JPH0672845B2 - Analysis method - Google Patents

Analysis method

Info

Publication number
JPH0672845B2
JPH0672845B2 JP61205604A JP20560486A JPH0672845B2 JP H0672845 B2 JPH0672845 B2 JP H0672845B2 JP 61205604 A JP61205604 A JP 61205604A JP 20560486 A JP20560486 A JP 20560486A JP H0672845 B2 JPH0672845 B2 JP H0672845B2
Authority
JP
Japan
Prior art keywords
reaction
analysis
optical density
slide
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61205604A
Other languages
Japanese (ja)
Other versions
JPS6361147A (en
Inventor
肇 牧内
有三 岩田
希久生 平井
憲二 村林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP61205604A priority Critical patent/JPH0672845B2/en
Priority to DE19873729189 priority patent/DE3729189A1/en
Publication of JPS6361147A publication Critical patent/JPS6361147A/en
Priority to US07/351,315 priority patent/US5047351A/en
Publication of JPH0672845B2 publication Critical patent/JPH0672845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/521Single-layer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1738Optionally different kinds of measurements; Method being valid for different kinds of measurement
    • G01N2021/174Optionally different kinds of measurements; Method being valid for different kinds of measurement either absorption-reflection or emission-fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Description

【発明の詳細な説明】 [利用分野] 本発明は比色分析等光学的変化を利用して流体中の特定
成分を定量分析する方法に関する。特に、そのような分
析における所要時間の短縮に関する。
TECHNICAL FIELD The present invention relates to a method for quantitatively analyzing a specific component in a fluid by utilizing an optical change such as colorimetric analysis. In particular, it relates to reducing the time required for such analysis.

[従来技術の欠点] 液体中に存在する特定の物質を検出するために、検出対
象となる物質と適当な試薬との反応により生ずる発色、
変色等の光学的変化を利用する方法は、極めて一般的な
方法であり、比色分析と呼ばれている。湿式法では、被
検物質と反応して発色等の光学的変化を生ずる試薬は、
試料液に添加される。これに対し最近発達した乾式法で
は、試薬を含有する分析要素に液体試料を点滴し、被検
物質と試薬の反応により生ずる発色等を測定する。この
ような乾式分析要素として例えば、特公昭53−21677号
や特開昭55−164356号に開示されたものがある。
[Disadvantages of Prior Art] In order to detect a specific substance existing in a liquid, a color developed by a reaction between a substance to be detected and an appropriate reagent,
A method utilizing an optical change such as discoloration is a very general method and is called colorimetric analysis. In the wet method, a reagent that reacts with a test substance and causes an optical change such as color development is
It is added to the sample solution. On the other hand, in the recently developed dry method, a liquid sample is dropped on an analytical element containing a reagent, and the color development or the like caused by the reaction between the test substance and the reagent is measured. Examples of such dry analytical elements include those disclosed in Japanese Examined Patent Publication No. 53-21677 and Japanese Unexamined Patent Publication No. 55-164356.

試料液に試薬を添加するか、乾式分析要素に試料液を点
着すると、試薬と被検成分が反応し、色素の形成等が生
ずる。例えば、特開昭55−164356号に記載された乾式分
析要素に血液または血漿を点着すると、分析要素中の試
薬と検体中のグルコースが反応し、色素、例えば赤色の
色素が形成される。乾式分析要素の光学濃度は生成した
色素の量に対応するから、一定時間後に反射光学濃度を
測定し、予め求めておいた検量線からグルコース濃度、
いわゆる血糖値に換算する。湿式法では、液の透過濃度
が測定される。
When a reagent is added to the sample solution or the sample solution is spotted on the dry analytical element, the reagent and the test component react with each other to form a dye or the like. For example, when blood or plasma is spotted on the dry analytical element described in JP-A-55-164356, the reagent in the analytical element reacts with glucose in the sample to form a dye, for example, a red dye. Since the optical density of the dry analytical element corresponds to the amount of the produced dye, the reflection optical density is measured after a certain period of time, and the glucose concentration is obtained from the calibration curve previously obtained,
Convert to so-called blood sugar level. In the wet method, the permeation concentration of the liquid is measured.

従来は、反応速度を速度として酵素などの活性を測定す
る反応速度法による分析の場合を除くと、試料液の点着
または試薬の添加から一定時間後に光学濃度測定を行う
のみであった。被検成分の濃度(例えば血糖値)が、比
較的低い場合にはすでに反応が終了しているので、この
時間まで待つ必要はなく、時間の不経済である。分析操
作に要する時間が短縮された乾式分析法では、なおさら
である。しかし被検成分の濃度が高い場合には、反応時
間が短いと検量線の勾配が小さく、分析値の変動係数が
大となり、十分な分析精度が得られないことが多い。
Conventionally, except for the case of the analysis by the reaction rate method in which the activity of an enzyme or the like is measured using the reaction rate as the speed, the optical density measurement was only performed after a fixed time from the spotting of the sample solution or the addition of the reagent. When the concentration of the test component (for example, blood glucose level) is relatively low, the reaction has already been completed, so it is not necessary to wait until this time, which is uneconomical in time. This is all the more true with the dry analysis method in which the time required for the analysis operation is shortened. However, when the concentration of the test component is high, when the reaction time is short, the slope of the calibration curve is small, the coefficient of variation of the analytical value is large, and sufficient analytical accuracy is often not obtained.

[解決すべき技術課題] 本発明は、液体中の特定物質の濃度を比色分析等で測定
する方法において、分析精度を損なうことなく、分析に
要する時間を必要最小限度に短縮することを目的とす
る。
[Technical problem to be solved] An object of the present invention is to reduce the time required for analysis to the minimum necessary without impairing analysis accuracy in a method of measuring the concentration of a specific substance in a liquid by colorimetric analysis or the like. And

[問題解決の手段] 本発明においては、 (1)光学濃度を反応開始後適当な時間間隔で複数回測
定することにより、光学濃度の変化を追跡し、 (2)各測定時点における光学濃度の値から更に反応を
継続するかどうかを判断し、 (3)分析精度の上で更に反応を継続する必要がないと
判断した場合は、その反応時間に対応する検量線を選択
し、 (4)反応を継続する必要があると判断した場合は更に
反応を継続し、 (5)精度の上から必要最小限度の反応時間で分析を終
了する ことを特徴とする。
[Means for Solving Problems] In the present invention, (1) the change in optical density is tracked by measuring the optical density a plurality of times at appropriate time intervals after the start of the reaction. From the value, it is judged whether or not the reaction should be continued. (3) If it is judged that it is not necessary to continue the reaction because of the analytical accuracy, select the calibration curve corresponding to the reaction time, and (4) When it is determined that the reaction needs to be continued, the reaction is further continued, and (5) the analysis is completed in the minimum required reaction time from the viewpoint of accuracy.

本発明は種々の発色反応に基づく比色分析、特に一体化
乾式分析要素を用いた比色分析に適用できる。例えば以
下に列挙するような発色反応に基づく比色分析に適用で
きる。
INDUSTRIAL APPLICABILITY The present invention can be applied to colorimetric analysis based on various color development reactions, particularly colorimetric analysis using an integrated dry analytical element. For example, it can be applied to the colorimetric analysis based on the color development reaction as listed below.

(1)被検物質(アナライトともいわれる)との反応に
より直接または間接に生成した過酸化水素を検出する種
々の発色反応。例えば、 ペルオキシダーゼその他の過酸化物触媒活性物質の存在
下においてフェナゾン類(1−フェニル−2,3−ジメチ
ル−4−アミノピラゾリン−5−オン、1−(2,4,6−
トリクロロフェニル−2,3−ジメチル4−4−アミノピ
ラゾリン−5−オン等)とフェノール類(フェノール、
α−ナフトール、1,7−ジヒドロキシナフタレン等)と
のカップリング反応、 ペルオキシダーゼ等の存在下においてベンジジン型色原
体、例えばベンジジン、O−トルイジン、O−ジアニシ
ジン、テトラメチルベンジジンの、変色反応(例えば、
USP2,981,606号の記載参照)、 イミダゾール核を有するロイコ色素、例えば2,4,5−ト
リアリールイミダゾール、2,4−ジアリール−5−アル
キルイミダゾール等からの色素生成反応。
(1) Various color-developing reactions for detecting hydrogen peroxide produced directly or indirectly by a reaction with a test substance (also called an analyte). For example, in the presence of peroxidase and other peroxide catalytically active substances, phenazones (1-phenyl-2,3-dimethyl-4-aminopyrazolin-5-one, 1- (2,4,6-
Trichlorophenyl-2,3-dimethyl 4-4-aminopyrazolin-5-one etc.) and phenols (phenol,
α-naphthol, 1,7-dihydroxynaphthalene, etc.), a color change reaction (eg, benzidine, O-toluidine, O-dianisidine, tetramethylbenzidine) in the presence of peroxidase, etc. ,
U.S. Pat. No. 2,981,606), a dye forming reaction from a leuco dye having an imidazole nucleus, such as 2,4,5-triarylimidazole and 2,4-diaryl-5-alkylimidazole.

(2)NADとNADH,またはNADPとNADPHの間の酸化還元反
応に共役する電子伝達剤を介してのテトラゾリウム塩か
らのホルマザン色素形成反応。例えば、特開昭59−8809
7号に記載されたテトラゾリウム塩からの色素形成反
応。
(2) Formazan dye formation reaction from a tetrazolium salt via an electron transfer agent coupled to a redox reaction between NAD and NADH or NADP and NADPH. For example, JP-A-59-8809
Pigmentation reaction from the tetrazolium salt described in No. 7.

(3)芳香族ジアゾニウム塩とビリルビンの結合による
アゾビリルビンの生成反応。例えばUSP2,854,317号、同
3,880,588号、特開昭59−145965号の記載参照。
(3) Azobilirubin formation reaction by binding of an aromatic diazonium salt and bilirubin. For example, USP 2,854,317,
See 3,880,588 and JP-A-59-145965.

(4)バリルマンデル酸とジアゾニウム塩、例えばp−
ニトロベンゼンジアゾニウムとによるアゾ色素の形成反
応。
(4) Valylmandelic acid and diazonium salts such as p-
Formation reaction of azo dyes with nitrobenzenediazonium.

(5)クレアチニンとピクリン酸塩からの色素形成反応
(いわゆるヤッフェ法)。
(5) Pigment formation reaction from creatinine and picrate (so-called Jaffe method).

(6)酵素活性下での自己顕色性基質からの色素解離。
例えば USP4,233,403号に記載のあるp−ニトロフェノール置換
オリゴ糖から、パラニトロフェノールを生成する加水分
解反応、 γ−グルタミルパラニトロアニリド、リン酸パラニトロ
フェノール等から、パラニトロフェノールを生成する加
水分解反応。
(6) Dye dissociation from a self-developing substrate under enzymatic activity.
For example, a hydrolysis reaction for producing para-nitrophenol from a p-nitrophenol-substituted oligosaccharide described in USP 4,233,403, a hydrolysis reaction for producing para-nitrophenol from γ-glutamyl-para-nitroanilide, para-nitrophenol phosphate, etc. Decomposition reaction.

(7)酸性環境でナフチルアミン類、例えばN−(1−
ナフチル)−N′−ジエチルエチレンジアミンとo−フ
タルアルデヒドと尿素との反応、例えば特開昭55−6903
8号、特開昭58−117457号に記載のある反応。
(7) Naphthylamines such as N- (1-
Reaction of naphthyl) -N'-diethylethylenediamine with o-phthalaldehyde and urea, for example JP-A-55-6903.
8 and the reaction described in JP-A-58-117457.

(8)金属イオン、例えばカルシウムイオンと、キレー
ト剤、例えば3,3′−ビス[{ジ(カルボキシメチル)
アミノ}メチル]−o−クレゾールフタレインとの間の
キレート色素形成反応。
(8) Metal ions such as calcium ions and chelating agents such as 3,3'-bis [{di (carboxymethyl)
Chelate dye formation reaction with amino} methyl] -o-cresolphthalein.

(9)酸塩基指示薬のpHによる変色。例えば、フェノー
ルスルフォフタレイン、ブロムクレゾールグリーン、ブ
ロムクレゾールパープル等の変色。
(9) Discoloration of acid-base indicator due to pH. For example, discoloration of phenol sulphophthalein, bromcresol green, bromcresol purple, etc.

(10)酸塩基指示薬の蛋白質による変色。例えば、アン
モニア、尿素等の分析に利用されるブロムクレゾールグ
リーン、ブロムクレゾールパープル、テトラブロモフェ
ノールブルー等のアルブミンによる変色。
(10) Discoloration of acid-base indicator due to protein. For example, discoloration by albumin such as bromcresol green, bromcresol purple, and tetrabromophenol blue, which are used for analysis of ammonia, urea and the like.

(11)総蛋白の定量に利用される、アルカリ環境におけ
るビウレット試薬の呈色。
(11) Coloring of Biuret's reagent in alkaline environment used for quantification of total protein.

色素の形成または変色(吸収波長変化)のみならず、色
素の退色や有色物質の減少を測定する場合にも、本発明
が適用できる。例えば、NADHまたはNADPHの減少を測定
するグルコースの分析やフェリシアン化物の減少を測定
するグルコースの分析である。
The present invention can be applied not only to the formation or discoloration of dyes (change in absorption wavelength) but also to the measurement of fading of dyes or reduction of colored substances. For example, a glucose assay that measures a decrease in NADH or NADPH and a glucose assay that measures a decrease in ferricyanide.

短波長電磁波、例えば紫外線、放射線の励起により生ず
る蛍光を測定する場合にも、本発明が適用できる。また
化学発光、生物発光などの発光を測定する場合にも、本
発明が適用できる。例えば、過酸化水素の作用によるル
ミノール発光等。
The present invention can be applied to the case of measuring fluorescence generated by excitation of short-wave electromagnetic waves such as ultraviolet rays and radiation. The present invention can also be applied to the case of measuring luminescence such as chemiluminescence and bioluminescence. For example, luminol emission due to the action of hydrogen peroxide.

[発明の効果] 本発明は、液体中の特定物質の濃度を比色分析等で測定
する方法において、分析精度を損なうことなく、分析に
要する時間を必要最小限度に短縮することができる。
[Effects of the Invention] In the present invention, in the method of measuring the concentration of a specific substance in a liquid by colorimetric analysis or the like, the time required for the analysis can be shortened to the necessary minimum without impairing the analysis accuracy.

試料液の点着または試薬の添加から一定時間後に光学濃
度測定を行う従来の終点法分析に比し、本発明では、被
検成分の濃度(例えば血糖値)が比較的低い場合には反
応が比較的短時間に終了しているのでそれ以上待つこと
なく分析を終了し、分析時間の経済を図ることができ
る。乾式分析法のように分析操作に要する時間が短縮さ
れた分析法では特にその長所を活用することができる。
Compared with the conventional end point method analysis in which the optical density measurement is performed after a certain period of time from the spotting of the sample solution or the addition of the reagent, in the present invention, when the concentration of the test component (for example, blood glucose level) is relatively low, the reaction Since the analysis is completed in a relatively short time, the analysis can be completed without waiting any longer, and the analysis time can be saved. The advantage can be utilized especially in the analytical method in which the time required for the analytical operation is shortened, such as the dry analytical method.

一方、被検成分の濃度が高い場合には、反応時間が短い
と検量線の勾配が小さく、分析値の変動係数が大とな
り、十分な分析精度が得られないことがあるので、この
ような場合には必要な反応時間を取ることにより、分析
精度を高く保つことができる。乾式分析要素を用いた分
析法では、上の傾向が多く見られるので、これは重要で
ある。
On the other hand, when the concentration of the test component is high, when the reaction time is short, the slope of the calibration curve is small, the coefficient of variation of the analytical value becomes large, and sufficient analytical accuracy may not be obtained. In some cases, by taking the necessary reaction time, the analysis accuracy can be kept high. This is important because the above tendency is often seen in the analytical method using the dry analytical element.

本発明では、分析時間の異なる短縮だけでなく、試料液
中の被検成分濃度に応じて、分析精度の上で必要な最小
限の反応時間を選ぶので、分析精度を損なうことなく所
要時間の合理的な短縮が達成できる。
In the present invention, not only different shortening of the analysis time, but depending on the concentration of the test component in the sample solution, the minimum reaction time required on the analysis accuracy is selected, so that the required time can be reduced without impairing the analysis accuracy. Reasonable shortening can be achieved.

[実施例] <化学分析スライドの作製> 下記のようにして、グルコース乾式化学分析スライドを
作製した。
[Example] <Preparation of chemical analysis slide> A glucose dry chemical analysis slide was prepared as follows.

ゼラチン下塗りがされている厚さ180ミクロンのポリエ
チレンテレフタレート平滑フィルムの上に下記組成の試
薬層を塗布液、乾燥厚さが15ミクロンになるように塗布
し乾燥した。
On a 180-micron-thick polyethylene terephthalate smooth film undercoated with gelatin, a reagent layer having the following composition was applied as a coating solution to a dry thickness of 15 microns and dried.

ゼラチン 20g ペルオキシダーゼ 2500IU グルコースオキシダーゼ 1000IU 1,7−ジヒドロキシナフタレン 0.5g 4−アミノアンチピリン 0.5g ポリオキシエチレンノニルフェノール 0.2g 水 200ml その上に下記組成の光遮蔽層塗布液を乾燥厚さが7ミク
ロンになるように、塗布、乾燥した。
Gelatin 20 g Peroxidase 2500 IU Glucose oxidase 1000 IU 1,7-Dihydroxynaphthalene 0.5 g 4-Aminoantipyrine 0.5 g Polyoxyethylene nonylphenol 0.2 g Water 200 ml On top of this, apply a light shielding layer coating solution of the following composition to a dry thickness of 7 microns. Then, it was applied and dried.

ゼラチン 10g 二酸化チタン 100g 水 500ml 光遮蔽層の上に下記組成の接着層を乾燥膜厚が2μmに
なるように塗布、乾燥した。
Gelatin 10 g Titanium dioxide 100 g Water 500 ml An adhesive layer having the following composition was coated on the light shielding layer so that the dry film thickness was 2 μm, and dried.

ゼラチン 4g ポリオキシエチレンノニルフェノール 0.1g 水 200ml 接着層を30g/m2の割合の水で湿らせた後、綿ブロード織
物を軽く圧着し、乾燥させた。
Gelatin 4 g Polyoxyethylene nonylphenol 0.1 g Water 200 ml The adhesive layer was moistened with water at a rate of 30 g / m 2, and then cotton broad cloth was lightly pressed and dried.

上記のように作製されたグルコース分析フィルムを、15
×15mmに切り、24×28mmのプラスチック製マウントに収
納した。
Glucose analysis film prepared as described above, 15
It was cut into x15mm and stored in a 24x28mm plastic mount.

<比色分析操作> 上記のように作製されたグルコース分析スライドを、第
1図に示す分析装置のスライド挿入位置2に装填し、試
料液10μをマイクロピペットで点着した後、直ちにス
ライド送りレバー4を測光位置3まで押して、インキュ
ベータ7内にスライドを送り込む。
<Colorimetric analysis operation> The glucose analysis slide prepared as described above was loaded into the slide insertion position 2 of the analyzer shown in FIG. 1, and 10 μl of the sample solution was spotted with a micropipette, and immediately thereafter, the slide feed lever was used. 4 is pushed to the photometric position 3 and the slide is fed into the incubator 7.

分析装置内に設けられたタイマーにより、スライドの送
り込みから2分後に、インキュベータの下方に設けられ
た測光窓を通して、スライド内の化学分析フィルムの支
持体側からの反射光学濃度を光学濃度測定ヘッド(プロ
ーブ)12の光源と測光部14、参照光の測光部15によって
測定した。光源には透過極大波長500nmのフィルターを
光路に挿入した。
Two minutes after the slide was fed by a timer provided in the analyzer, the optical density measurement head (probe) for measuring the reflection optical density of the chemical analysis film in the slide from the support side was passed through a photometric window provided below the incubator. ) 12 light sources, a photometric unit 14, and a reference light photometric unit 15. A filter with a maximum transmission wavelength of 500 nm was inserted in the optical path as the light source.

本発明における代表的な工程を示すフローチャートを、
本実施例の場合について第2図に示す。
A flow chart showing a typical process in the present invention,
The case of this embodiment is shown in FIG.

点着から2分後に測定した光学濃度の値が0.400より小
のときには、反応を打ち切ってスライドをインキュベー
タからトレイ23に排出させる一方、反応時間2分での用
意された検量線を用いて、グルコース濃度を算出する。
検量線は演算装置内の記憶装置に記憶されているもの
が、演算制御装置からの指令信号により選択されて演算
装置の演算部にインプットされ、演算に用いられる。
When the value of optical density measured 2 minutes after the spotting was less than 0.400, the reaction was stopped and the slide was discharged from the incubator to the tray 23, while using the prepared calibration curve at the reaction time of 2 minutes, glucose was used. Calculate the concentration.
The calibration curve stored in the storage device in the arithmetic unit is selected by a command signal from the arithmetic control unit, input to the arithmetic unit of the arithmetic unit, and used for the arithmetic.

2分後の光学濃度が0.400以上であるときには、3分後
までインキュベータ内でスライド上の反応を継続させ
て、光学濃度を測定する。
When the optical density after 2 minutes is 0.400 or more, the reaction on the slide is continued in the incubator until after 3 minutes, and the optical density is measured.

3分後の光学濃度が0.600より小のときには、反応を打
ち切ってスライドをインキュベータから排出させる一
方、反応時間3分での用意された検量線を用いて、グル
コース濃度を算出する。3分後の光学濃度が0.600以上
であるときには、さらに4分後までインキュベータ内で
スライド上の反応を継続させて、4分後に光学濃度に測
定する。
When the optical density after 3 minutes is less than 0.600, the reaction is stopped and the slide is ejected from the incubator, while the glucose concentration is calculated using the prepared calibration curve at the reaction time of 3 minutes. When the optical density after 3 minutes is 0.600 or more, the reaction on the slide is continued in the incubator until after 4 minutes, and the optical density is measured after 4 minutes.

4分後の光学濃度が0.700より小のときには、反応を打
ち切ってスライドをインキュベータから排出させる一
方、反応時間4分での用意された検量線を用いて、グル
コース濃度を算出する。4分後の光学濃度が0.700以上
であるときには、さらに5分後までインキュベータ内で
スライド上の反応を継続させて、5分後に光学濃度を測
定する。
When the optical density after 4 minutes is less than 0.700, the reaction is stopped and the slide is ejected from the incubator, while the glucose concentration is calculated using the prepared calibration curve at the reaction time of 4 minutes. When the optical density after 4 minutes is 0.700 or more, the reaction on the slide is continued in the incubator until after 5 minutes, and the optical density is measured after 5 minutes.

5分後の光学濃度が0.850より小のときには、反応を打
ち切ってスライドをインキュベータから排出される一
方、反応時間5分での用意された検量線を用いて、グル
コース濃度を算出する。5分後の光学濃度が0.850以上
であるときには、さらに6分後までインキュベータ内で
スライド上の反応を継続させて、6分後に光学濃度を測
定する。測定終了後のスライドは排出される。
When the optical density after 5 minutes is less than 0.850, the reaction is terminated and the slide is ejected from the incubator, while the glucose concentration is calculated using the prepared calibration curve at the reaction time of 5 minutes. When the optical density after 5 minutes is 0.850 or more, the reaction on the slide is continued in the incubator until 6 minutes later, and the optical density is measured after 6 minutes. The slide after the measurement is ejected.

本実施例における以上の論理処理フローチャートを第3
図に示した。
A third flowchart of the above logical processing in the present embodiment is shown.
As shown in the figure.

<検量線の作製> 各反応時間に対する検量線は、分析に先立ち以下のよう
にして作成した。
<Preparation of calibration curve> A calibration curve for each reaction time was prepared as follows prior to analysis.

前記のグルコース分析スライドに、0,50,100,150,200,2
50,300,350,400,450,500,550,600mg/dlのグルコースを
それぞれ含む管理血清(市販管理血清およびそれに所要
量のグルコースを加えたもの)を、マイクロピペットを
用いて点着し、1,2,3,4,5,6分後の反射光学濃度を測定
した。各グルコース濃度における反応時間に反射光学濃
度の関係は、第4図に示すごとくであった。このグラフ
をもとに、反応時間2,3,4,5,6分における検量線(グル
コース含量対光学濃度)を求めた。各反応時間に対する
検量線は第5図に示すごとくであった。
On the glucose analysis slide above, 0,50,100,150,200,2
Control serum containing 50,300,350,400,450,500,550,600 mg / dl glucose respectively (commercial control serum and the required amount of glucose added) is spotted using a micropipette, and after 1,2,3,4,5,6 minutes The reflection optical density of was measured. The relationship between the reaction time and the reflection optical density at each glucose concentration was as shown in FIG. Based on this graph, a calibration curve (glucose content vs. optical density) at reaction times of 2, 3, 4, 5 and 6 minutes was obtained. The calibration curve for each reaction time was as shown in FIG.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例に用いた分析装置の断面図と電気回路の
模式図である。 第2図は工程フローチャートの代表例、第3図は実施例
の論理処理フローチャートである。 第4図は実施例における反応時間と反射光学濃度の関係
を示すグラフ、第5図は実施例における検量線を示すグ
ラフである。 第1図、第2図で各記号の示す意義は下記の通りであ
る。 1……スライド挿入レバーの、スライド排出位置を示す 2……スライド挿入レバーの、液点着位置を示す 3……スライド挿入レバーの、測光位置を示す4スライ
ド挿入レバー 5……スライド挿入レバー(平面図) 6……スライド送り部 7……上部保温部材 8……化学分析スライド、16……ランプ 9……黒板、17……増幅器 10……白板、18……増幅器 11……下部保温部材、19……切り換え器 12……測光ヘッド、20……A/D変換器 13……レンズ、21……コンピュータ 14……受光素子、22……ベース 15……受光素子(参照光) 23……スライド排出トレー
FIG. 1 is a cross-sectional view of an analyzer used in Examples and a schematic view of an electric circuit. FIG. 2 is a typical example of a process flow chart, and FIG. 3 is a logic process flow chart of the embodiment. FIG. 4 is a graph showing the relationship between reaction time and reflection optical density in the examples, and FIG. 5 is a graph showing the calibration curve in the examples. Meanings of symbols in FIGS. 1 and 2 are as follows. 1 …… Indicates the slide discharge position of the slide insertion lever 2 …… Indicates the liquid spotting position of the slide insertion lever 3 …… Indicates the metering position of the slide insertion lever 4 Slide insertion lever 5 …… Slide insertion lever ( (Plan view) 6 …… Slide feed unit 7 …… Upper heat insulation member 8 …… Chemical analysis slide, 16 …… Lamp 9 …… Blackboard, 17 …… Amplifier 10 …… White plate, 18 …… Amplifier 11 …… Lower heat insulation member , 19 ...... Switcher 12 ...... Metering head, 20 ...... A / D converter 13 ...... Lens, 21 ...... Computer 14 ...... Light receiving element, 22 ...... Base 15 ...... Light receiving element (reference light) 23 ... … Slide ejection tray

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−150333(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-56-150333 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液体中の特定物質の濃度または活性を、化
学反応を介して生ずる光学的変化を検出して測定する分
析方法において、光学濃度または発光強度を反応開始後
適当な時間間隔で複数回測定することにより、光学濃度
の変化を追跡し、各測定時点における光学濃度の値から
更に反応を継続するかどうか判断し、分析精度の上から
反応を継続する必要がないと判断した場合はその反応時
間に対応する検量線を選択し、反応を継続する必要があ
ると判断した場合は更に反応を継続して、分析精度の上
から最小限度の反応時間で分析を終了することを特徴と
する分析方法。
1. An analytical method for measuring the concentration or activity of a specific substance in a liquid by detecting an optical change caused by a chemical reaction, wherein a plurality of optical concentrations or luminescence intensities are set at appropriate time intervals after the initiation of the reaction. By measuring the change in optical density by measuring twice, determine whether to continue the reaction from the value of optical density at each measurement point, and if it is determined that it is not necessary to continue the reaction from the viewpoint of analytical accuracy, When the calibration curve corresponding to the reaction time is selected and it is determined that the reaction needs to be continued, the reaction is further continued, and the analysis is completed in the minimum reaction time from the viewpoint of analysis accuracy. Analysis method.
JP61205604A 1986-09-01 1986-09-01 Analysis method Expired - Fee Related JPH0672845B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61205604A JPH0672845B2 (en) 1986-09-01 1986-09-01 Analysis method
DE19873729189 DE3729189A1 (en) 1986-09-01 1987-09-01 ANALYTICAL PROCEDURE
US07/351,315 US5047351A (en) 1986-09-01 1989-05-10 Optical end-point type analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205604A JPH0672845B2 (en) 1986-09-01 1986-09-01 Analysis method

Publications (2)

Publication Number Publication Date
JPS6361147A JPS6361147A (en) 1988-03-17
JPH0672845B2 true JPH0672845B2 (en) 1994-09-14

Family

ID=16509615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205604A Expired - Fee Related JPH0672845B2 (en) 1986-09-01 1986-09-01 Analysis method

Country Status (3)

Country Link
US (1) US5047351A (en)
JP (1) JPH0672845B2 (en)
DE (1) DE3729189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119044A (en) * 2004-10-22 2006-05-11 Sysmex Corp Biological sample analyzer and method

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935346A (en) 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
JPH03123673U (en) * 1990-03-30 1991-12-16
EP0515625B1 (en) * 1990-12-12 1995-06-07 AVL Medical Instruments AG INDICATOR SUBSTANCE OF AN OPTICAL FLUORESCENCE MEASURING ARRANGEMENT FOR MEASURING THE pH OF A SAMPLE AND OPTICAL SENSOR WITH SUCH AN INDICATOR SUBSTANCE
US5514562A (en) * 1991-02-07 1996-05-07 Novo Nordisk A/S Method and an apparatus for currently measuring the presence of traces of an undesirable substance in air
DK20991D0 (en) * 1991-02-07 1991-02-07 Novo Nordisk As
US5246858A (en) * 1991-02-27 1993-09-21 Boehringer Mannheim Corporation Apparatus and method for analyzing a body fluid
JP3118552B2 (en) * 1991-02-27 2000-12-18 ロッシュ ダイアグノスティックス コーポレイション Apparatus and method for analyzing body fluid
DE4203202A1 (en) * 1992-02-05 1993-08-12 Boehringer Mannheim Gmbh DEVICE FOR ANALYZING A MEDICAL SAMPLE
US5371687A (en) * 1992-11-20 1994-12-06 Boehringer Mannheim Corporation Glucose test data acquisition and management system
DE4321456C2 (en) * 1993-06-29 1995-12-14 Forschungszentrum Juelich Gmbh Method for the quantitative determination of combustible parts of a sample and device for carrying out the method
US5728352A (en) * 1994-11-14 1998-03-17 Advanced Care Products Disposable electronic diagnostic instrument
US20030180183A1 (en) * 1995-10-30 2003-09-25 Takao Fukuoka Method for measuring substance and testing piece
CN1103919C (en) * 1995-10-30 2003-03-26 株式会社京都第一科学 Method of measurement of material and testpiece
DE19835243A1 (en) * 1998-08-04 2000-02-24 Lmb Technologie Gmbh Device and method for determining a hemoglobin value of blood
AU7855000A (en) * 1999-10-07 2001-05-10 Umm Electronics, Inc. Timing independent method for determining a proper time for measurement of a reaction between a sample fluid and reagent
US6458326B1 (en) 1999-11-24 2002-10-01 Home Diagnostics, Inc. Protective test strip platform
US6525330B2 (en) 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
US6541266B2 (en) 2001-02-28 2003-04-01 Home Diagnostics, Inc. Method for determining concentration of an analyte in a test strip
US7118916B2 (en) * 2002-10-21 2006-10-10 Lifescan, Inc. Method of reducing analysis time of endpoint-type reaction profiles
US7239394B2 (en) 2003-06-04 2007-07-03 Inverness Medical Switzerland Gmbh Early determination of assay results
GB0515750D0 (en) 2005-07-30 2005-09-07 Dyson Technology Ltd Drying apparatus
GB0515744D0 (en) 2005-07-30 2005-09-07 Dyson Technology Ltd Dryer
GB0515754D0 (en) 2005-07-30 2005-09-07 Dyson Technology Ltd Drying apparatus
GB2428569B (en) * 2005-07-30 2009-04-29 Dyson Technology Ltd Dryer
GB0515749D0 (en) 2005-07-30 2005-09-07 Dyson Technology Ltd Drying apparatus
GB2434094A (en) 2006-01-12 2007-07-18 Dyson Technology Ltd Drying apparatus with sound-absorbing material
GB2450351B (en) 2007-06-20 2012-01-18 Cozart Bioscience Ltd Monitoring an Immunoassay
US8101062B2 (en) 2007-07-26 2012-01-24 Nipro Diagnostics, Inc. System and methods for determination of analyte concentration using time resolved amperometry
BRPI0814201A2 (en) * 2007-07-26 2015-01-27 Home Diagnostics Inc FLUID SAMPLE ANALYSIS PRODUCT ANALYSIS SYSTEM AND METHOD AND COMPUTER READY
CA2804843C (en) * 2012-02-06 2021-02-02 Ortho-Clinical Diagnostics, Inc. Multiple time windows for extending the range of an assay
US9588113B2 (en) 2012-02-22 2017-03-07 Church & Dwight Co., Inc. Methods for electronic analyte assaying
US9063091B2 (en) * 2012-04-06 2015-06-23 Ixensor Inc. Test strips and method for reading test strips
EP2657681A1 (en) * 2012-04-26 2013-10-30 Roche Diagnostics GmbH Improvement of the sensitivity and the dynamic range of photometric assays by generating multiple calibration curves
US9778200B2 (en) 2012-12-18 2017-10-03 Ixensor Co., Ltd. Method and apparatus for analyte measurement
CN104062293B (en) * 2014-07-03 2016-04-20 青岛啤酒股份有限公司 A kind of detection in barley or Fructus Hordei Germinatus causes the method that yeast shifts to an earlier date the coherency factor
WO2022002327A1 (en) 2020-07-03 2022-01-06 Glycospot Aps System and method for determining enzyme activity in grain material
WO2022250593A1 (en) * 2021-05-24 2022-12-01 Delaval Holding Ab Determination of haptoglobin quantity in milk
EP4346386A1 (en) * 2021-05-24 2024-04-10 DeLaval Holding AB Determination of haptoglobin quantity in milk

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245306A (en) * 1961-10-05 1966-04-12 Aluminum Co Of America Photometer and method
US3881992A (en) * 1973-07-02 1975-05-06 Wilson Ralston Optical rate measurement method
US4052161A (en) * 1974-08-22 1977-10-04 The Perkin-Elmer Corporation Kinetic analyzer
JPS5247345B2 (en) * 1974-12-26 1977-12-01
JPS51114985A (en) * 1975-04-01 1976-10-09 Kyoto Daiichi Kagaku:Kk Mothod to analyse urine, etc.
US3989383A (en) * 1975-04-07 1976-11-02 Bio-Technology Instruments Corporation Reaction detection system
SE418017B (en) * 1978-06-14 1981-04-27 Bifok Ab SET TO CONTINUOUSLY DETERMINE DIFFERENT SLOWLY REACTIVE SUBSTANCES QUANTITATIVE USING A SINGLE METCELL
JPS56155835A (en) * 1980-05-02 1981-12-02 Olympus Optical Co Ltd Component analyzing method
DE3439181C2 (en) * 1984-10-23 1994-01-20 Lange Gmbh Dr Bruno Method for the photometric determination of the concentration of a substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119044A (en) * 2004-10-22 2006-05-11 Sysmex Corp Biological sample analyzer and method
US9568488B2 (en) 2004-10-22 2017-02-14 Sysmex Corporation Biological sample analyzing apparatus

Also Published As

Publication number Publication date
JPS6361147A (en) 1988-03-17
US5047351A (en) 1991-09-10
DE3729189A1 (en) 1988-03-03

Similar Documents

Publication Publication Date Title
JPH0672845B2 (en) Analysis method
JP3342077B2 (en) Improved oxidative coupling dyes for spectrophotometric determination of analytes
FI93149C (en) Analytical apparatus for the automatic determination of analytes in solution samples
US6511814B1 (en) Method and device for detecting analytes in fluids
US6551842B1 (en) Method and device for detecting analytes in fluids
US4587100A (en) Multilayer analytical element for the detection of hydrogen peroxide
CA2024206C (en) Test device and method of assaying for fructoasmines
US5516700A (en) Automated urinalysis method
CA1235052A (en) Analytical element and method for colorimetric determination of total cholesterol
US4812399A (en) Analytical element and method for the determination of creatinine or creatine
JPH0695959B2 (en) Analytical element and measuring method for measuring total creatine kinase or isoenzyme
US4897347A (en) Multilayer analysis film for analyzing transaminase
JP2001264315A (en) Test piece having solid component separation capacity
Jeppesen et al. Determination of creatinine in undiluted blood serum enzymatic flow injection analysis with optosensing
JPH0526865A (en) Measuring method using dry process analysis element and dry process analysis element
JPS61500152A (en) Device for rapid quantitative analysis of fluids
US4788140A (en) Analytical element containing photosensitive compound and filter layer and method of use
EP1717582B1 (en) Multilayer analysis element
US4971918A (en) Reducible indicator compositions containing pyrogallol derivatives
US5776780A (en) Method for quantitatively measuring white blood cells esterase activity in urine
Bigat et al. Some Methodological Modifications of the Technicon" SMA 12/60 AutoAnalyzer" System
JPH05260994A (en) Detection of analyte in saliva using peroxide-peroxidase test system
JP2513509B2 (en) Urea analysis reagent composition and integrated multilayer analytical element containing the same
JPH07197A (en) Reagent for determination of inorganic phosphorus and dry analytic element
US5733785A (en) Automated urinalysis method for detecting blood in urine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees