, a contact hole (not shown) for electrode connection is opened at a predetermined position of the remaining silicon nitride film by a method of photolithography and dry etching to form a gate insulating layer 4. A metal chromium film (200 nm) as an electrode material is formed thereon by a sputtering method and processed into a predetermined pattern by photolithography and dry etching methods to form a source electrode 5 and a drain electrode 6.
To form.

【0015】次にチャネル形成のため、ゲート電極上部
のアイランド層上に残ったn型アモルファスシリコン膜
7を除去するため、ソース電極及びドレイン電極をマス
クとしてドレインエッチング法によりn型アモルファス
シリコン膜と第2アモルファスシリコン膜を合せて約1
50nm除去する。エッチングの堀込み深さは±50n
m程度の分布を持つが、前述のアモルファスシリコン膜
厚の設定により残りのアモルファスシリコン膜厚はトラ
ンジスタの特性を維持するのに十分な厚みを残してい
る。ソース電極5及びドレイン電極6の下に残ったn型
アモルファスシリコン膜はオーミックコンタクト層7と
なる。
Next, in order to form a channel, in order to remove the n-type amorphous silicon film 7 remaining on the island layer above the gate electrode, the n-type amorphous silicon film and the first n-type amorphous silicon film are formed by the drain etching method using the source electrode and the drain electrode as a mask. Approximately 1 including 2 amorphous silicon films
Remove 50 nm. Etching depth is ± 50n
Although it has a distribution of about m, the remaining amorphous silicon film thickness remains sufficient to maintain the characteristics of the transistor due to the setting of the amorphous silicon film thickness described above. The n-type amorphous silicon film remaining under the source electrode 5 and the drain electrode 6 becomes the ohmic contact layer 7.

【0016】最後に堀込んだチャネルを保護するための
パシベーション膜8として窒化シリコン膜をプラズマC
VD法により成膜しその後に電極接続用のコンタクトホ
ール(図示省略)をフォトリソグラフィの方法により所
定の位置に形成してこの薄膜トランジスタは完成する。
A silicon nitride film is used as plasma C as a passivation film 8 for protecting the finally dug channel.
The thin film transistor is completed by forming a film by the VD method and then forming a contact hole (not shown) for electrode connection at a predetermined position by a photolithography method.

【0017】本実施例による薄膜トランジスタの動作特
性を図4に示す。本発明による薄膜トランジスタでは第
1アモルファスシリコン膜に良質の膜を用いた事により
従来例に比べて移動度の高い良好なトランジスタ特性を
示す。また、従来例におけるアモルファスシリコン膜の
成膜時間は約45分かかるが本実施例では第1アモルフ
ァスシリコン膜の成膜時間が約17分、第2アモルファ
スシリコン膜の成膜時間が約5分の合計23分と大幅な
短絡が可能となる。
The operating characteristics of the thin film transistor according to this embodiment are shown in FIG. Since the thin film transistor according to the present invention uses a good quality film as the first amorphous silicon film, it exhibits good transistor characteristics with higher mobility than the conventional example. Further, the film formation time of the amorphous silicon film in the conventional example takes about 45 minutes, but in this embodiment, the film formation time of the first amorphous silicon film is about 17 minutes and the film formation time of the second amorphous silicon film is about 5 minutes. A total of 23 minutes and a large short circuit is possible.

【0018】本発明におけるその他の実施例を図面を参
照して説明する。図2は本発明の他の実施例である薄膜
トランジスタの縦断面図である。
Another embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a vertical sectional view of a thin film transistor which is another embodiment of the present invention.

【0019】厚さ約1mmの低アルカリガラス基板1上
に金属クロム(100nm)をスパッタ法で成膜しこれ
をフォトリソグラフイとウエットエッチングの方法によ
り所定のパターンに加工してゲート電極(配線)2を形
成する。
Metal chromium (100 nm) is deposited on a low-alkali glass substrate 1 having a thickness of about 1 mm by a sputtering method, and this is processed into a predetermined pattern by photolithography and wet etching, and a gate electrode (wiring) is formed. Form 2.

【0020】次にプラズマCVD法によりゲート絶縁膜
用の窒化シリコン膜(500nm)4、第1アモルファ
スシリコン膜(100nm)3−a、第2アモルファス
シリコン膜(200nm)3−b、n型アモルファスシ
リコン膜(60nm)7を真空中で連続性膜する。この
時、第1アモルファスシリコン膜の成膜条件はSiH4
=20SCCM、H2 =200SCCM、圧力=60P
a、高周波放電出力=0.01W/cm2 、第2アモル
ファスシリコン膜の成膜条件はSiH4 =100SCC
M、H4 =200SCCM、圧力=100Pa、高周波
放電出力=0.03W/cm2 とする。
Next, a silicon nitride film (500 nm) 4 for a gate insulating film, a first amorphous silicon film (100 nm) 3-a, a second amorphous silicon film (200 nm) 3-b, and an n-type amorphous silicon film are formed by a plasma CVD method. The film (60 nm) 7 is a continuous film in vacuum. At this time, the film formation conditions for the first amorphous silicon film are SiH 4
= 20 SCCM, H 2 = 200 SCCM, Pressure = 60P
a, high frequency discharge output = 0.01 W / cm 2 , deposition conditions for the second amorphous silicon film are SiH 4 = 100 SCC
M, H 4 = 200 SCCM, pressure = 100 Pa, high frequency discharge output = 0.03 W / cm 2 .

【0021】次に第1、第2アモルファスシリコン膜及
びn型アモルファスシリコン膜をフォトリソグラフィと
ドライエッチングの方法によりゲート電極2及びその他
必要な部分上に所定のパターンに加工してアイランド層
3を形成する。そして残った窒化シリコン膜の所定の位
置にフォトリソグラフィとドライエッチングの方法によ
り電極接続用のコンタクトホール(図示省略)を開けて
ゲート絶縁層4を形成する。この上に電極材として金属
クロム膜(200nm)をスパッタ法により成膜しフォ
トリソグラフィとドライエッチングの方法により所定の
パターンに加工してソース電極5及びドレイン電極6を
形成する。
Next, the first and second amorphous silicon films and the n-type amorphous silicon film are processed into a predetermined pattern on the gate electrode 2 and other necessary portions by a method of photolithography and dry etching to form an island layer 3. To do. Then, a contact hole (not shown) for electrode connection is opened at a predetermined position of the remaining silicon nitride film by a method of photolithography and dry etching to form a gate insulating layer 4. A metal chromium film (200 nm) is formed thereon as an electrode material by a sputtering method and processed into a predetermined pattern by photolithography and dry etching methods to form the source electrode 5 and the drain electrode 6.

【0022】次にチャネル形成のため、ゲート電極上部
のアイランド層上に残ったn型アモルファスシリコン膜
を除去するため、ソース電極5及びドレイン電極6をマ
スクとしてドライエッチング法によりn型アモルファス
シリコン膜と第2アモルファスシリコン膜を合せて約1
50nm除去する。エッチングの堀込み深さは±50n
m程度の分布を持つが前述のアモルファスシリコン膜厚
の設定により残りのアモルファスシリコン膜厚はトラン
ジスタの特性を維持するのに十分な厚みを残している。
ソース電極及びドレイン電極の下に残ったn型アモルフ
ァスシリコン膜はオーミックコンタクト層7となる。
Next, in order to form a channel, in order to remove the n-type amorphous silicon film remaining on the island layer above the gate electrode, an n-type amorphous silicon film is formed by dry etching using the source electrode 5 and the drain electrode 6 as a mask. About 1 for the second amorphous silicon film
Remove 50 nm. Etching depth is ± 50n
Although it has a distribution of about m, the remaining amorphous silicon film thickness remains sufficient to maintain the characteristics of the transistor by setting the above-mentioned amorphous silicon film thickness.
The n-type amorphous silicon film left under the source electrode and the drain electrode becomes the ohmic contact layer 7.

【0023】最後に堀込んだチャネルを保護するための
パシベーション膜8をつける。成膜はプラズマCVDに
より行うが窒化シリコン膜成膜前にH2 ガスだけをソー
スガスとして圧力=100Pa、高周波放電出力=0.
02W/cm2 の条件でプラズマ放電し、チャネルエッ
チング後のアモルファスシリコン表面10を処理し連続
して真空中で窒化シリコン膜を成膜する。その後に電極
接続用のコンタクトホール(図示省略)をフォトリソグ
ラフィの方法により所定の位置に形成してこの薄膜トラ
ンジタは完成する。
Finally, a passivation film 8 for protecting the dug channel is attached. The film formation is performed by plasma CVD, but before the silicon nitride film is formed, only H 2 gas is used as a source gas, the pressure is 100 Pa, the high frequency discharge output is 0.
Plasma discharge is performed under the condition of 02 W / cm 2 , and the amorphous silicon surface 10 after channel etching is processed to continuously form a silicon nitride film in a vacuum. After that, a contact hole (not shown) for electrode connection is formed at a predetermined position by a photolithography method to complete the thin film transistor.

【0024】本実施例ではチャネルエッチングによるア
モルファスシリコン膜へのダメージが緩和されるため特
性安定性が向上するという効果がある。
In the present embodiment, the damage to the amorphous silicon film due to channel etching is mitigated, so that the characteristic stability is improved.

【0025】[0025]

【発明の効果】以上説明したように本発明は逆スタガー
型チャネル堀込み構造の薄膜トランジスタにおいてアモ
ルファスシリコン膜のアイランド層を膜質の良い第1ア
モルファスシリコン膜と成膜速度の速い第2アモルファ
スシリコン膜の複層構造とする事によりトランジスタ特
性とスループットの双方を向上させる効果を有する。
As described above, according to the present invention, in the thin film transistor having the inverted stagger type channel engraving structure, the island layer of the amorphous silicon film is formed of the first amorphous silicon film of good film quality and the second amorphous silicon film of high film formation rate. The multi-layer structure has the effect of improving both transistor characteristics and throughput.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の縦断面図。FIG. 1 is a vertical sectional view of an embodiment of the present invention.

【図2】本発明の異なる実施例の縦断面図。FIG. 2 is a vertical sectional view of a different embodiment of the present invention.

【図3】従来技術による薄膜トランジスタの縦断面図。FIG. 3 is a vertical sectional view of a conventional thin film transistor.

【図4】本発明の効果を示す薄膜トランジスタのゲート
電圧−電流特性曲線図。
FIG. 4 is a gate voltage-current characteristic curve diagram of a thin film transistor showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ゲート電極 3−a 第1アモルファスシリコン層 3−b 第2アモルファスシリコン層 3 アイランド層 4 ゲート絶縁膜 5 ソース電極 6 ドレイン電極 7 オーミックコンタクト層 8 パシベーション膜 10 水素放電処理領域 1 Glass Substrate 2 Gate Electrode 3-a First Amorphous Silicon Layer 3-b Second Amorphous Silicon Layer 3 Island Layer 4 Gate Insulating Film 5 Source Electrode 6 Drain Electrode 7 Ohmic Contact Layer 8 Passivation Film 10 Hydrogen Discharge Treatment Area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上にゲート電極、ゲート絶縁
膜、島状に加工したアモルファスシリコン半導体層、オ
ーミックコンタクト層、ソース及びドレイン電極を順次
積層、パターニングしチャネル部分のオーミックコンタ
クト層をエッチング除去した後パシベーション膜を積
層、パターニングして形成される逆スタガー型チャネル
堀込み構造薄膜トランジスタにおいて、前記アモルファ
スシリコン半導体層を複数の異なる膜質のアモルファス
シリコン膜の積層構造とした事を特徴とする薄膜トラン
ジスタ。
1. A gate electrode, a gate insulating film, an island-shaped amorphous silicon semiconductor layer, an ohmic contact layer, a source and drain electrode are sequentially laminated and patterned on an insulating substrate, and the ohmic contact layer in the channel portion is removed by etching. A reverse stagger type channel engraving thin film transistor formed by laminating and patterning a rear passivation film, wherein the amorphous silicon semiconductor layer has a laminated structure of a plurality of amorphous silicon films having different film qualities.
【請求項2】 請求項1記載の薄膜トランジスタにおい
て、前記アモルファスシリコン半導体層のゲート絶縁膜
に接する側のアモルファスシリコン膜厚が50nm以上
である事を特徴とする薄膜トランジスタ。
2. The thin film transistor according to claim 1, wherein the amorphous silicon film thickness of the amorphous silicon semiconductor layer on the side in contact with the gate insulating film is 50 nm or more.
【請求項3】 絶縁基板上にゲート電極3ゲート絶縁
膜、島状に加工したアモルファスシリコン半導体層、オ
ーミックコンタクト層、ソース及びドレイン電極を順次
積層、パターニングしチャネル部分のオーミックコンタ
クト層をエッチング除去した後パシベーション膜を積
層、パターニングして逆スタガー型チャネル堀込み構造
薄膜トランジスタを製造する方法において、高周波放電
出力0.01W/cm2 以下の低パワー且つ成膜圧力7
0Pa以下且つSiH4 /H2 流量比1:10以上の高
水素希釈率条件のプラズマCVD法でアモルファスシリ
コン膜を形成し、その上に高周波放電出力0.03W/
cm2 以上の高パワー条件且つ成膜圧力120Pa以上
且つSiH4 /H2 流量比1:3以下の低水素希釈率条
件のプラズマCVD法でアモルファスシリコン膜を積層
して2層構造の前記アモルファスシリコン半導体層を形
成する事を特徴とする薄膜トランジスタの製造方法。
3. A gate insulating film 3 of a gate electrode, an island-shaped amorphous silicon semiconductor layer, an ohmic contact layer, a source and a drain electrode are sequentially laminated and patterned on an insulating substrate, and the ohmic contact layer of a channel portion is removed by etching. In a method of manufacturing a thin film transistor having an inverted staggered channel formation structure by laminating and patterning a post-passivation film, a low power with a high frequency discharge output of 0.01 W / cm 2 or less and a film forming pressure of 7
An amorphous silicon film is formed by a plasma CVD method under a high hydrogen dilution ratio condition of 0 Pa or less and a SiH 4 / H 2 flow rate ratio of 1:10 or more, and a high frequency discharge output of 0.03 W /
The amorphous silicon film having a two-layer structure is formed by laminating amorphous silicon films by a plasma CVD method under a high power condition of cm 2 or more and a film forming pressure of 120 Pa or more and a SiH 4 / H 2 flow rate ratio of 1: 3 or less. A method of manufacturing a thin film transistor, which comprises forming a semiconductor layer.
JP10720392A 1992-04-27 1992-04-27 Thin film transistor and method of manufacturing the same Expired - Lifetime JP2924441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10720392A JP2924441B2 (en) 1992-04-27 1992-04-27 Thin film transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10720392A JP2924441B2 (en) 1992-04-27 1992-04-27 Thin film transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0677483A true JPH0677483A (en) 1994-03-18
JP2924441B2 JP2924441B2 (en) 1999-07-26

Family

ID=14453101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10720392A Expired - Lifetime JP2924441B2 (en) 1992-04-27 1992-04-27 Thin film transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2924441B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981972A (en) * 1997-06-23 1999-11-09 Sharp Kabushiki Kaisha Actived matrix substrate having a transistor with multi-layered ohmic contact
US6204519B1 (en) * 1996-03-10 2001-03-20 Semicondutor Energy Laboratory Co., Ltd. Thin film semiconductor device
US6429456B1 (en) 1997-04-23 2002-08-06 Nec Corporation Thin-film transistor elements and methods of making same
US6525341B1 (en) 1999-08-20 2003-02-25 International Business Machines Corporation Thin film transistor, liquid crystal display device and method of fabricating the thin film transistor
US7190421B2 (en) 1999-09-30 2007-03-13 Samsung Electronics, Co., Ltd Thin film transistor array panel for a liquid crystal display and methods for manufacturing the same
JP2008015509A (en) * 2006-06-30 2008-01-24 Lg Philips Lcd Co Ltd Method of fabricating liquid crystal display device
JP2009177138A (en) * 2007-12-03 2009-08-06 Semiconductor Energy Lab Co Ltd Thin-film transistor and display having the same
US7842586B2 (en) 2007-08-17 2010-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for manufacturing microcrystalline semiconductor layer, and method for manufacturing thin film transistor
US7910929B2 (en) 2007-12-18 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7968885B2 (en) 2007-08-07 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US7968879B2 (en) 2007-12-28 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US8017946B2 (en) 2007-08-17 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer and amorphous semiconductor layer
US8030655B2 (en) 2007-12-03 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor
US8101444B2 (en) 2007-08-17 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8227278B2 (en) 2008-09-05 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8247315B2 (en) 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
US8343857B2 (en) 2010-04-27 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline semiconductor film and manufacturing method of semiconductor device
US8349671B2 (en) 2007-09-03 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8394685B2 (en) 2010-12-06 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Etching method and manufacturing method of thin film transistor
US8410486B2 (en) 2010-05-14 2013-04-02 Semiconductor Energy Labortory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
US8426295B2 (en) 2010-10-20 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline silicon film and manufacturing method of semiconductor device
US8450158B2 (en) 2010-11-04 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8778745B2 (en) 2010-06-29 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8859404B2 (en) 2010-08-25 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8884297B2 (en) 2010-05-14 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline silicon film, manufacturing method thereof, semiconductor device, and manufacturing method thereof
US8945962B2 (en) 2007-10-05 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US9048327B2 (en) 2011-01-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device
US9054206B2 (en) 2007-08-17 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2021073524A (en) * 2007-07-26 2021-05-13 株式会社半導体エネルギー研究所 Display apparatus

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763503B2 (en) 1996-03-10 2010-07-27 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device and method of manufacturing the same
US6977192B2 (en) 1996-03-10 2005-12-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film semiconductor device
US6458635B2 (en) * 1996-03-10 2002-10-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film semiconductor device
US6204519B1 (en) * 1996-03-10 2001-03-20 Semicondutor Energy Laboratory Co., Ltd. Thin film semiconductor device
US6566174B1 (en) 1997-04-23 2003-05-20 Nec Corporation Thin-film transistor elements and methods of making same
US6429456B1 (en) 1997-04-23 2002-08-06 Nec Corporation Thin-film transistor elements and methods of making same
US5981972A (en) * 1997-06-23 1999-11-09 Sharp Kabushiki Kaisha Actived matrix substrate having a transistor with multi-layered ohmic contact
US6525341B1 (en) 1999-08-20 2003-02-25 International Business Machines Corporation Thin film transistor, liquid crystal display device and method of fabricating the thin film transistor
US7115448B2 (en) 1999-08-20 2006-10-03 Au Optronics Corporation Thin film transistor, liquid crystal display device and method of fabricating the thin film transistor
US6753550B2 (en) 1999-08-20 2004-06-22 International Business Machines Corporation Liquid crystal display device having a thin film transistor element including an amorphous film containing a low-defect density layer and a high-defect densisty layer
US7190421B2 (en) 1999-09-30 2007-03-13 Samsung Electronics, Co., Ltd Thin film transistor array panel for a liquid crystal display and methods for manufacturing the same
US7220991B2 (en) * 1999-09-30 2007-05-22 Samsung Electronics Co., Ltd. Thin film transistor array panel for liquid crystal display
US7675062B2 (en) 1999-09-30 2010-03-09 Samsung Electronics Co., Ltd. Thin film transistor array panel for liquid crystal display
JP2008015509A (en) * 2006-06-30 2008-01-24 Lg Philips Lcd Co Ltd Method of fabricating liquid crystal display device
JP4553920B2 (en) * 2006-06-30 2010-09-29 エルジー ディスプレイ カンパニー リミテッド Manufacturing method of liquid crystal display device
JP2021073524A (en) * 2007-07-26 2021-05-13 株式会社半導体エネルギー研究所 Display apparatus
US7968885B2 (en) 2007-08-07 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8633485B2 (en) 2007-08-07 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US9054206B2 (en) 2007-08-17 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7842586B2 (en) 2007-08-17 2010-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for manufacturing microcrystalline semiconductor layer, and method for manufacturing thin film transistor
US8017946B2 (en) 2007-08-17 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer and amorphous semiconductor layer
US8101444B2 (en) 2007-08-17 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8368075B2 (en) 2007-08-17 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus
US8309406B2 (en) 2007-08-17 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8395158B2 (en) 2007-08-17 2013-03-12 Semiconductor Energy Labortory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer
US8703560B2 (en) 2007-09-03 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor
US8501554B2 (en) 2007-09-03 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8349671B2 (en) 2007-09-03 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8945962B2 (en) 2007-10-05 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US8558236B2 (en) 2007-12-03 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2009177138A (en) * 2007-12-03 2009-08-06 Semiconductor Energy Lab Co Ltd Thin-film transistor and display having the same
US8030655B2 (en) 2007-12-03 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor
US8343821B2 (en) 2007-12-03 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film transistor
US7910929B2 (en) 2007-12-18 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8951849B2 (en) 2007-12-18 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including layer containing yttria-stabilized zirconia
US8860030B2 (en) 2007-12-28 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US7968879B2 (en) 2007-12-28 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US8247315B2 (en) 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
US8227278B2 (en) 2008-09-05 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8343857B2 (en) 2010-04-27 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline semiconductor film and manufacturing method of semiconductor device
US8884297B2 (en) 2010-05-14 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline silicon film, manufacturing method thereof, semiconductor device, and manufacturing method thereof
US8410486B2 (en) 2010-05-14 2013-04-02 Semiconductor Energy Labortory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
US8778745B2 (en) 2010-06-29 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8859404B2 (en) 2010-08-25 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8426295B2 (en) 2010-10-20 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline silicon film and manufacturing method of semiconductor device
US8450158B2 (en) 2010-11-04 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8394685B2 (en) 2010-12-06 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Etching method and manufacturing method of thin film transistor
US9048327B2 (en) 2011-01-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2924441B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JPH0677483A (en) Thin-film transistor and its manufacture
JPH1093102A (en) Method of manufacture thin-film transistor
JPH0156539B2 (en)
US5310695A (en) Interconnect structure in semiconductor device and method for making the same
US7648860B2 (en) Self-aligned thin-film transistor and method of forming same
JP3352191B2 (en) Method for manufacturing thin film transistor
JP4132556B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JPS599941A (en) Thin-film semiconductor device and its manufacture
JPH04348077A (en) Thin-film transistor
JPH0824185B2 (en) Thin film transistor device and manufacturing method thereof
JP3565993B2 (en) Method for manufacturing semiconductor device
US6656776B2 (en) Thin film transistor and fabricating method thereof
JPH0587029B2 (en)
JPH06112485A (en) Thin film transistor array
JPH08172195A (en) Thin film transistor
KR970011966A (en) Manufacturing method of liquid crystal cell
JP3451930B2 (en) Method for forming element isolation insulating film of semiconductor element
JPH0562996A (en) Manufacture of thin film transistor
JPS6230494B2 (en)
JPH1146000A (en) Thin film transistor and manufacture thereof
JPH01200672A (en) Coplanar transistor and manufacture thereof
JPH05226333A (en) Manufacture of semiconductor device
JPH0283920A (en) Manufacture of semiconductor device
JP3025342B2 (en) Thin film transistor and method for forming the same
JPH0254659B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

EXPY Cancellation because of completion of term