JPH0666757B2 - Synchronous acquisition device for spread spectrum communication - Google Patents

Synchronous acquisition device for spread spectrum communication

Info

Publication number
JPH0666757B2
JPH0666757B2 JP60279173A JP27917385A JPH0666757B2 JP H0666757 B2 JPH0666757 B2 JP H0666757B2 JP 60279173 A JP60279173 A JP 60279173A JP 27917385 A JP27917385 A JP 27917385A JP H0666757 B2 JPH0666757 B2 JP H0666757B2
Authority
JP
Japan
Prior art keywords
pseudo noise
signal
noise signal
bits
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60279173A
Other languages
Japanese (ja)
Other versions
JPS62139435A (en
Inventor
重喜 武田
昭彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60279173A priority Critical patent/JPH0666757B2/en
Publication of JPS62139435A publication Critical patent/JPS62139435A/en
Publication of JPH0666757B2 publication Critical patent/JPH0666757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、スペクトラム拡散通信に用いられるスペク
トラム拡散通信用同期捕捉装置に関するものである。
The present invention relates to a synchronization acquisition device for spread spectrum communication used in spread spectrum communication.

〔従来の技術〕[Conventional technology]

スペクトラム拡散通信は送信側において擬似雑音信号を
用いて帯域拡散した信号を送信し、受信側において送信
側に用いたと同一の擬似雑音信号を用いて相関をとり、
必要な信号を検出するものであり、秘匿性,多重化,耐
マルチパス特性が優れているなどの利点があるので、将
来の有望な通信方式として期待されている。
In spread spectrum communication, the transmitting side transmits a signal that has been band-spread using a pseudo noise signal, and the receiving side uses the same pseudo noise signal as that used on the transmitting side for correlation,
Since it detects necessary signals and has advantages such as excellent confidentiality, multiplexing, and anti-multipath characteristics, it is expected as a promising communication system in the future.

第10図は従来提案されている装置の一例を示すブロツク
図である。同図において1a〜1cは相関器、2a〜2cはバン
ドパスフイルタ、3a〜3cは検波器、4は差動増幅器、5
は制御部、6はVCO、7は分周器、8は擬似雑音発生
器、9aは1ビツトの遅延回路、9bは1ビツトの遅延回路
である。
FIG. 10 is a block diagram showing an example of a conventionally proposed device. In the figure, 1a to 1c are correlators, 2a to 2c are bandpass filters, 3a to 3c are detectors, 4 is a differential amplifier, 5
Is a control unit, 6 is a VCO, 7 is a frequency divider, 8 is a pseudo noise generator, 9a is a 1-bit delay circuit, and 9b is a 1-bit delay circuit.

このように構成された装置は、VCO6の発振周波数が分周
器7で分周され、その分周された信号に基づいて擬似雑
音発生器8で擬似雑音信号を発生し、その信号を遅延回
路9a,9bによつて遅延させ位相差をもたせて相関器1a〜1
cに供給している。そして、相関がとれていない場合に
は検波器3a〜3cのいずれからも出力は発生しないが、相
関がとれて来るとこれらの検波器からの出力が発生し、
制御部5は検波器3cの出力が発生している状態で、検波
器3aと3bの出力が等しくなつて差動増幅器4からの出力
が零となるようVCO6の発振周波数を制御する。このため
差動増幅器4の入力電圧が等しくなるようにVCO6の発振
周波数を制御する。このため、差動増幅器4の入力電圧
が等しくなつた状態で安定同期状態となる。また、この
ような同期は分周期7の分周比を変えることによつても
行なえる。
In the device configured as described above, the oscillation frequency of the VCO 6 is divided by the frequency divider 7, a pseudo noise generator 8 generates a pseudo noise signal based on the frequency-divided signal, and the signal is delayed by a delay circuit. Correlators 1a to 1 are delayed by 9a and 9b to provide a phase difference.
supply to c. Then, when the correlation is not obtained, no output is generated from any of the detectors 3a to 3c, but when the correlation is obtained, the output from these detectors is generated,
The control unit 5 controls the oscillation frequency of the VCO 6 so that the outputs of the detectors 3a and 3b become equal and the output from the differential amplifier 4 becomes zero while the output of the detector 3c is generated. Therefore, the oscillation frequency of the VCO 6 is controlled so that the input voltage of the differential amplifier 4 becomes equal. Therefore, a stable synchronization state is achieved when the input voltages of the differential amplifier 4 are equal. Also, such synchronization can be performed by changing the division ratio of the division cycle 7.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながらこのような従来の装置は同期捕捉に長時間
を要するという欠点を有していた。
However, such a conventional device has a drawback that it takes a long time to acquire the synchronization.

〔問題点を解決するための手段〕[Means for solving problems]

このような欠点を解決するためにこの発明は、受信信号
の擬似雑音信号1周期のビツト数と同一のビツト数およ
び1周期のビツト数が異なる擬似雑音信号を選択によつ
て発生させる擬似雑音発生器を設けたものである。
In order to solve such a drawback, the present invention generates a pseudo noise by selectively generating a pseudo noise signal having the same number of bits as the one cycle of the pseudo noise signal of the received signal and a different number of bits of one cycle. It is equipped with a container.

〔作 用〕 入力信号の擬似雑音信号の1周期のビツト数とビツト数
の異なる擬似雑音信号によつて同期捕捉が行なわれた
後、入力信号のビツト数と同一ビツト数の周期の擬似雑
音信号に切換えられる。
[Operation] Pseudo-noise signal having the same number of bits as that of the input signal after synchronization is acquired by the pseudo-noise signal of one period and the pseudo-noise signal of different bit number of the input signal. Is switched to.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すブロツク図であり、
第10図と同一部分および相当部分は同記号を用いてい
る。図において、10a〜10cは内部基準電圧以上の入力電
圧が供給されたとき「1」レベルの出力信号を発生する
比較器、18は所定ビツト数を1周期とする第1擬似雑音
信号と、この第1擬似雑音信号のビツト列に対して1個
または複数の任意個所のビツトの総和を相関器の数の2
倍以下のビツト数の限度内で増加または減少させた第2
擬似雑音信号とを選択によつて発生させる擬似雑音発生
器であり、端子18aに「1」レベルの信号が供給された
ときは第1擬似雑音信号が、「0」レベルの信号が供給
されたときは第2擬似雑音信号が発生するようになつて
いる。この実施例では第1擬似雑音信号として1周期10
23ビツト、第2擬似雑音信号としてその第1擬似雑音信
号の最後部に3ビツトを加えた1周期1026ビツトとして
いる。この変更するビツトは前述したように、第1擬似
雑音信号に対して加えても減じても良く、またある範囲
のビツト列全体を変更しても良く、複数の任意個所に分
散しても良いが、増加または減少するビツト数の総和
は、相関器数の2倍以下の必要がある。11は擬似雑音発
生器18の出力信号を基にして相関器と同数だけ出力信号
を発生し、位相が最大に離れた出力信号の位相差は相関
器の数より1ビツト少ない値となるようにした移相器で
あり、この実施例では位相差を1ビツトにしている。15
は制御部であり、いずれかの比較器から出力電圧が発生
したときには端子15dから「1」レベルの信号を送出し
て擬似雑音発生器18から第1擬似雑音を発生させ、いず
れの比較器からも出力電圧が発生していないときには
「0」レベルの信号を送出し、擬似雑音発生器18から第
2擬似雑音を発生するようになつている。
FIG. 1 is a block diagram showing an embodiment of the present invention.
The same parts as those in FIG. 10 and the corresponding parts have the same symbols. In the figure, 10a to 10c are comparators which generate an output signal of "1" level when an input voltage higher than an internal reference voltage is supplied, 18 is a first pseudo noise signal having a predetermined number of bits as one cycle, and The sum of the bits at one or more arbitrary positions for the bit sequence of the first pseudo-noise signal is the number of correlators equal to 2
Second increase or decrease within the limit of the number of bits less than double
A pseudo noise generator that selectively generates a pseudo noise signal. When a "1" level signal is supplied to the terminal 18a, the first pseudo noise signal is supplied and a "0" level signal is supplied. Then, the second pseudo noise signal is generated. In this embodiment, one cycle 10 is used as the first pseudo noise signal.
As the second pseudo noise signal of 23 bits, 3 bits are added to the last part of the first pseudo noise signal to obtain one cycle of 1026 bits. As described above, the bit to be changed may be added to or subtracted from the first pseudo noise signal, the entire bit sequence in a certain range may be changed, or the bit sequence may be distributed to a plurality of arbitrary places. However, the total sum of the number of bits that increases or decreases must be less than twice the number of correlators. 11 generates the same number of output signals as the number of correlators based on the output signal of the pseudo noise generator 18, so that the phase difference between the output signals whose phases are separated by the maximum is one bit less than the number of correlators. The phase difference is 1 bit in this embodiment. 15
Is a control unit, and when an output voltage is generated from any of the comparators, a signal of "1" level is transmitted from the terminal 15d to cause the pseudo noise generator 18 to generate the first pseudo noise. Also, when the output voltage is not generated, a signal of "0" level is transmitted, and the pseudo noise generator 18 generates the second pseudo noise.

このように構成された装置の動作は次の通りである。擬
似雑音発生器18から発生した信号は移相器11に供給さ
れ、その出力端子から1ビツトずつ位相差の異なる信号
が出力されている。同期がとれていないとき、制御部15
は端子15dから「0」レベルの信号を発生しており、こ
のため擬似雑音発生器18は1026ビツト1周期の第2擬似
雑音信号を発生している。
The operation of the device configured as described above is as follows. The signal generated from the pseudo noise generator 18 is supplied to the phase shifter 11, and its output terminal outputs signals having different phase differences by 1 bit. When not synchronized, control unit 15
Generates a "0" level signal from the terminal 15d, so that the pseudo noise generator 18 generates a second pseudo noise signal of 1026 bits per cycle.

第2図は同期がとれるときの動作を説明するための図で
あり、(a)は第2擬似雑音信号、(b)は受信信号の
ビツト列であり、1023ビツトを記号「イ」〜「ヘ」で表
わし、第2擬似雑音信号は受信信号と同一のビツト配列
の第1擬似雑音信号の後部に記号「ト〜リ」の3ビツト
を加えたものとしている。そして時刻t1において受信信
号が入力され、同期追従が開始されると、受信信号のビ
ツト列が一定周期毎に第2擬似雑音信号と比較され、時
刻t2において両信号が一致し同期がとれる。この状態が
相関のとれた状態であり、このとき例えば相関器1aから
信号が出力されると、この信号はバンドパスフィルタ2a
を介して検波器3aで検波される。第2図(c),(d)
は他の2つの相関器に供給される第2擬似雑音信号であ
り、これら(a),(c),(d)の信号は1ビツトず
つの位相差を有している。このように、第2擬似雑音信
号は1ビツトずつずれているので、一定周期毎に1023ビ
ツトずつ第2擬似雑音信号と受信信号の相関をとれば、
3つの相関器のうちどれか1つが最初に相関がとれる。
FIG. 2 is a diagram for explaining the operation when synchronization is achieved. (A) is the second pseudo noise signal, (b) is the bit sequence of the received signal, and 1023 bits are the symbols "a" to "". The second pseudo noise signal is obtained by adding three bits of the symbol "to" to the rear part of the first pseudo noise signal having the same bit arrangement as the received signal. When the received signal is input at time t1 and synchronization tracking is started, the bit train of the received signal is compared with the second pseudo noise signal at regular intervals, and at time t2 both signals match and synchronization is achieved. This state is a correlated state, and at this time, for example, when a signal is output from the correlator 1a, this signal becomes a bandpass filter 2a.
Is detected by the wave detector 3a via. 2 (c), (d)
Is a second pseudo noise signal supplied to the other two correlators, and these signals (a), (c) and (d) have a phase difference of 1 bit each. In this way, since the second pseudo noise signal is deviated by 1 bit, if the correlation between the second pseudo noise signal and the received signal is obtained by 1023 bits at regular intervals,
Any one of the three correlators is first correlated.

このように、どれか1つの相関器で受信信号と第2擬似
雑音信号との相関がとれると、制御部15は端子1501から
「1」レベルの制御信号を発生するので、擬似雑音発生
器18を発生する擬似雑音信号を1026ビツトから1023ビツ
トに切換える。このことにより、入力信号のビツト数と
擬似雑音信号のビツト数は一致し、しかも、移相器11の
出力信号のうちの1つと、入力信号の相関がとれ、同期
捕捉が実現する。
In this way, when the correlation between the received signal and the second pseudo noise signal is obtained by any one of the correlators, the control unit 15 generates a "1" level control signal from the terminal 1501, so that the pseudo noise generator is generated. The pseudo noise signal generating 18 is switched from 1026 bits to 1023 bits. As a result, the number of bits of the input signal matches the number of bits of the pseudo noise signal, and moreover, one of the output signals of the phase shifter 11 and the input signal are correlated with each other, and synchronization acquisition is realized.

この例では3ビツトずつシフトしていくことになるの
で、このシフトを、341回 行なうと元の状態に戻る。逆に言えば最悪でもシフトを
341回行なえば必らず相関が得られる。擬似雑音信号の
ビツトレートを1.023MBPS(メガビツトパーセツク)と
すればシフトは 毎に行なわれ、 以内で捕捉が完了する。詳細は省略するが、従来の方式
のものでは例えば約27秒の捕捉時間を要していた。
In this example, the shift is 3 bits each, so this shift is repeated 341 times. If you do, it will return to its original state. Conversely, at the worst, shift
If it is performed 341 times, the correlation is always obtained. If the bit rate of the pseudo noise signal is 1.023MBPS (megabit pars), the shift will be Every time, Capture is completed within. Although details are omitted, the conventional method requires a capture time of, for example, about 27 seconds.

第2図の例は第1擬似雑音信号の後部に3ビツト追加し
た例であるが、これに限らず、この3ビツトを第3図に
示すように複数の任意個所に分散させることもできる。
この場合は全ビツトでなく、ある範囲のビツトの相関が
とれたとき、例えば1023ビツト中800ビツト程度の相関
がとれたときが、相関のとれた状態とすれば良い。この
場合、判定は比較器10a〜10cの比較電圧を適当な値に設
定するなどの方法で行なうことができる。
The example of FIG. 2 is an example in which 3 bits are added to the rear part of the first pseudo noise signal, but the present invention is not limited to this, and these 3 bits can be dispersed to a plurality of arbitrary places as shown in FIG.
In this case, when all the bits are correlated, but when a certain range of bits are correlated, for example, when about 800 bits out of 1023 bits are correlated, it is sufficient to establish a correlated state. In this case, the determination can be made by a method such as setting the comparison voltages of the comparators 10a to 10c to appropriate values.

第4図は他の実施例を示すブロツク図である。同図にお
いて、25は制御部、21は擬似雑音信号を基にして相関器
の数を越える種類だけ出力信号を発生し、隣接する出力
信号の位相差が1ビツト以下ずらせたものを複数列発生
する移相器、30,40,50は制御部25から供給される信号に
応じて入力信号を切換えて出力する切換器である。この
例では移相器21は擬似雑音信号を基に、1/4ビツトず
つ位相の異なつた擬似雑音信号を17種類発生している。
制御部25はいずれの比較器においても相関が検出されな
いとき、端子25iは「0」レベルの信号を、端子25gは移
相器21の5番目の出力信号を、端子25fは移相器21の9
番目の出力信号を、端子25eは移送器21の13番目の出力
信号を選択する信号を出力するようになつている。端子
25a〜25cに接続されているいずれかの比較器から相関が
検出された出力が送出されたときは端子25iから「1」
レベルの信号を送出し、端子25a〜25cのいずれに検出信
号が供給されているかに応じて端子25e〜25gに送出する
信号の内容が移送器21の何番目の出力信号を選択するか
を次表に従がつて決めるようになつている。
FIG. 4 is a block diagram showing another embodiment. In the figure, 25 is a control unit, 21 is a pseudo noise signal, and the output signals are generated in a number exceeding the number of correlators based on the pseudo noise signal, and a plurality of columns are generated in which the phase difference between adjacent output signals is shifted by 1 bit or less. The phase shifters 30, 40 and 50 are switchers that switch and output the input signal according to the signal supplied from the control unit 25. In this example, the phase shifter 21 generates 17 types of pseudo noise signals having different phases by 1/4 bit based on the pseudo noise signal.
When no correlation is detected in any of the comparators, the control unit 25 outputs a signal of "0" level at the terminal 25i, a fifth output signal of the phase shifter 21 at the terminal 25g, and a phase shifter 21 at the terminal 25f. 9
The terminal 25e is adapted to output the thirteenth output signal and a signal for selecting the thirteenth output signal of the transporter 21. Terminal
When the output in which the correlation is detected is sent from any of the comparators connected to 25a to 25c, the terminal 25i outputs "1".
The level of the signal to be transmitted to the terminals 25e to 25g depends on which of the terminals 25a to 25c the detection signal is supplied to. It is decided to follow the table.

このように構成された装置の動作は次のとおりである。
移相器21は第5図に示すように17個の出力端子を有して
おり、それぞれの端子から1/4ビツトずつ位相のずれ
た信号を送出している。そして、切換器30,40,50は制御
部25から供給される信号に応じて移相器21の5番目、9
番目、13番目の出力信号を選択して出力している。
The operation of the device configured as described above is as follows.
The phase shifter 21 has 17 output terminals as shown in FIG. 5, and outputs signals whose phases are shifted by 1/4 bit from each terminal. Then, the switching devices 30, 40, 50 are the fifth and the ninth of the phase shifter 21 according to the signal supplied from the control unit 25.
The 13th and 13th output signals are selected and output.

この状態で同期がとれていない場合は前例までの動作と
同様にして同期捕捉が行なわれる。同期捕捉が行なわれ
ると擬似雑音発生器18で発生する擬似雑音が1026ビツト
の第2擬似雑音信号から1023ビツトの第1擬似雑音信号
に切換えられる。その後、制御部25は端子25a〜25cのい
ずれに検出信号が供給されているかに応じて第1表の基
準にしたがつて移相器21の出力信号を選択する。
If synchronization is not achieved in this state, synchronization is acquired in the same manner as the operation up to the previous example. When the synchronization is acquired, the pseudo noise generated by the pseudo noise generator 18 is switched from the 1026 bit second pseudo noise signal to the 1023 bit first pseudo noise signal. After that, the control unit 25 selects the output signal of the phase shifter 21 according to the reference in Table 1 according to which of the terminals 25a to 25c the detection signal is supplied to.

第6図はこのときの移相器21の出力信号と検波器3a〜3c
の出力電圧の関係を示しており、横軸は移相器21の出力
端子の番号(出力信号の位相)、イ,ロ,ハはそれぞれ
検波器3a,3b,3cの出力電圧特性、一点鎖線は比較器10a
〜10cのスレシホールドレベルを表わしている。今、記
号「ニ」の点で同期捕捉が行なわれ検波器3aから出力信
号が送出されている場合、比較器10aから出力される信
号は一点鎖線で表わされるスレシホールドレベルより上
の範囲「a」で示した部分である。この場合、同期捕捉
が行なわれているのは検波器3bの中心でないため、同期
状態は最安定同期点ではない。このため、第1表の基準
に従がい、移相器21の出力を1番目、4番目、7番目を
選ぶと、同期状態は第7図のようになり、第6図の範囲
「a」の信号を受信しているので最安定同期点で受信で
きる。
FIG. 6 shows the output signal of the phase shifter 21 and the detectors 3a to 3c at this time.
Of the output voltage of the phase shifter 21, the output terminal number of the phase shifter 21 (phase of the output signal), a, b, and c are the output voltage characteristics of the detectors 3a, 3b, and 3c, respectively Is the comparator 10a
Represents a threshold level of ~ 10c. Now, when the synchronous acquisition is performed at the point of the symbol "d" and the output signal is transmitted from the detector 3a, the signal output from the comparator 10a is in the range "1" above the threshold level represented by the alternate long and short dash line. It is a portion indicated by "a". In this case, the synchronization state is not the most stable synchronization point because the synchronization acquisition is not performed at the center of the detector 3b. Therefore, if the output of the phase shifter 21 is selected from the 1st, 4th, and 7th according to the criteria of Table 1, the synchronization state becomes as shown in FIG. 7, and the range “a” in FIG. 6 is obtained. Since the signal of is received, it can be received at the most stable synchronization point.

第8図は他の実施例であり、17は制御部25から供給され
る信号に応じて分周器入力信号位相を反転する分周器、
25は前述の制御部15の機能に加え、いずれかの比較器か
ら出力信号が発生したとき相関がより良い状態となるよ
うに、また差動増幅器4の出力電圧がゼロとなるように
端子25hの出力に応じて分周器17の入力信号位相を反転
する制御部である。
FIG. 8 shows another embodiment, 17 is a frequency divider for inverting the phase of the input signal of the frequency divider according to the signal supplied from the control unit 25,
In addition to the function of the control unit 15 described above, the terminal 25h is provided so that the correlation becomes better when an output signal is generated from any of the comparators and the output voltage of the differential amplifier 4 becomes zero. Is a control unit for inverting the input signal phase of the frequency divider 17 according to the output of the.

このように構成された装置は前述の例と同様に、先ず10
26ビツトの第2擬似雑音信号によつて同期捕捉が行なわ
れた後、擬似雑音信号が1023ビツトの第1擬似雑音信号
に切換えられる。このとき、相関がとれているのは前述
したように、相関器1a〜1cのいずれか1つである。この
とき、相関の出力信号は最大±1ビツトまでのビツトズ
レの範囲ならば得られるから、相関出力が得られ1026ビ
ツトから1023ビツト一周期に切換えても最大1ビツトズ
レており、ビツト同期は完全には得られない。このた
め、前述したように切換器30,40,50を制御して、ビツト
ズレを1/4ビツト以下に抑える。そして、制御部25は
いずれか1つまたは複数の比較器から出力信号が発生し
たときは相関がより良い状態となるように、分周器17の
出力信号位相を反転させ、さらに細かく相関をとつてい
る。
The device constructed in this way is first described in the same way as the above example.
After the synchronous acquisition by the 26-bit second pseudo-noise signal, the pseudo-noise signal is switched to the 1023-bit first pseudo-noise signal. At this time, the correlation is established in any one of the correlators 1a to 1c as described above. At this time, since the correlation output signal can be obtained within the range of the bit deviation of up to ± 1 bit, the correlation output is obtained, and even if the cycle is changed from 1026 bits to 1023 bits per cycle, the maximum is 1 bit deviation, and the bit synchronization is completely completed. Can't get Therefore, as described above, the changeovers 30, 40 and 50 are controlled to suppress the bit shift to 1/4 bit or less. Then, the control unit 25 inverts the output signal phase of the frequency divider 17 so that the correlation becomes better when the output signal is generated from any one or a plurality of comparators, and further finely correlates. It is connected.

位相反転により相関状態が変る理由は次のとうりであ
る。第9図(a)は分周器17の入力信号であり、通常時
は第9図(b)に示す信号が出力されるが、その出力信
号を時点t1において位相反転させると第9図(d)に示
す波形となり、時点t2において位相反転させると第9図
(c)に示す波形になる。第9図からわかるように、
(c)の波形は(b)の波形より1/2ビツト遅れ、
(d)の波形は1/2ビツト進んでいる。
The reason why the correlation state changes due to the phase inversion is as follows. FIG. 9 (a) shows an input signal of the frequency divider 17, and the signal shown in FIG. 9 (b) is normally output. However, if the output signal is phase-inverted at the time t1, FIG. The waveform shown in FIG. 9D is obtained, and when the phase is inverted at the time t2, the waveform shown in FIG. 9C is obtained. As you can see from Figure 9,
The waveform of (c) is 1/2 bit behind the waveform of (b),
The waveform in (d) is advanced by 1/2 bit.

したがつて同期捕捉の行なわれた後、相関がより良くな
るように、すなわち3つの相関器のうち、中央の相関器
1bにおいて相関がとれるように分周器17の出力信号位相
を1/2ビツト反転させることが有効となる。そして、
検波器3aの出力と検波器3cの出力は差動増幅器の正負入
力端子に供給されているので、その差の電圧が制御部25
dに供給される。このことにより、制御部25は端子25hか
ら送出する信号によつて多段分周器17の分周段を選択し
て最良相関状態、すなわち、第6図の記号「ロ」の特性
の頂部に最も近い状態で相関がとれるようにする。
Therefore, after the synchronization acquisition is performed, the correlation is better, that is, the center correlator among the three correlators is used.
It is effective to invert the output signal phase of the frequency divider 17 by 1/2 bit so that the correlation can be obtained in 1b. And
Since the output of the detector 3a and the output of the detector 3c are supplied to the positive and negative input terminals of the differential amplifier, the voltage of the difference is the control unit 25.
Supplied to d. As a result, the control unit 25 selects the frequency division stage of the multistage frequency divider 17 according to the signal transmitted from the terminal 25h, so that the best correlation state, that is, the highest level at the top of the characteristic "B" in FIG. Make correlations close to each other.

多段分周器17の分周段選択によつて最良相関点が求めら
れる理由は次の通りである。前述したように、分周器の
出力信号を入力信号と同期させた適当なタイミングで位
相反転すると±1/2ビツトの範囲で位相を調整するこ
とができる。今、VCO6の発振周波数を64f0とし多段分周
器17を6段構成にすると1段目は32f0、2段目は16f0
3段目は8f0、4段目は4f0、5段目は2f0、6段目はf0
となる。このため、位相反転を6段目で行なえば位相変
化範囲は±1/2ビツトであるが5段目では±1/4ビ
ツト、4段目では±1/8ビツト、3段目では±1/16
ビツト、2段目では±1/32ビツト、1段目では±1/
64ビツト、更に多段分周器27の入力信号の位相反転を行
なえば±1/128ビツトの範囲で位相制御を行なうこと
ができる。このため、例えば6段の多段分周器であれば
1/2,1/4,1/8,1/16,1/32,1/64,1/128ビツトの順
に移相制御を行なえば、7回の位相シフトで1ビツトの
範囲を1/128ビツトの精度で同期をとることができる
が、これを1/128ビツト間隔で同期追従を行なうと、1
28回(64+32+16+8+4+2+1)行なわないと同一
範囲の位相制御が行なえない。このため、1回のシフト
に1ミリ秒を要するとすれば、前者は7ミリ秒で良い
が、後者は128ミリ秒を要することになる。
The reason why the best correlation point is obtained by selecting the division stage of the multistage divider 17 is as follows. As described above, if the output signal of the frequency divider is phase-inverted at an appropriate timing in synchronization with the input signal, the phase can be adjusted within the range of ± 1/2 bit. Now, assuming that the oscillation frequency of the VCO 6 is 64f 0 and the multistage frequency divider 17 is configured in 6 stages, the first stage is 32f 0 , the second stage is 16f 0 ,
The third row is 8f 0 , the 4th row is 4f 0 , the 5th row is 2f 0 , and the 6th row is f 0
Becomes Therefore, if the phase inversion is performed in the sixth stage, the phase change range is ± 1/2 bit, but in the fifth stage it is ± 1/4 bit, in the fourth stage it is ± 1/8 bit, and in the third stage it is ± 1 bit. / 16
Bits: ± 1/32 for the 2nd stage, ± 1/32 for the 1st stage
If the input signal of the multi-stage frequency divider 27 is inverted by 64 bits, the phase can be controlled within the range of ± 1/128 bits. Therefore, for example, in the case of a 6-stage multi-stage frequency divider, if phase shift control is performed in the order of 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 bits. , The range of 1 bit can be synchronized with the precision of 1/128 bit by 7 phase shifts.
The phase control in the same range cannot be performed unless it is performed 28 times (64 + 32 + 16 + 8 + 4 + 2 + 1). Therefore, if one shift requires 1 msec, the former requires 7 msec, while the latter requires 128 msec.

このように、多段分周器27の出力位相を制御することに
よつて、1/128ビツトの精度で同期追従を行なうこと
ができる。そして、差動増幅器4の出力は第7図に示す
ように、「イ」で示す検波器3aの出力と、「ハ」で示す
検波器3cの出力を反転したもの、すなわち点線で示す特
性を加え合わせたものであるから、二点鎖線で示す特性
となる。ここで、多段分周器17のうち、位相反転を行な
う分周段を選択すれば、差動増幅器4の出力信号が1/
128ビツトの精度でゼロレベルに近づく。このことは第
9図に示すとうり特性「ロ」の頂部に近づくことにな
る。
In this way, by controlling the output phase of the multi-stage frequency divider 27, synchronous follow-up can be performed with an accuracy of 1/128 bit. As shown in FIG. 7, the output of the differential amplifier 4 is obtained by inverting the output of the detector 3a indicated by "a" and the output of the detector 3c indicated by "c", that is, the characteristic indicated by the dotted line. Since they are added together, the characteristics shown by the chain double-dashed line are obtained. Here, if the frequency dividing stage that performs phase inversion is selected from the multi-stage frequency divider 17, the output signal of the differential amplifier 4 becomes 1 /
It approaches zero level with an accuracy of 128 bits. This comes close to the top of the drag characteristic "b" as shown in FIG.

その後、制御部35は差動増幅器4の出力が零となるよう
に多段分周器27の出力信号を反転させる分周段を選択す
るようになつている。
After that, the control unit 35 selects a frequency dividing stage for inverting the output signal of the multi-stage frequency divider 27 so that the output of the differential amplifier 4 becomes zero.

なお、以上の実施例は分周器出力の位相推移を分周器出
力の位相反転で行なつているが、積分回路などを用いる
方法によつても、良くまたデイジタルデバイスを用いる
とLSI化が可能となり、動作が安定で低価格にすること
ができる。
In the above embodiment, the phase transition of the frequency divider output is performed by the phase inversion of the frequency divider output.However, a method using an integrating circuit or the like can also be used in an LSI if a digital device is used. It is possible and stable operation can be achieved at low cost.

〔発明の効果〕〔The invention's effect〕

以上説明したようにこの発明は、受信信号のビツト数と
異なるビツト数を有する擬似雑音信号によつて同期捕捉
を行なつているので高速の同期捕捉が行なえ、同期捕捉
後に擬似雑音信号を入力信号のビツト数と同一のものに
切換えるので、安定な受信が行なえるという効果を有す
る。
As described above, according to the present invention, since the synchronization acquisition is performed by the pseudo noise signal having the bit number different from the bit number of the reception signal, the high-speed synchronization acquisition can be performed, and the pseudo noise signal is input to the input signal after the synchronization acquisition. Since the number of bits is changed to the same number, the stable reception can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示すブロツク図、第2図
は入力信号と擬似雑音信号との位相関係を示す図、第3
図は他の擬似雑音信号を示す図、第4図は他の実施例を
示す図、第5図は移相器の出力端子を示す図、第6図お
よび第7図は検波器の出力特性を示す図、第8図は他の
実施例を示すブロツク図、第9図は分周器出力信号の波
形を示す波形図、第10図は従来装置の一例を示すブロツ
ク図である。 1a〜1c……相関器、2a〜2c……バンドパスフイルタ、4
……差動増幅器、5,15,25……制御部、6……VCO、7,1
7,27……分周器、8,18……擬似雑音発生器、11,21……
移相器、30,40,50……切換器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a phase relationship between an input signal and a pseudo noise signal, and FIG.
FIG. 4 is a diagram showing another pseudo noise signal, FIG. 4 is a diagram showing another embodiment, FIG. 5 is a diagram showing output terminals of a phase shifter, and FIGS. 6 and 7 are output characteristics of a detector. FIG. 8 is a block diagram showing another embodiment, FIG. 9 is a waveform diagram showing a waveform of a frequency divider output signal, and FIG. 10 is a block diagram showing an example of a conventional device. 1a to 1c …… Correlator, 2a to 2c …… Band pass filter, 4
...... Differential amplifier, 5,15,25 …… Control unit, 6 …… VCO, 7,1
7,27 …… divider, 8,18 …… pseudo noise generator, 11,21 ……
Phase shifter, 30, 40, 50 ... Switching device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】N個(Nは1以上の正の整数)の相関器を
有し一定周期でビツトのシフトを行なうことによつて同
期捕捉を行なう直接拡散方式のスペクトラム拡散通信用
同期捕捉装置において、所定ビツト数を1周期とする第
1擬似雑音信号と第1擬似雑音信号のビツト列に対して
1個所または複数の任意個所で総和が2N倍以下のビツト
数だけ増減した第2擬似雑音信号のいずれかを選択によ
つて発生する擬似雑音発生器と、擬似雑音発生器の出力
信号を基にしてN種類だけ出力信号を発生し位相が最大
離れた出力信号の位相差をN−1ビツト以下となるよう
にした位相器と、いずれの相関器においても相関が検出
されないときは第2擬似雑音信号を発生させ、いずれか
の相関器において第2擬似雑音信号のうち少なくとも任
意のビツト数の相関が検出されたときは第1擬似雑音信
号が発生するように擬似雑音信号発生器を制御する制御
部とを備えたことを特徴とするスペクトラム拡散通信用
同期捕捉装置。
1. A direct sequence spread-spectrum communication synchronization acquisition apparatus having N correlators (N is a positive integer of 1 or more) and performing synchronization by shifting bits at a constant cycle. , The first pseudo noise signal having a predetermined number of bits as one cycle and the second pseudo noise in which the total sum is increased or decreased by the number of bits of 2N times or less at one place or a plurality of arbitrary places with respect to the bit sequence of the first pseudo noise signal A pseudo noise generator that generates any one of the signals by selection, and generates N kinds of output signals based on the output signal of the pseudo noise generator, and the phase difference between the output signals whose phases are maximum apart is N-1. A phase shifter that is set to be less than or equal to a bit and a second pseudo noise signal is generated when no correlation is detected by any correlator, and at least an arbitrary number of bits of the second pseudo noise signal is generated by any correlator. Phase of There detected when the spread spectrum communication synchronization acquisition apparatus characterized by comprising a control unit for controlling the pseudo-noise signal generator to the first pseudo-noise signal is generated.
【請求項2】N個(Nは1以上の正の整数)の相関器を
有し一定周期でビツトのシフトを行なうことによつて同
期捕捉を行なう直接拡散方式のスペクトラム拡散通信用
同期捕捉装置において、所定ビツト数を1周期とする第
1擬似雑音信号と第1擬似雑音信号のビツト列に対して
1個所または複数の任意個所で総和が2N倍以下のビツト
数だけ増減した第2擬似雑音信号のいずれかを選択によ
つて発生する擬似雑音発生器と、擬似雑音発生器の出力
信号を基にして隣接する出力信号の位相差が1ビツト以
下ずらせたものを複数列発生する位相器と、検出器の数
と同一の数を有し位相器から供給される信号のうち異な
る信号を選択して送出する信号切換器と、いずれの相関
器においても相関が検出されないときは第2擬似雑音信
号を発生させ、いずれかの相関器において第2擬似雑音
信号のうち少なくとも任意のビツト数の相関が検出され
たときは第1擬似雑音信号が発生するように擬似雑音信
号発生器を制御するとともに第1擬似雑音信号が発生し
ているときは信号切換器に供給されている信号のうち相
関が最良となるものを選択するように信号切換器を制御
する制御部とを備えたことを特徴とするスペクトラム拡
散通信用同期捕捉装置。
2. A synchronization acquisition device for spread spectrum communication of a direct sequence system, which has N correlators (N is a positive integer of 1 or more) and carries out synchronization by shifting bits at a constant cycle. , The first pseudo noise signal having a predetermined number of bits as one cycle and the second pseudo noise in which the total sum is increased or decreased by the number of bits of 2N times or less at one place or a plurality of arbitrary places with respect to the bit sequence of the first pseudo noise signal A pseudo noise generator for generating any one of the signals by selection, and a phase shifter for generating a plurality of columns in which the phase difference between adjacent output signals is shifted by 1 bit or less based on the output signal of the pseudo noise generator. , A signal switcher which has the same number as the number of detectors and selects and sends out different signals from the signals supplied from the phase shifter, and the second pseudo noise when no correlation is detected in any of the correlators. Generate a signal The pseudo noise signal generator is controlled so that the first pseudo noise signal is generated when at least an arbitrary number of bit correlations of the second pseudo noise signal are detected in one of the correlators, and the first pseudo noise signal is generated. For spread spectrum communication, a control unit for controlling the signal switching device to select the one having the best correlation among the signals supplied to the signal switching device when Synchronous acquisition device.
JP60279173A 1985-12-13 1985-12-13 Synchronous acquisition device for spread spectrum communication Expired - Fee Related JPH0666757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279173A JPH0666757B2 (en) 1985-12-13 1985-12-13 Synchronous acquisition device for spread spectrum communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279173A JPH0666757B2 (en) 1985-12-13 1985-12-13 Synchronous acquisition device for spread spectrum communication

Publications (2)

Publication Number Publication Date
JPS62139435A JPS62139435A (en) 1987-06-23
JPH0666757B2 true JPH0666757B2 (en) 1994-08-24

Family

ID=17607460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279173A Expired - Fee Related JPH0666757B2 (en) 1985-12-13 1985-12-13 Synchronous acquisition device for spread spectrum communication

Country Status (1)

Country Link
JP (1) JPH0666757B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916228B2 (en) * 2006-06-16 2012-04-11 アサヒ装設株式会社 Material presser device in cooking device

Also Published As

Publication number Publication date
JPS62139435A (en) 1987-06-23

Similar Documents

Publication Publication Date Title
EP1075089B1 (en) Correlation detector and communication apparatus
US5715276A (en) Symbol-matched filter having a low silicon and power requirement
EP0583241B1 (en) Spread spectrum correlator
US5625641A (en) Correlator, synchronizer provided with the correlator, and fast frequency hopping spread spectrum receiver provided with the synchronizer
US4280222A (en) Receiver and correlator switching method
JP2682493B2 (en) Receiver
JPH0666757B2 (en) Synchronous acquisition device for spread spectrum communication
Grieco The application of charge-coupled devices to spread-spectrum systems
JPH06235762A (en) Pseudo-noise code phase synchronization lead-in method
JPH09238093A (en) Spread spectrum receiver
KR20010028099A (en) Method and apparatus for tracking synchronization in a reciever using CDMA
US7471719B2 (en) Correlator
KR980013077A (en) Synchronous acquisition and tracking apparatus using pilot signal in code division multiple access (CDMA) communication method and method thereof
JPS58171143A (en) Spread spectrum communication system
JPS62137931A (en) Synchronizing acquisiton equipment for spread spectrum communication
GB2313750A (en) Digital delay locked loop
JPH08265215A (en) Parallel spread spectrum communication system
JPH0337334B2 (en)
JPS6028170B2 (en) Code synchronization method for reception of spread spectrum signals
JPH0435332A (en) Spread spectrum communication system
JP2810359B2 (en) Spread spectrum communication system
JPH08316875A (en) Clock recovery circuit
US6400757B1 (en) Symbol-matched filter having a low silicon and power management
JP2823090B2 (en) Synchronous acquisition device in spread spectrum communication
JP2003234677A (en) Synchronization detection circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees