JPH0662392A - High efficient dynamic image encoding system - Google Patents

High efficient dynamic image encoding system

Info

Publication number
JPH0662392A
JPH0662392A JP20864992A JP20864992A JPH0662392A JP H0662392 A JPH0662392 A JP H0662392A JP 20864992 A JP20864992 A JP 20864992A JP 20864992 A JP20864992 A JP 20864992A JP H0662392 A JPH0662392 A JP H0662392A
Authority
JP
Japan
Prior art keywords
signal
image signal
motion
moving image
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20864992A
Other languages
Japanese (ja)
Inventor
Yukio Endo
幸男 遠藤
Sadaharu Hiratsuka
貞晴 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Engineering Ltd
Original Assignee
NEC Corp
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Engineering Ltd filed Critical NEC Corp
Priority to JP20864992A priority Critical patent/JPH0662392A/en
Publication of JPH0662392A publication Critical patent/JPH0662392A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To reduce information by providing a space filter on the front stage of an encoding, controlling a resolution according to the moving amounts of an input dynamic image signal, and suppressing a visual deterioration to the minimum. CONSTITUTION:This system is equipped with a two-dimensional space filter 10 which controls the spatial resolution of an input dynamic image signal (a) according to moving amounts (n), and outputs a picture signal (b), and a subtracter 1 which outputs a between-frame difference signal (c) between the picture signal (b) and a movement-compensated picture signal (m). And also, the system is equipped with an orthogonal transformation device 2 and a quantizer 3 which input the between-frame difference signal (c), and output a quantized signal (e) whose information amounts are compressed, movement detector 9 which inputs the input dynamic image signal (a) and a signal (t) obtained by inverse- quantizing and transforming the quantized signal (e), outputs the moving amounts (n), and transmits it to the two-dimensional filter 10, and variable memory 8 which outputs the picture signal (m), and transmits it to the subtracter 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高能率動画像符号化方式
に関し、特に動画像および音声を高能率に符号化して伝
送する高能率動画像符号化方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency moving picture coding system, and more particularly to a high-efficiency moving picture coding system for coding moving pictures and voice with high efficiency and transmitting them.

【0002】[0002]

【従来の技術】図7を参照すると、従来の高能率動画像
符号化方式は、動画像信号aを入力され動き補償された
前フレームの画像信号mとのフレーム間差分を求めてフ
レーム間差分信号cを出力する減算器1と、フレーム間
差分信号cを直交変換して符号化する直交変換器2と、
直交変換器2からの符号化信号dを量子化して情報量の
圧縮された量子化信号eを出力する量子化器3と、量子
化器3からの量子化信号eを逆量子化する逆量子化器4
と、量子化器4からの逆量子化信号fを直交逆変換して
復号化する直交逆変換器5と、直交変換器5からの復号
化信号gと動き補償された画像信号mとを加算して局部
復号信号hを出力する加算器6と、局部復号信号hを記
憶し格納するフレームメモリ7と、フレームメモリ7か
らの前フレームの局部復号信号hと入力動画像信号aと
を入力され動きベクトルrを出力する動き検出器9と、
フレームメモリ7からの前フレームの局部復号信号hと
動き検出器9からの動きベクトルrとを入力され動き補
償された画像信号mを出力し減算器1および加算器6へ
送出する可変メモリ8とから構成される。
2. Description of the Related Art Referring to FIG. 7, a conventional high-efficiency moving image coding method is to obtain an interframe difference between a moving image signal a and a motion-compensated image signal m of a previous frame. A subtractor 1 for outputting a signal c, an orthogonal transformer 2 for orthogonally transforming and coding the inter-frame difference signal c,
A quantizer 3 that quantizes the coded signal d from the orthogonal transformer 2 to output a quantized signal e having a compressed information amount, and an inverse quantum that dequantizes the quantized signal e from the quantizer 3. Chemicalizer 4
And an orthogonal inverse transformer 5 for orthogonally inversely transforming and decoding the inverse quantized signal f from the quantizer 4, and a decoded signal g from the orthogonal transformer 5 and a motion-compensated image signal m. Then, the adder 6 for outputting the locally decoded signal h, the frame memory 7 for storing and storing the locally decoded signal h, the locally decoded signal h of the previous frame and the input moving image signal a from the frame memory 7 are inputted. A motion detector 9 that outputs a motion vector r,
A variable memory 8 for inputting the locally decoded signal h of the previous frame from the frame memory 7 and the motion vector r from the motion detector 9 to output a motion-compensated image signal m and sending it to the subtracter 1 and the adder 6. Composed of.

【0003】詳述すると、テレビ会議およびテレビ電話
を目的とした動画像符号化装置の符号化方式として上述
した図7に示したアルゴリズムが一般的に採用されてい
る。図7に示すアルゴリズムは、減算器1で入力動画像
信号aと動き検出器9で検出された動きベクトルrをも
とに動き補償された前フレームの画像信号mとのフレー
ム間差分をとることにより時間方向の冗長を除き、その
フレーム間差分信号cに直交変換と量子化を施すことに
より空間的冗長を除いている。この画像符号化アルゴリ
ズムにより入力動画像のパワーをある程度保存しながら
発生する情報量をある程度抑えることができる。
More specifically, the above-mentioned algorithm shown in FIG. 7 is generally adopted as a coding system of a moving picture coding apparatus for video conference and video telephone. The algorithm shown in FIG. 7 is to obtain the inter-frame difference between the input moving image signal a by the subtractor 1 and the image signal m of the previous frame that has been motion-compensated based on the motion vector r detected by the motion detector 9. To eliminate the redundancy in the time direction and to eliminate the spatial redundancy by subjecting the inter-frame difference signal c to orthogonal transformation and quantization. By this image coding algorithm, the amount of information generated can be suppressed to some extent while the power of the input moving image is saved to some extent.

【0004】[0004]

【発明が解決しようとする課題】この従来の高能率動画
像符号可方式では、短時間に膨大な情報が発生する動画
像信号が入力された場合、発生情報量を一定に保ちなが
ら入力画像のパワーを保存することが困難になる。発生
情報量を一定に保った場合は画質の劣化となり、逆にパ
ワーを一定に保った場合はフレームレイトが低下する歪
が発生する。これは、フレーム間符号化方式において動
きの激しい画像が入力された場合に、時間的冗長が少な
く大きな情報量圧縮効果がないためと空間的な情報量圧
縮に限界があるために発生する。
In this conventional high-efficiency moving image coding system, when a moving image signal which generates a large amount of information in a short time is input, the amount of generated information is kept constant and the input image It becomes difficult to save power. When the amount of generated information is kept constant, the image quality deteriorates, and conversely, when the power is kept constant, distortion occurs in which the frame rate decreases. This occurs because, when an image with a large amount of motion is input in the interframe coding method, there is little temporal redundancy and there is no large information amount compression effect, and there is a limit to the spatial information amount compression.

【0005】[0005]

【課題を解決するための手段】本発明による高能率動画
像符号化方式は、動画像信号を入力され前記入力動画像
信号の空間解像度を動き量に応じて制御し第1の画像信
号を出力する2次元空間フィルタと、前記第1の画像信
号と動き補償された前フレームの画像信号とのフレーム
間差分を求めてフレーム間差分信号を出力する減算手段
と、前記減算手段からの前記フレーム間差分信号を入力
され情報量の圧縮された量子化信号を出力するとともに
前記量子化信号と前記動画像信号とを入力されて前記2
次元空間フィルタへ前記動き量を送出するとともに前記
減算手段へ前記動き補償された前フレームの画像信号を
送出する変換手段とを備える。
A high-efficiency moving picture coding system according to the present invention receives a moving picture signal, controls the spatial resolution of the input moving picture signal according to the amount of motion, and outputs a first picture signal. A two-dimensional spatial filter, subtraction means for calculating an interframe difference between the first image signal and the motion-compensated image signal of the previous frame, and outputting an interframe difference signal; The differential signal is input, a quantized signal in which the amount of information is compressed is output, and the quantized signal and the moving image signal are input, and
Conversion means for transmitting the motion amount to the dimensional spatial filter and for transmitting the motion-compensated image signal of the previous frame to the subtraction means.

【0006】また本発明による高能率動画像符号化方式
は、動画像信号を入力され前記入力動画像信号の空間解
像度を動き量に応じて制御し第1の画像信号を出力する
2次元空間フィルタと、前記第1の画像信号と動き補償
された前フレームの第2の画像信号とのフレーム間差分
を求めてフレーム間差分信号を出力する減算手段と、前
記フレーム間差分信号を直交変換して符号化する第1の
変換手段と、前記第1の変換手段からの符号化信号を量
子化して情報量の圧縮された量子化信号を出力する第1
の量子化手段と、前記第1の量子化手段からの量子化信
号を逆量子化する第2の量子化手段と、前記第2の量子
化手段からの逆量子化信号を直交逆変換して復号化する
第2の変換手段と、前記第2の変換手段からの復号化信
号と前記動き補償された前記第2の画像信号とを加算し
て局部復号信号を出力する加算手段と、前記局部復号信
号を記憶し格納する第1のメモリ手段と、前記第1のメ
モリ手段からの前フレームの前記局部復号信号と前記動
画像信号とを入力され動きベクトルを出力するとともに
前記動き量を出力して前記2次元空間フィルタへ送出す
る動き検出手段と、前記第1のメモリ手段からの前記前
フレームの局部復号信号と前記動き検出手段からの前記
動きベクトルとを入力され前記動き補償された前記第2
の画像信号を出力し前記減算手段および前記加算手段へ
送出する第2のメモリ手段とを備える。
The high-efficiency moving picture coding system according to the present invention is a two-dimensional spatial filter which receives a moving picture signal and controls the spatial resolution of the input moving picture signal according to the amount of motion to output the first picture signal. And subtraction means for obtaining an interframe difference signal by obtaining an interframe difference signal between the first image signal and the second image signal of the motion-compensated previous frame, and orthogonally transforming the interframe difference signal. First transforming means for coding, and first for quantizing the coded signal from the first transforming means to output a quantized signal having a compressed information amount.
Quantizing means, a second quantizing means for dequantizing the quantized signal from the first quantizing means, and an inverse inverse transform of the dequantizing signal from the second quantizing means. Second conversion means for decoding, addition means for adding the decoded signal from the second conversion means and the motion-compensated second image signal to output a local decoded signal, and the local part First memory means for storing and storing the decoded signal, the local decoded signal of the previous frame and the moving image signal from the first memory means are input, and a motion vector is output and the motion amount is output. Motion-compensating means for transmitting to the two-dimensional spatial filter, the locally decoded signal of the previous frame from the first memory means and the motion vector from the motion detecting means, and the motion-compensated first signal. Two
Second memory means for outputting the image signal of and outputting it to the subtracting means and the adding means.

【0007】さらに本発明による高能率動画像符号化方
式は、前記2次元空間フィルタが、少なくとも2種類以
上の特性を有し前記入力動画像信号の解像度を任意に制
御できる。
Further, in the high-efficiency moving picture coding system according to the present invention, the two-dimensional spatial filter has at least two types of characteristics, and the resolution of the input moving picture signal can be arbitrarily controlled.

【0008】[0008]

【実施例】人間の目は、動いている物体の解像度に対す
る感度が鈍いことが知られており、このことは人間の視
覚特性を利用して情報を削減できることを意味してい
る。
DETAILED DESCRIPTION OF THE INVENTION The human eye is known to be insensitive to the resolution of moving objects, which means that human visual properties can be used to reduce information.

【0009】本発明について図面を参照して説明する。
本発明の一実施例を示す図1を参照すると、本発明によ
る高能率動画像符号化方式は、動画像信号aを入力され
入力動画像信号aの空間解像度を動き量nに応じて制御
し画像信号bを出力する2次元空間フィルタ10と、画
像信号bと動き補償された前フレームの画像信号mとの
フレーム間差分を求めてフレーム間差分信号cを出力す
る減算器1と、フレーム間差分信号cを直交変換して符
号化する直交変換器2と、直交変換器2からの符号化信
号dを量子化して情報量の圧縮された量子化信号eを出
力する量子化器3と、量子化器3からの量子化信号eを
逆量子化す逆量子化器4と、逆量子化器4からの逆量子
化信号fを直交逆変換して復号化する直交逆変換器5
と、直交変換器5からの復号化信号gと動き補償された
画像信号mとを加算して局部復号信号hを出力する加算
器6と、局部復号信号hを記憶し格納するフレームメモ
リ7と、フレームメモリ7からの前フレームの局部復号
信号hと入力動画像信号aとを入力され動きベクトルr
を出力するとともに動き量nを出力して2次元空間フィ
ルタ10へ送出する動き検出器9と、フレームメモリ7
からの前フレームの局部復号信号hと動き検出器9から
の動きベクトルrとを入力され動き補償された画像信号
mを出力し減算器1および加算器6へ送出する可変メモ
リ8とから構成される。
The present invention will be described with reference to the drawings.
Referring to FIG. 1 showing an embodiment of the present invention, a high-efficiency moving picture coding system according to the present invention controls a spatial resolution of an input moving picture signal a in response to a motion amount n. A two-dimensional spatial filter 10 that outputs an image signal b, a subtractor 1 that obtains an interframe difference between the image signal b and the motion-compensated image signal m of the previous frame, and outputs an interframe difference signal c, and an interframe An orthogonal transformer 2 that orthogonally transforms and encodes the differential signal c, and a quantizer 3 that quantizes the encoded signal d from the orthogonal transformer 2 and outputs a quantized signal e in which the amount of information is compressed, An inverse quantizer 4 that inversely quantizes the quantized signal e from the quantizer 3 and an orthogonal inverse transformer 5 that orthogonally inversely transforms and decodes the inverse quantized signal f from the inverse quantizer 4.
An adder 6 for adding the decoded signal g from the orthogonal transformer 5 and the motion-compensated image signal m to output a locally decoded signal h; and a frame memory 7 for storing and storing the locally decoded signal h. , The local decoded signal h of the previous frame from the frame memory 7 and the input moving image signal a are input, and a motion vector r
And the frame memory 7 and the motion detector 9 that outputs the motion amount n and outputs the motion amount n to the two-dimensional spatial filter 10.
From the local decoded signal h of the previous frame and the motion vector r from the motion detector 9 and outputs a motion-compensated image signal m, which is sent to the subtracter 1 and the adder 6. It

【0010】詳述すると、入力動画像信号aは2次元空
間フィルタ10に入力される。この2次元空間フィルタ
10は、動き検出器9からの動き量nに応じて入力動画
像の空間解像度を制御でき、動き量nが大きいほど空間
解像度を低下させる機能を有する。動き検出器9は、入
力動画像信号aを例えば16画素×16ラインの小ブロ
ックA(i,j)に分割し、前フレームの局部復号信号
を格納しているフレームメモリ7の出力信号tを16画
素×16ラインの小ブロックB(i,j)に分割し、幾
つかの試行ベクトルV(x,y)により小ブロックB
(i,j)のウインドウを動かした場合の小ブロックB
(i+x,j+y)とをもとに、最適動きベクトルV
(X,Y)rを求める。動きベクトルV(X,Y)r
は、式(1)に示すブロックマッチングにより最小の歪
となる試行ベクトルV(X,Y)として得られる。
More specifically, the input moving image signal a is input to the two-dimensional spatial filter 10. The two-dimensional spatial filter 10 can control the spatial resolution of the input moving image according to the motion amount n from the motion detector 9, and has a function of lowering the spatial resolution as the motion amount n is larger. The motion detector 9 divides the input moving image signal a into, for example, small blocks A (i, j) of 16 pixels × 16 lines, and outputs the output signal t of the frame memory 7 storing the locally decoded signal of the previous frame. It is divided into small blocks B (i, j) of 16 pixels × 16 lines, and the small blocks B are divided by some trial vectors V (x, y).
Small block B when window (i, j) is moved
Based on (i + x, j + y), the optimum motion vector V
Find (X, Y) r. Motion vector V (X, Y) r
Can be obtained as a trial vector V (X, Y) that has the minimum distortion by the block matching shown in Expression (1).

【0011】 この動きベクトルV(X,Y)rをもとに可変メモリ8
を制御し、動き補償された画像信号mを求め、動きベク
トルV(X,Y)rの絶対値を求めることにより動き量
nを得る。2次元空間フィルタ10は動き量nの値に応
じて入力動画像信号aの空間解像度を制御し、画像信号
bを出力する。画像信号bは入力動画像信号aの動きが
大きいほど解像度が低下する画像となり、動きに応じて
空間的な情報量が圧縮される。減算器1で空間解像度を
制御された画像信号bと動き補償された画像信号mとの
差分をとることにより動き補償フレーム間差分信号cが
得られ、時間的な冗長が取り除かれて情報量の圧縮が行
なわれる。フレーム間差分信号cは直交変換器2に入力
され、直交変換されて信号F(k,1)dが出力され
る。直交変換器2の一例としてフレーム間差分信号cを
8画素×8ラインの小ブロックf(x,y)に分割し式
(2)に示す変換を行なうDCT(Discrete
Cosine Transform;離散的コサイン変
換)があり、DCT変換後は8画素×8ラインの小ブロ
ックF(k,l)が得られる。
[0011] A variable memory 8 based on this motion vector V (X, Y) r
Is calculated, the motion-compensated image signal m is calculated, and the absolute value of the motion vector V (X, Y) r is calculated to obtain the motion amount n. The two-dimensional spatial filter 10 controls the spatial resolution of the input moving image signal a according to the value of the motion amount n, and outputs the image signal b. The image signal b becomes an image in which the resolution decreases as the movement of the input moving image signal a increases, and the spatial information amount is compressed according to the movement. The difference between the image signal b whose spatial resolution is controlled by the subtractor 1 and the image signal m which has been motion-compensated is calculated to obtain a motion-compensated inter-frame difference signal c, which eliminates temporal redundancy and reduces the amount of information. Compression is performed. The inter-frame difference signal c is input to the orthogonal transformer 2 and subjected to orthogonal transformation to output the signal F (k, 1) d. As an example of the orthogonal transformer 2, the inter-frame difference signal c is divided into small blocks f (x, y) of 8 pixels × 8 lines and the transformation shown in the equation (2) is performed.
Cosine Transform; discrete cosine transform), and after DCT transform, a small block F (k, l) of 8 pixels × 8 lines is obtained.

【0012】 C(k)=(2)1/2 k=0の場合 C(k)=0 k≠0の場合 C(l)=(2)1/2 l=0の場合 C(l)=0 l≠0の場合 直交変換器2出力の信号F(k,l)dは、2次元周波
数分解したものと同等の性質を持ちk,lの番号が大き
いほど高域の周波数成分を表す。DCT変換は入力画像
に対するパワーが低域に集中する特性がある。人間の目
が高域成分に対して鈍い視覚的特性をもつことを利用
し、直交変換器2出力の信号F(k,l)を量子化器3
に入力して高域成分を落とす操作を行ない視覚的に劣化
をさせずに情報量を削減する。量子化器3の一例として
式(3)に示す線形量子化があり、その出力の量子化信
号eは量子化直交変換後の信号F(k,l)の量子化番
号(Index)eとなる。
[0012] In the case of C (k) = (2) 1/2 k = 0 In the case of C (k) = 0 k ≠ 0 In the case of C (l) = (2) 1/2 l = 0 C (l) = 0 l When ≠ 0, the signal F (k, l) d output from the orthogonal transformer 2 has the same property as that obtained by two-dimensional frequency decomposition, and the higher the number of k, l, the higher the frequency component of the high frequency band. The DCT transform has a characteristic that power for an input image is concentrated in a low frequency band. Utilizing the fact that the human eye has a dull visual characteristic for high frequency components, the quantizer 3 outputs the signal F (k, l) output from the orthogonal transformer 2.
The input is input to, and the operation for dropping the high frequency component is performed to reduce the amount of information without visually deteriorating. As an example of the quantizer 3, there is a linear quantization shown in Expression (3), and the quantized signal e of its output is the quantization number (Index) e of the signal F (k, l) after the quantized orthogonal transformation. .

【0013】 Index=FIX[F(k,l)/Step] ……(3) FIX ;小数点以下を切捨て後、整数化を行なう操作 Step;量子化間隔 量子化信号eとしての量子化番号を逆量子化器4に入力
し、量子化番号に対応する量子化代表値fを出力する。
量子化代表値fは直交逆変換器6に入力され直交変換の
逆操作により周波数分解された信号を空間領域に変換
し、その出力gと動き補償された画像信号mとを加算器
6に入力して加算することにより局部復号信号hを得
る。現フレームの局部復号信号hは、フレームメモリ7
に格納され前フレームの局部復号信号として出力されて
次のフレームの符号化に利用される。
Index = FIX [F (k, l) / Step] (3) FIX; operation of rounding down after the decimal point and performing integer conversion Step; Quantization interval The quantization number as the quantized signal e is reversed. It is input to the quantizer 4, and the quantized representative value f corresponding to the quantization number is output.
The quantized representative value f is input to the orthogonal inverse transformer 6, the frequency-decomposed signal is transformed into the spatial domain by the inverse operation of the orthogonal transformation, and the output g and the motion-compensated image signal m are input to the adder 6. Then, the locally decoded signal h is obtained by performing addition. The local decoded signal h of the current frame is stored in the frame memory 7
Is stored in the output frame as a locally decoded signal of the previous frame and is used for encoding the next frame.

【0014】次に2次元空間フィルタ10について詳述
する。2次元空間フィルタは式(4)で示す3画素×3
ラインのローパスフィルタで実現する。2次元空間フィ
ルタ10の入力をX(i,j)とすると、X(0,0)
にローパスフィルタ特性を施した出力Y(0,0)は、
X(i,j)画素に対応する図3に示す係数C(i,
j)を乗算し、乗算結果を累算することで得られる。
Next, the two-dimensional spatial filter 10 will be described in detail. The two-dimensional spatial filter is 3 pixels × 3 shown in formula (4).
It is realized by a low-pass filter of the line. When the input of the two-dimensional spatial filter 10 is X (i, j), X (0,0)
The output Y (0,0) obtained by applying the low-pass filter characteristic to
Coefficient C (i, j shown in FIG. 3 corresponding to X (i, j) pixel
It is obtained by multiplying j) and accumulating the multiplication results.

【0015】 図3に示す係数C(i,j)の値により、ローパスフィ
ルタのカットオフ周波数を変えることが可能であり、カ
ットオフ周波数が低いほど空間解像度が低下する。その
例を図4,図5,図6および図7に示す。図4,図5,
図6および図7の各フィルタをそれぞれF1,F2,F
3およびF4とすると、カットオフ周波数はF4が一番
低くF4<F3<F2<F1の順番となる特性を持つ。
これらのフィルタの選択は、前述したように動き検出器
9からの動き量nにより行う。ここで、動きベクトル検
出は±15画素の補償範囲内つまり式(1)で示す試行
ベクトルV(x,y)を0から±15の間で移動させる
ものとすると、動き量の範囲は0から15となる。動き
量nに応じてフィルタ特性を選択することにより、大き
な動きがあった時の情報量の増加を空間解像度を低下さ
せることによりその増加を防くことが可能となる。動き
量とフィルタ特性の一対応例を表1に示す。
[0015] The cutoff frequency of the low-pass filter can be changed by the value of the coefficient C (i, j) shown in FIG. 3, and the lower the cutoff frequency, the lower the spatial resolution. Examples thereof are shown in FIGS. 4, 5, 6 and 7. Figure 4, Figure 5,
The filters of FIG. 6 and FIG.
3 and F4, the cut-off frequency is such that F4 is the lowest and F4 <F3 <F2 <F1.
These filters are selected based on the motion amount n from the motion detector 9 as described above. Here, assuming that the motion vector detection moves within the compensation range of ± 15 pixels, that is, the trial vector V (x, y) shown in Expression (1) between 0 and ± 15, the range of the motion amount is from 0 to It will be 15. By selecting the filter characteristic according to the motion amount n, it is possible to prevent the increase in the information amount when there is a large motion by decreasing the spatial resolution. Table 1 shows an example of correspondence between the motion amount and the filter characteristic.

【0016】[0016]

【0017】[0017]

【表1】 [Table 1]

【0018】以上のように動き量nに適応してフィルタ
特性を切換えることが可能となり、動き検出器9により
得られる動き量nに応じて入力動画像の解像度を落とす
空間フィルタ10により符号化の前後で大幅な情報量の
削減が行なえる。また、動きに応じてフィルタ特性を制
御する方式により、視覚的な劣化を最小限に保つことが
可能となる。さらに、大きなハードウェアとなる動き検
出器9は、動き補償に使用する回路を利用することがで
き、2次元空間フィルタ10を追加するだけで実現でき
る。
As described above, it becomes possible to switch the filter characteristics in accordance with the motion amount n, and the spatial filter 10 that reduces the resolution of the input moving image according to the motion amount n obtained by the motion detector 9 is used for encoding. A large amount of information can be reduced before and after. Further, it is possible to keep visual deterioration to a minimum by controlling the filter characteristics according to the movement. Further, the motion detector 9, which is a large piece of hardware, can utilize a circuit used for motion compensation, and can be realized only by adding the two-dimensional spatial filter 10.

【0019】なお、上述において、4つの特性を持つフ
ィルタについて述べたが、フィルタ特性をさらに増やす
ことでより最適な動画像符号化が実現することが可能で
ある。
Although a filter having four characteristics has been described above, more optimal moving picture coding can be realized by further increasing the filter characteristics.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、フ
レーム間符号化の前後で大幅な情報量の圧縮が可能にな
り、フレーム駒落ち等の時間軸方向の歪を改善できる。
また、外部からの制御により入力動画像の空間解像度を
任意にコントロールすることが可能になり、入力動画像
に応じて最適なフィルタを選択することによりフレーム
間符号化で発生するブロック歪および量子化ノイズ等の
空間的歪を改善できる。さらに、フレーム間符号化処理
の中の動き検出結果を有効に利用して人間の視覚特性に
最適な空間解像度のコントロールが可能となり、大幅な
画質改善が得られる。
As described above, according to the present invention, a large amount of information can be compressed before and after the inter-frame coding, and the distortion in the time axis direction such as dropped frames can be improved.
In addition, the spatial resolution of the input video can be controlled by external control, and by selecting the optimum filter according to the input video, block distortion and quantization that occur in interframe coding can be achieved. It is possible to improve spatial distortion such as noise. Furthermore, it is possible to control the spatial resolution most suitable for human visual characteristics by effectively utilizing the motion detection result in the inter-frame coding process, and a great improvement in image quality can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の高能率画像符号化方式を示
すブロック図である。
FIG. 1 is a block diagram showing a high efficiency image coding system according to an embodiment of the present invention.

【図2】同実施例の高能率動画像符号化方式の2次元空
間フィルタの特性を説明するための図である。
FIG. 2 is a diagram for explaining characteristics of a two-dimensional spatial filter of the high-efficiency moving image coding system according to the same embodiment.

【図3】同実施例の高能率動画像符号化方式の2次元空
間フィルタの特性を説明するための図である。
FIG. 3 is a diagram for explaining characteristics of a two-dimensional spatial filter of the high-efficiency moving image coding system according to the same embodiment.

【図4】同実施例の高能率動画像符号化方式の2次元空
間フィルタの特性を説明するための図である。
FIG. 4 is a diagram for explaining the characteristics of the two-dimensional spatial filter of the high-efficiency moving image coding system of the same embodiment.

【図5】同実施例の高能率動画像符号化方式の2次元空
間フィルタの特性を説明するための図である。
FIG. 5 is a diagram for explaining the characteristics of the two-dimensional spatial filter of the high-efficiency moving image coding system according to the same embodiment.

【図6】同実施例の高能率動画像符号化方式の2次元空
間フィルタの特性を説明するための図である。
FIG. 6 is a diagram for explaining the characteristics of the two-dimensional spatial filter of the high-efficiency moving image coding system according to the same embodiment.

【図7】従来の高能率動画像符号化方式を示すブロック
図である。
FIG. 7 is a block diagram showing a conventional high-efficiency moving image coding system.

【符号の説明】[Explanation of symbols]

1 減算器 2 直交変換器 3 量子化器 4 逆量子化器 5 直交逆変換器 6 加算器 7 フレームメモリ 8 可変メモリ 9 動き検出器 10 2次元空間フィルタ 1 Subtractor 2 Orthogonal Transformer 3 Quantizer 4 Inverse Quantizer 5 Orthogonal Inverse Transformer 6 Adder 7 Frame Memory 8 Variable Memory 9 Motion Detector 10 Two-dimensional Spatial Filter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 動画像信号を入力され前記入力動画像信
号の空間解像度を動き量に応じて制御し第1の画像信号
を出力する2次元空間フィルタと、 前記第1の画像信号と動き補償された前フレームの画像
信号とのフレーム間差分を求めてフレーム間差分信号を
出力する減算手段と、 前記減算手段からの前記フレーム間差分信号を入力され
情報量の圧縮された量子化信号を出力するとともに前記
量子化信号と前記動画像信号とを入力されて前記2次元
空間フィルタへ前記動き量を送出するとともに前記減算
手段へ前記動き補償された前フレームの画像信号を送出
する変換手段と、 を備えることを特徴とする高能率動画像符号化方式。
1. A two-dimensional spatial filter which receives a moving image signal and controls the spatial resolution of the input moving image signal according to the amount of motion to output a first image signal, and the first image signal and motion compensation. Subtracting means for obtaining an inter-frame difference signal by obtaining the inter-frame difference from the image signal of the preceding frame, and outputting a quantized signal in which the inter-frame difference signal from the subtracting means is input and the information amount is compressed. And a conversion means for receiving the quantized signal and the moving image signal, sending the motion amount to the two-dimensional spatial filter, and sending the motion-compensated image signal of the previous frame to the subtracting means, A high-efficiency moving picture coding system characterized by comprising.
【請求項2】 動画像信号を入力され前記動画像信号の
空間解像度を動き量に応じて制御し第1の画像信号を出
力する2次元空間フィルタと、 前記第1の画像信号と動き補償された前フレームの第2
の画像信号とのフレーム間差分を求めてフレーム間差分
信号を出力する減算手段と、 前記フレーム間差分信号を直交変換して符号化する第1
の変換手段と、 前記第1の変換手段からの符号化信号を量子化して情報
量の圧縮された量子化信号を出力する第1の量子化手段
と、 前記第1の量子化手段からの量子化信号を逆量子化する
第2の量子化手段と、 前記第2の量子化手段からの逆量子化信号を直交逆変換
して復号化する第2の変換手段と、 前記第2の変換手段からの復号化信号と前記動き補償さ
れた前記第2の画像信号とを加算して局部復号信号を出
力する加算手段と、 前記局部復号信号を記憶し格納する第1のメモリ手段
と、 前記第1のメモリ手段からの前フレームの前記局部復号
信号と前記動画像信号とを入力され動きベクトルを出力
するとともに前記動き量を出力して前記2次元空間フィ
ルタへ送出する動き検出手段と、 前記第1のメモリ手段からの前記前フレームの局部復号
信号と前記動き検出手段からの前記動きベクトルとを入
力され前記動き補償された前記第2の画像信号を出力し
前記減算手段および前記加算手段へ送出する第2のメモ
リ手段と、 を備えることを特徴とする高能率動画像符号化方式。
2. A two-dimensional spatial filter that receives a moving image signal and controls the spatial resolution of the moving image signal according to the amount of motion to output a first image signal, and is motion-compensated with the first image signal. 2nd of the previous frame
Subtracting means for obtaining an inter-frame difference signal by obtaining an inter-frame difference signal from the image signal of No. 1, and orthogonally transforming and encoding the inter-frame difference signal.
Transforming means, a first quantizing means for quantizing the coded signal from the first transforming means and outputting a quantized signal in which the amount of information is compressed, and a quantum from the first quantizing means. Second quantizing means for dequantizing the quantized signal; second transforming means for orthogonally inverse transforming and decoding the dequantized signal from the second quantizing means; and the second transforming means. Adding means for adding the decoded signal from the second image signal and the motion-compensated second image signal to output a locally decoded signal; first memory means for storing and storing the locally decoded signal; Motion detecting means for receiving the locally decoded signal of the previous frame and the moving image signal from the first memory means, outputting a motion vector, outputting the motion amount, and sending the motion amount to the two-dimensional spatial filter; 1 of the previous frame from the memory means Second memory means for inputting the locally decoded signal and the motion vector from the motion detecting means, outputting the motion compensated second image signal, and outputting the second image signal to the subtracting means and the adding means. A highly efficient moving image coding method characterized by the above.
【請求項3】 前記2次元空間フィルタが、少なくとも
2種類以上の特性を有し前記入力動画像信号の解像度を
任意に制御できることを特徴とする請求項1および請求
項2記載の高能率動画像符号化方式。
3. The highly efficient moving image according to claim 1, wherein the two-dimensional spatial filter has at least two types of characteristics and can arbitrarily control the resolution of the input moving image signal. Encoding method.
JP20864992A 1992-08-05 1992-08-05 High efficient dynamic image encoding system Pending JPH0662392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20864992A JPH0662392A (en) 1992-08-05 1992-08-05 High efficient dynamic image encoding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20864992A JPH0662392A (en) 1992-08-05 1992-08-05 High efficient dynamic image encoding system

Publications (1)

Publication Number Publication Date
JPH0662392A true JPH0662392A (en) 1994-03-04

Family

ID=16559748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20864992A Pending JPH0662392A (en) 1992-08-05 1992-08-05 High efficient dynamic image encoding system

Country Status (1)

Country Link
JP (1) JPH0662392A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175154A (en) * 1997-08-28 1999-03-16 Sony Corp Image recording device and its method
US6025880A (en) * 1997-05-01 2000-02-15 Fujitsu Limited Moving picture encoding system and method
US6356592B1 (en) 1997-12-12 2002-03-12 Nec Corporation Moving image coding apparatus
US6512792B1 (en) 1998-01-08 2003-01-28 Nec Corporation Moving image encoding apparatus with a quantization step size different from the dequantization step size
US6738426B2 (en) 1999-12-10 2004-05-18 Nec Corporation Apparatus and method for detecting motion vector in which degradation of image quality can be prevented
KR100734314B1 (en) * 2006-02-11 2007-07-02 삼성전자주식회사 Spatial resolution conversion method of image signal in image compression system based on motion compensation
JP2016039553A (en) * 2014-08-08 2016-03-22 株式会社リコー Communication device, communication system, communication method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223786A (en) * 1988-07-12 1990-01-25 Nec Corp Method and device for pre-processing moving image signal and encoding device using them
JPH02154588A (en) * 1988-12-06 1990-06-13 Nec Corp Moving image signal encoding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223786A (en) * 1988-07-12 1990-01-25 Nec Corp Method and device for pre-processing moving image signal and encoding device using them
JPH02154588A (en) * 1988-12-06 1990-06-13 Nec Corp Moving image signal encoding device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025880A (en) * 1997-05-01 2000-02-15 Fujitsu Limited Moving picture encoding system and method
JPH1175154A (en) * 1997-08-28 1999-03-16 Sony Corp Image recording device and its method
US6356592B1 (en) 1997-12-12 2002-03-12 Nec Corporation Moving image coding apparatus
US6512792B1 (en) 1998-01-08 2003-01-28 Nec Corporation Moving image encoding apparatus with a quantization step size different from the dequantization step size
US6738426B2 (en) 1999-12-10 2004-05-18 Nec Corporation Apparatus and method for detecting motion vector in which degradation of image quality can be prevented
KR100734314B1 (en) * 2006-02-11 2007-07-02 삼성전자주식회사 Spatial resolution conversion method of image signal in image compression system based on motion compensation
JP2016039553A (en) * 2014-08-08 2016-03-22 株式会社リコー Communication device, communication system, communication method, and program

Similar Documents

Publication Publication Date Title
US5686962A (en) Motion image coder using pre-filter to reduce quantization error
US5767909A (en) Apparatus for encoding a digital video signal using an adaptive scanning technique
US5260782A (en) Adaptive DCT/DPCM video signal coding method
US8665952B1 (en) Apparatus and method for decoding video encoded using a temporal filter
US5568196A (en) Motion adaptive noise reduction filter and motion compensated interframe coding system using the same
JP2581341B2 (en) High efficiency encoding device and decoding device
JPH03139988A (en) Method and device for recovering image
US8781004B1 (en) System and method for encoding video using variable loop filter
KR100497398B1 (en) Method and apparatus of video noise reduction
JPH05219385A (en) Picture compression expansion method and device
JPH0662392A (en) High efficient dynamic image encoding system
US6081552A (en) Video coding using a maximum a posteriori loop filter
JPH01228384A (en) Moving image coding system using area division
JPH04322593A (en) Picture coder and its decoder
US5614953A (en) Image signal decoding apparatus having an encoding error compensation
EP0541287B1 (en) Video signal coding apparatus and decoding apparatus
KR20020066498A (en) Apparatus and method for coding moving picture
JP2868342B2 (en) Intra-loop filter control method for inter-frame predictive coding device
JPH11504482A (en) Post-processing method and apparatus for video signal decoding system
JPH06343167A (en) Moving image compression circuit
US20060181650A1 (en) Encoding method and device
JPH10126794A (en) Compressor for image signal between motion prediction frames
JP3104334B2 (en) Image coding device
JP2938652B2 (en) Time-varying interframe subband coding method
KR0124157B1 (en) Image encoding apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990126