JPH0662431A - Quantizing/inverse quantizing method for color picture element data - Google Patents

Quantizing/inverse quantizing method for color picture element data

Info

Publication number
JPH0662431A
JPH0662431A JP4216846A JP21684692A JPH0662431A JP H0662431 A JPH0662431 A JP H0662431A JP 4216846 A JP4216846 A JP 4216846A JP 21684692 A JP21684692 A JP 21684692A JP H0662431 A JPH0662431 A JP H0662431A
Authority
JP
Japan
Prior art keywords
color difference
difference signal
digital
signal
quantized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4216846A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshida
哲雄 吉田
Shigeru Fukunaga
茂 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4216846A priority Critical patent/JPH0662431A/en
Publication of JPH0662431A publication Critical patent/JPH0662431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)

Abstract

PURPOSE:To attain the optimum quantization of a color difference signal in the least number of bits by setting the range of the color difference signal in response to the level of a digital luminance signal. CONSTITUTION:A dynamic quantizing means 3 sets a quantizing range of the color difference signal in response to the level of the luminance signal quantized by a static quantizing means 1 and then quantizes again the color difference signal quantized by a static quantizing means 2 in a dynamic range. Therefore the color difference data can be expressed in the smaller number of bits compared with the conventional quantization and with no deterioration of the picture quality. Thus, the saving of a storage is attained with use of a memory which can record the information for each bit. Furthermore the data different from an original image can be multiplexed and added to the unnecessary bits even when the data are treated every 8 bits. Then a digital color difference signal can be processed in a small number of bits and this processing speed is increased in an image data handling system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カラ−画像の画素デ−
タを量子化および逆量子化する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the pixel data of a color image.
The present invention relates to a method of quantizing and dequantizing data.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
CCIR(International Radio Consultative Committ
ee)勧告601に規定されるものがあった。CCIR勧
告601では、カラ−画像の表色信号である1種の輝度
信号Yと2種の色差信号Cb、Crが規定され、R、G、
Bの3原色からの変換式が示されている。R、G、Bの
アナログ信号の大きさがそれぞれER、EG、EBのと
き、Y、Cb、Crのアナログ信号の大きさEY、ECb、
ECrはそれぞれ次の式(1)のように定められている。
2. Description of the Related Art Conventionally, as a technique in such a field,
CCIR (International Radio Consultative Committ
ee) Some were prescribed in Recommendation 601. CCIR Recommendation 601 defines one type of luminance signal Y and two types of color difference signals Cb and Cr, which are color signals of color images, and R, G,
A conversion formula from the three primary colors of B is shown. When the R, G, B analog signal magnitudes are ER, EG, EB, respectively, the Y, Cb, Cr analog signal magnitudes EY, ECb,
The ECr is defined by the following equation (1), respectively.

【0003】 [0003]

【0004】さらに、Y、Cb、Cr信号をそれぞれ8ビ
ットのディジタル信号に量子化する時の関係式は、Y、
Cb、Cr信号のディジタル信号の大きさをそれぞれD
Y、DCb、DCrとすると、次の式(2)のように表さ
れる。
Further, the relational expression when quantizing each of the Y, Cb, and Cr signals into an 8-bit digital signal is Y,
Db is the magnitude of the digital signal of the Cb and Cr signals.
Assuming Y, DCb, and DCr, they are expressed by the following equation (2).

【0005】 [0005]

【0006】輝度信号と色差信号は図5に示すようにそ
れぞれ独立に量子化を行う。また、公称値として、黒レ
ベル 16、白レベル 235、色差(ゼロ) 128、
色差(ピ−ク値) 16,240 に定められているの
で、DY、DCb、DCrのディジタル信号の有効範囲は
次の式(3)のようになる。
The luminance signal and the color difference signal are quantized independently as shown in FIG. Also, as the nominal values, a black level of 16, a white level of 235, a color difference (zero) of 128,
Since the color difference (peak value) is set to 16,240, the effective range of the digital signals of DY, DCb, and DCr is given by the following expression (3).

【0007】 [0007]

【0008】[0008]

【発明が解決しようとする課題】ここで、前記式(2)
のディジタル色差信号は式(1)を代入すると次の式
(4)のようになり、輝度信号をパラメ−タとした値で
あることがわかる。
[Formula (2)]
When the equation (1) is substituted, the digital color difference signal of is expressed by the following equation (4), and it can be seen that the luminance signal has a parameter value.

【0009】 DCb = 126 (EB − EY)+ 128 DCr = 160 (ER − EY)+ 128 (4)DCb = 126 (EB−EY) +128 DCr = 160 (ER−EY) +128 (4)

【0010】そこで、さらに式(4)に式(2)の輝度
信号を代入すると、ディジタル輝度信号に対する色差信
号の関係は次の式(5)のようになり、この関係を図
6、図7に示す。
Therefore, by substituting the luminance signal of the equation (2) into the equation (4), the relationship of the color difference signal with respect to the digital luminance signal becomes as shown in the following equation (5), and this relationship is shown in FIGS. 6 and 7. Shown in.

【0011】[0011]

【数1】 [Equation 1]

【0012】図6が色差信号Cb、図7が色差信号Crの
場合を示しており、図中の斜線部は信号の有効範囲を示
している。図6、図7からわかるように、ディジタル色
差信号は任意のディジタル輝度信号に対して約7ビット
分の情報量しか持っていないので、色差信号を最適に量
子化すれば7ビットのビット幅で、同等の情報量を持つ
ことができ、8ビットの場合と同質の画像を表現でき
る。しかしながら、従来のCCIR勧告601の手法で
は、図5に示すように色差信号のレンジを固定し、輝度
信号と色差信号を独立に量子化しているので、すべての
信号にそれぞれ8ビットが一律に割当てられており、約
半分のレンジの値は表現する必要がなく、色差信号には
それぞれ約1ビット分冗長であった。
FIG. 6 shows the case of the color difference signal Cb and FIG. 7 shows the case of the color difference signal Cr, and the shaded area in the drawing shows the effective range of the signal. As can be seen from FIGS. 6 and 7, the digital color difference signal has an information amount of about 7 bits with respect to an arbitrary digital luminance signal. Therefore, if the color difference signal is optimally quantized, a bit width of 7 bits is obtained. , Can have the same amount of information, and can represent an image of the same quality as in the case of 8 bits. However, in the method of the conventional CCIR recommendation 601, since the range of the color difference signal is fixed and the luminance signal and the color difference signal are independently quantized as shown in FIG. 5, 8 bits are uniformly assigned to all signals. However, it is not necessary to represent the value in the range of about half, and each color difference signal is redundant by about 1 bit.

【0013】本発明は、ディジタル輝度信号のレベルに
相関して、ディジタル色差信号の範囲を設定し、色差信
号を指定したビット数で量子化するカラ−画素デ−タの
量子化方法、および該量子化されたカラ−画素デ−タを
逆量子化する方法を提供するものである。
The present invention sets a range of a digital color difference signal in correlation with the level of a digital luminance signal, and quantizes the color difference signal with a specified number of bits, and a method of quantizing color pixel data. The present invention provides a method for dequantizing quantized color pixel data.

【0014】[0014]

【課題を解決するための手段】本発明は、前記問題点を
解決するために、輝度信号、色差信号をそれぞれ独立に
固定レンジで量子化し、該量子化したディジタル輝度信
号のレベルに相関してディジタル色差信号のダイナミッ
クレンジの下限を算出し、該量子化したディジタル色差
信号から、該ダイナミックレンジの下限を減じ、該減算
されたディジタル色差信号を予め指定したビット数に揃
える補正を行うようにしている。さらに、量子化したデ
ィジタル輝度信号のレベルに相関してディジタル色差信
号のダイナミックレンジの下限を算出し、量子化したデ
ィジタル色差信号に前記ダイナミックレンジの下限を加
算し、加算したディジタル色差信号を静的な範囲のデー
タに変換し逆量子化している。
In order to solve the above-mentioned problems, the present invention independently quantizes a luminance signal and a color difference signal in a fixed range, and correlates them with the level of the quantized digital luminance signal. The lower limit of the dynamic range of the digital color difference signal is calculated, the lower limit of the dynamic range is subtracted from the quantized digital color difference signal, and the subtracted digital color difference signal is corrected to a predetermined number of bits. There is. Further, the lower limit of the dynamic range of the digital color difference signal is calculated in correlation with the level of the quantized digital luminance signal, the lower limit of the dynamic range is added to the quantized digital color difference signal, and the added digital color difference signal is statically added. The data is converted into a range of data and inversely quantized.

【0015】[0015]

【作用】本発明によれば、以上のようにカラ−画素デー
タの量子化方法を構成したので、ディジタル輝度信号の
レベルに相関してディジタル色差信号の範囲を設定する
ことで、色差信号を少ないビット数で最適に量子化する
ことができる。従って、前記課題を解決できるのであ
る。
According to the present invention, since the color pixel data quantization method is constructed as described above, the color difference signal is reduced by setting the range of the digital color difference signal in correlation with the level of the digital luminance signal. It can be quantized optimally by the number of bits. Therefore, the above problem can be solved.

【0016】[0016]

【実施例】図1は、本発明のカラ−画素データの量子化
方法の一実施例を示す図であり、図中、1、2は静的量
子化手段、3は動的量子化手段である。静的量子化手段
1、2はそれぞれ独立して、アナログの輝度信号EYと
色差信号ECb、ECrに対して、前記式(2)に示す量子
化を行う。動的量子化手段3は静的量子化手段1によっ
て量子化された輝度信号のレベルに相関して、色差信号
の量子化範囲を設定し、静的量子化手段2によって量子
化された色差信号をダイナミックレンジで再量子化す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an embodiment of a method of quantizing color pixel data according to the present invention, in which 1 and 2 are static quantizing means and 3 is a dynamic quantizing means. is there. The static quantizers 1 and 2 independently perform the quantization shown in the above equation (2) on the analog luminance signal EY and the color difference signals ECb and ECr. The dynamic quantization unit 3 sets the quantization range of the color difference signal in correlation with the level of the luminance signal quantized by the static quantization unit 1, and the color difference signal quantized by the static quantization unit 2. Is requantized in the dynamic range.

【0017】図2は動的量子化手段3の詳細な手順であ
る。図中、4は下限算出手段、5は減算手段、6は補正
手段である。下限算出手段4は、静的量子化手段1によ
って量子化されたディジタル輝度信号のレベルに相関し
てディジタル色差信号のダイナミックレンジの下限を算
出する。色差信号のダイナミックレンジの下限は、前記
式(5)においてEB=ER=0とした値、DCb0、DC
r0であり、次の式(6)のように表される。
FIG. 2 shows a detailed procedure of the dynamic quantizing means 3. In the figure, 4 is a lower limit calculation means, 5 is a subtraction means, and 6 is a correction means. The lower limit calculation unit 4 calculates the lower limit of the dynamic range of the digital color difference signal in correlation with the level of the digital luminance signal quantized by the static quantization unit 1. The lower limit of the dynamic range of the color difference signal is the value where EB = ER = 0 in the equation (5), DCb0, DC
r0, which is expressed by the following equation (6).

【0018】[0018]

【数2】 [Equation 2]

【0019】減算手段5は静的量子化手段2によって量
子化されたディジタル色差信号から下限算出手段4によ
って算出されたダイナミックレンジの下限を減じる。ま
た、補正手段6は減算手段5によって算出されたディジ
タル色差信号を乗除算することにより7ビットに揃え
る。
The subtracting means 5 subtracts the lower limit of the dynamic range calculated by the lower limit calculating means 4 from the digital color difference signal quantized by the static quantizing means 2. Further, the correction means 6 multiplies and divides the digital color difference signals calculated by the subtraction means 5 to make 7 bits.

【0020】ここで、従来の量子化方法によって量子化
された色差信号Crは図7に示すように、任意の輝度信
号に対して、7ビット以上の情報量を持っていたので、
補正手段6によって情報量はわずか減少するが、原画像
デ−タと量子化画像デ−タをRGB信号に変換したもの
のSN比を調べると、実験を行ったほとんどの画像で5
0dBを越えており、画質劣化はほとんどみられない。
Here, since the color difference signal Cr quantized by the conventional quantization method has an information amount of 7 bits or more with respect to an arbitrary luminance signal as shown in FIG. 7,
Although the amount of information is slightly reduced by the correction means 6, when the SN ratio of the original image data and the quantized image data converted into RGB signals is examined, it is found that 5
It exceeds 0 dB, and the image quality is hardly deteriorated.

【0021】図3は、本発明の逆量子化方法の一実施例
を示す図である。逆量子化は、前記量子化されたカラ−
画素デ−タのディジタル信号を、元のアナログ信号また
は従来技術によって量子化された信号に変換する。図中
7は動的逆量子化手段、8、9は静的逆量子化手段であ
る。動的逆量子化手段7は、ダイナミックレンジで量子
化された色差信号を輝度信号のレベルに相関して、静的
な範囲の色差信号に変換する。
FIG. 3 is a diagram showing an embodiment of the inverse quantization method of the present invention. Inverse quantization is the quantized color.
The digital signal of the pixel data is converted into the original analog signal or the signal quantized by the conventional technique. In the figure, 7 is a dynamic inverse quantization means, and 8 and 9 are static inverse quantization means. The dynamic dequantization means 7 correlates the chrominance signal quantized in the dynamic range with the level of the luminance signal and converts it into a chrominance signal in a static range.

【0022】図4は動的逆量子化手段7の詳細手順を示
したものであり、10は補正手段、11は下限算出手
段、12は加算手段である。補正手段10は、ダイナミ
ックレンジの色差信号のビット数を補正する。下限算出
手段は11は、ディジタル輝度信号のレベルに相関して
ディジタル色差信号のダイナミックレンジの下限を算出
する。該下限は量子化の場合と同様にして求める。加算
手段12は、補正されたディジタル色差信号に、ダイナ
ミックレンジの下限を加算し、もとの静的な色差信号に
変換する。
FIG. 4 shows the detailed procedure of the dynamic dequantization means 7, 10 is a correction means, 11 is a lower limit calculation means, and 12 is an addition means. The correction unit 10 corrects the number of bits of the color difference signal in the dynamic range. The lower limit calculation means 11 calculates the lower limit of the dynamic range of the digital color difference signal in correlation with the level of the digital luminance signal. The lower limit is obtained in the same manner as in the case of quantization. The adding means 12 adds the lower limit of the dynamic range to the corrected digital color difference signal to convert it into the original static color difference signal.

【0023】[0023]

【発明の効果】以上詳細に説明したように、本発明によ
れば、ほとんど画質の劣化なく、色差信号データを従来
の量子化に比べて少ないビット数で表現できる。従っ
て、画像デ−タを記憶装置に保存する場合などでは、ビ
ット単位で情報を記録できるメモリ−を使用すると、記
憶装置の節約が可能であり、また、8ビット単位でデ−
タを扱う場合でも、不要になったビットに原画像と異な
るデ−タ(文字や音声など)を多重して付加することが
できる。また、画像デ−タを扱うシステムにおいては、
ディジタル色差信号に対する処理は全て従来よりも少な
いビット数で行うことができ、システムの高速化や回路
の縮小化が可能となる。
As described in detail above, according to the present invention, the color difference signal data can be expressed with a smaller number of bits than the conventional quantization, with almost no deterioration in image quality. Therefore, when storing image data in a storage device, a memory capable of recording information in bit units can be used to save the storage device, and data in 8-bit units can be saved.
Even when data is handled, data (characters, voice, etc.) different from the original image can be multiplexed and added to unnecessary bits. Also, in a system that handles image data,
All the processes for the digital color difference signals can be performed with a smaller number of bits than the conventional one, and the system can be speeded up and the circuit can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のカラ−画素デ−タの量子化方法の一実
施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a quantization method of color pixel data according to the present invention.

【図2】図1中の動的量子化手段の詳細を示す図であ
る。
FIG. 2 is a diagram showing details of a dynamic quantization unit in FIG.

【図3】本発明のカラ−画素デ−タの逆量子化方法の一
実施例を示す図である。
FIG. 3 is a diagram showing an embodiment of an inverse quantization method for color pixel data according to the present invention.

【図4】図3中の動的逆量子化手段の詳細を示す図であ
る。
FIG. 4 is a diagram showing details of a dynamic inverse quantization means in FIG.

【図5】従来の量子化方法を示す図である。FIG. 5 is a diagram showing a conventional quantization method.

【図6】色差信号と輝度信号の関係を示す図である。FIG. 6 is a diagram showing a relationship between a color difference signal and a luminance signal.

【図7】色差信号と輝度信号の関係を示す図である。FIG. 7 is a diagram showing a relationship between a color difference signal and a luminance signal.

【符号の説明】[Explanation of symbols]

1 静的量子化手段 2 静的量子化手段 3 動的量子化手段 4 下限算出手段 5 減算手段 6 補正手段 7 動的逆量子化手段 8 静的逆量子化手段 9 静的逆量子化手段 10 補正手段 11 下限算出手段 12 加算手段 1 Static Quantization Means 2 Static Quantization Means 3 Dynamic Quantization Means 4 Lower Limit Calculation Means 5 Subtraction Means 6 Correction Means 7 Dynamic Inverse Quantization Means 8 Static Inverse Quantization Means 9 Static Inverse Quantization Means 10 Correction means 11 Lower limit calculation means 12 Addition means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カラ−画素デ−タを1種のディジタル輝
度信号と2種のディジタル色差信号で表現する方法にお
いて、 ディジタル輝度信号のレベルに相関してディジタル色差
信号の量子化範囲を設定し、ディジタル色差信号を動的
に範囲が変化するダイナミックレンジとして量子化する
ことを特徴とするカラ−画素デ−タの量子化/逆量子化
方法。
1. A method of expressing color pixel data by one type of digital luminance signal and two types of digital color difference signals, wherein a quantization range of the digital color difference signal is set in correlation with the level of the digital luminance signal. , A method of quantizing / dequantizing color pixel data, characterized in that a digital color difference signal is quantized as a dynamic range whose range dynamically changes.
【請求項2】 輝度信号、色差信号をそれぞれ独立に固
定レンジで量子化し、 該量子化したディジタル輝度信号のレベルに相関してデ
ィジタル色差信号のダイナミックレンジの下限を算出
し、 該量子化したディジタル色差信号から、該ダイナミック
レンジの下限を減じ、 該減算したディジタル色差信号を予め指定したビット数
に揃える補正を行うことを特徴とする請求項1記載のカ
ラ−画素デ−タの量子化/逆量子化方法。
2. A luminance signal and a color difference signal are independently quantized in a fixed range, a lower limit of a dynamic range of the digital color difference signal is calculated in correlation with the level of the quantized digital luminance signal, and the quantized digital signal is quantized. 2. The quantization / inverse of color pixel data according to claim 1, wherein the lower limit of the dynamic range is subtracted from the color difference signal, and the subtracted digital color difference signal is corrected to have a predetermined number of bits. Quantization method.
【請求項3】 量子化したディジタル輝度信号のレベル
に相関してディジタル色差信号のダイナミックレンジの
下限を算出し、 量子化したディジタル色差信号に前記ダイナミックレン
ジの下限を加算し、 該加算したディジタル色差信号を静的な範囲のデータに
変換し逆量子化することを特徴とする請求項1記載のカ
ラ−画素デ−タの量子化/逆量子化方法。
3. The lower limit of the dynamic range of the digital color difference signal is calculated in correlation with the level of the quantized digital luminance signal, the lower limit of the dynamic range is added to the quantized digital color difference signal, and the added digital color difference is calculated. 2. The method of quantizing / dequantizing color pixel data according to claim 1, wherein the signal is converted into data in a static range and inversely quantized.
JP4216846A 1992-08-14 1992-08-14 Quantizing/inverse quantizing method for color picture element data Pending JPH0662431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4216846A JPH0662431A (en) 1992-08-14 1992-08-14 Quantizing/inverse quantizing method for color picture element data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4216846A JPH0662431A (en) 1992-08-14 1992-08-14 Quantizing/inverse quantizing method for color picture element data

Publications (1)

Publication Number Publication Date
JPH0662431A true JPH0662431A (en) 1994-03-04

Family

ID=16694827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4216846A Pending JPH0662431A (en) 1992-08-14 1992-08-14 Quantizing/inverse quantizing method for color picture element data

Country Status (1)

Country Link
JP (1) JPH0662431A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027736A2 (en) * 1996-12-17 1998-06-25 Thomson Consumer Electronics, Inc. Pixel block compression apparatus in an image processing system
US6379244B1 (en) 1997-09-17 2002-04-30 Konami Co., Ltd. Music action game machine, performance operation instructing system for music action game and storage device readable by computer
US6410835B2 (en) 1998-07-24 2002-06-25 Konami Co., Ltd. Dance game apparatus and step-on base for dance game
US6582309B2 (en) 1998-07-14 2003-06-24 Konami Co., Ltd. Game system and computer-readable recording medium
US6645067B1 (en) 1999-02-16 2003-11-11 Konami Co., Ltd. Music staging device apparatus, music staging game method, and readable storage medium
WO2012140904A1 (en) * 2011-04-15 2012-10-18 パナソニック株式会社 Image compression device, image compression method, integrated circuit, program, and image display device
US10757427B2 (en) 2015-06-10 2020-08-25 Interdigital Vc Holdings, Inc. Method and device for obtaining color difference components for color picture data

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027736A2 (en) * 1996-12-17 1998-06-25 Thomson Consumer Electronics, Inc. Pixel block compression apparatus in an image processing system
WO1998027736A3 (en) * 1996-12-17 1998-08-06 Thomson Consumer Electronics Pixel block compression apparatus in an image processing system
US6256347B1 (en) 1996-12-17 2001-07-03 Thomson Licensing S.A. Pixel block compression apparatus in an image processing system
US6379244B1 (en) 1997-09-17 2002-04-30 Konami Co., Ltd. Music action game machine, performance operation instructing system for music action game and storage device readable by computer
US6582309B2 (en) 1998-07-14 2003-06-24 Konami Co., Ltd. Game system and computer-readable recording medium
US6410835B2 (en) 1998-07-24 2002-06-25 Konami Co., Ltd. Dance game apparatus and step-on base for dance game
US6645067B1 (en) 1999-02-16 2003-11-11 Konami Co., Ltd. Music staging device apparatus, music staging game method, and readable storage medium
WO2012140904A1 (en) * 2011-04-15 2012-10-18 パナソニック株式会社 Image compression device, image compression method, integrated circuit, program, and image display device
US8923613B2 (en) 2011-04-15 2014-12-30 Panasonic Corporation Image compression device, image compression method, integrated circuit, program, and picture display apparatus
US10757427B2 (en) 2015-06-10 2020-08-25 Interdigital Vc Holdings, Inc. Method and device for obtaining color difference components for color picture data

Similar Documents

Publication Publication Date Title
EP0580101B1 (en) High-definition video encoding system having color-sensitive quantization
US7428332B2 (en) Applying an adjusted image enhancement algorithm to a digital image
EP0487304B1 (en) Color image processing
US20050226526A1 (en) Image processing device and method
JPH07193725A (en) Method and apparatus for converting degital color picture signal
US6424739B1 (en) Image data compression apparatus capable of reducing false color
US20070216812A1 (en) Color correction method, color correction device, and color correction program
JPH05167863A (en) Method and device for processing image
KR20040106076A (en) Adaptive noise reduction filter for bayer pattern color signal, digital image signal processor having it, and method thereof
JPH0662431A (en) Quantizing/inverse quantizing method for color picture element data
US6665447B1 (en) Method for enhancing image data by sharpening
JP3155768B2 (en) Image processing method and apparatus
JP4053460B2 (en) Image processing apparatus, image forming apparatus, image processing method, image processing program, and recording medium
JP3360476B2 (en) Image processing method and apparatus
JP3291694B2 (en) Noise removal circuit in negative imaging device
KR100206792B1 (en) Device for improving tv picture quality by using gamma compensation
JP2815474B2 (en) Image processing device
JP2850969B2 (en) Video circuit
JP2000165686A (en) Color converter, color converting method and storage medium readable by computer
JP3150994B2 (en) Image processing device
JPH10117351A (en) Method and device for compressing signal
JPH07274017A (en) Picture processor
JPH10271336A (en) Color image processor
JP2000125123A (en) Color image forming device
JP3741829B2 (en) Color image processing device