JPH0661417A - Semiconductor device, electronic circuit device, and method and device for manufacturing them - Google Patents

Semiconductor device, electronic circuit device, and method and device for manufacturing them

Info

Publication number
JPH0661417A
JPH0661417A JP24275392A JP24275392A JPH0661417A JP H0661417 A JPH0661417 A JP H0661417A JP 24275392 A JP24275392 A JP 24275392A JP 24275392 A JP24275392 A JP 24275392A JP H0661417 A JPH0661417 A JP H0661417A
Authority
JP
Japan
Prior art keywords
electrically insulating
insulating substrate
resin
semiconductor device
conductive patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24275392A
Other languages
Japanese (ja)
Other versions
JP2617402B2 (en
Inventor
Shinichi Yatani
真一 矢谷
Yasuo Hasegawa
泰男 長谷川
Tetsuo Tsukamoto
哲生 塚本
Masabumi Kuwabara
正文 桑原
Haruo Ninomiya
春雄 二ノ宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP24275392A priority Critical patent/JP2617402B2/en
Publication of JPH0661417A publication Critical patent/JPH0661417A/en
Application granted granted Critical
Publication of JP2617402B2 publication Critical patent/JP2617402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To form a plurality of divided semiconductor devices by sealing the entire surface of the part where the conductive pattern of an electrically insulating substrate having a large area is formed with a sealing resin so that the surface can become smooth. CONSTITUTION:Semiconductor elements 2 are firmly fixed to prescribed parts of conductive patterns 1A with solder layers 3. After coating the elements 2 with a precoating resin, an electrically insulating substrate 1 having a large area is supported by means of a frame-like upper and plate-like lower casting mold members 6 and 7 so that a liquid sealing resin cannot leak out. After holding the substrate 1 between the members 6 and 7, the sealing resin is poured in the member 6 until the thickness of the resin reaches 1.5mm and vacuum- defoaming is performed. Then the resin is hardened by heating while the members 6 and 7 are horizontally maintained. After obtaining a molded product by removing the members 6 and 7, a plurality of divided semiconductor devices are obtained by applying an external force to the substrate 1 along the scribe line 1C of the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,電気絶縁性基板の導電
パターンに固着された半導体素子を樹脂封止してなる小
型,軽量,薄型で表面実装に適した半導体装置,電子回
路装置,およびそれらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, an electronic circuit device, and a small, lightweight and thin semiconductor device which is formed by resin-sealing a semiconductor element fixed to a conductive pattern of an electrically insulating substrate, and an electronic circuit device. It relates to their manufacturing method.

【0002】[0002]

【従来の技術】一般にコンバ−タ電源機器などは、ます
ます小形化が要求され、表面実装法によるオンボ−ド電
源(OBP)などの開発が進められている。しかし、大
容量のコンバ−タを小形化のOBPとするには、これら
に使用される一部の半導体部品は大き過ぎるために全体
を小形化できない欠点が生じている。特に比較的容量の
大きいショットキ−バリアダイオ−ド,バイポーラトラ
ンジスタ,MOSFETなどの半導体部品は,半導体素
子からの発熱が大きいので,金属製ヒ−トシンクと外部
リ−ドを同時にトランスファ−モ−ルドして放熱効果を
大ならしめている。しかしそのために部品が大きな形状
となってしまい,基板に搭載して全体を小形化にするこ
とが難しい。
2. Description of the Related Art In general, converter power supplies and the like are required to be smaller and smaller, and development of on-board power supplies (OBP) by surface mounting method is being advanced. However, in order to make a large-capacity converter into a compact OBP, some semiconductor parts used in these converters are too large, so that the whole cannot be miniaturized. In particular, semiconductor components such as Schottky barrier diodes, bipolar transistors, and MOSFETs, which have a relatively large capacity, generate a large amount of heat from the semiconductor elements. Therefore, a metal heat sink and an external lead are simultaneously transfer-molded. Greater heat dissipation effect. However, because of this, the parts become large in size, and it is difficult to mount them on the board and make them smaller.

【0003】これらのショットキ−バリアダイオ−ド,
バイポーラトランジスタ,MOSFETなどの半導体部
品のベアチップである半導体素子をそのまま基板に搭載
し,ボンディングしてモ−ルドすることができれば小形
化には最適であるが,大容量の半導体素子の場合には熱
衝撃性,耐湿性などの信頼性が不充分で検討の余地があ
る。また,多くの回路部品が樹脂封止された表面実装部
品で,一部分がベアチップである場合には分けて搭載
し,異なる工程で処理する必要があり,高価な専用装置
が必要で製造工数が増大し,コストアップになるという
欠点がある。上記半導体素子を放熱性の良いアルミナ基
板などに半田付けし,別に電極パッドなどとの間を金属
線でワイヤボンディングし,その後封止用樹脂を滴下し
て封止した半導体素子を搭載する方法もある。この基板
は裏面がバイアホ−ルで導通した電極になっており小形
化に適している。しかしこれらの封止樹脂硬化物は表面
が凸レンズ状にモ−ルドされ,フラットな形状でないの
で,減圧吸引による自動搭載ができない欠点がある。
These Schottky barrier diodes,
It is optimal for downsizing if a semiconductor element, which is a bare chip of a semiconductor component such as a bipolar transistor or MOSFET, can be mounted on the substrate as it is and bonded and molded. The reliability such as impact resistance and moisture resistance is insufficient and there is room for consideration. Also, many circuit components are surface-mounted components that are resin-sealed, and if some of them are bare chips, they must be mounted separately and processed in different steps, which requires expensive dedicated equipment and increases the number of manufacturing steps. However, it has the drawback of increasing costs. There is also a method in which the above semiconductor element is soldered to an alumina substrate or the like having good heat dissipation, wire bonding is separately performed with an electrode pad or the like with a metal wire, and then a sealing resin is dropped to seal the semiconductor element. is there. This substrate is suitable for miniaturization because the back surface is an electrode that is conductive with a via hole. However, since the surface of these cured products of the sealing resin is molded into a convex lens shape and is not flat, there is a drawback that automatic mounting by vacuum suction cannot be performed.

【0004】このように表面実装に使用する電子部品
は,品質面の向上はもとより,小型、薄型、軽量、低コ
ストなどが要求されている。一般にコンデンサ,抵抗,
コイル,トランス、IC,ダイオ−ド,トランジスタな
どの回路部品は基板に搭載され易い形状に設計されてお
り,回路部品を高速で自動挿入機械を用いて表面実装す
る製造方法へと移行している。この方法は基板の導電パ
ターンの所定位置にクリ−ムハンダを塗布し,そこへ回
路部品を搭載して仮接着し,リフロ−加熱処理などによ
りハンダ付けを行うものである。表面実装法において
は,回路部品を減圧で吸引し搭載するので必然的に形状
は軽量で,かつ表面がフラットであることが好ましく,
外装は品質保持のため,電気絶縁性の優れたエポキシ樹
脂などを用い,トランスファ−モ−ルド法などで量産さ
れる。
As described above, electronic components used for surface mounting are required to be small, thin, lightweight, and low in cost in addition to improving quality. Generally, capacitors, resistors,
Circuit components such as coils, transformers, ICs, diodes, and transistors are designed to be easily mounted on the board, and the manufacturing method is shifting to surface mounting circuit components at high speed using an automatic insertion machine. . In this method, a cream solder is applied to a predetermined position of a conductive pattern of a substrate, a circuit component is mounted thereon and temporarily adhered, and soldering is performed by a reflow heat treatment or the like. In the surface mounting method, circuit components are sucked and mounted under reduced pressure, so it is inevitable that the shape is lightweight and the surface is flat.
To maintain quality, the exterior is made of epoxy resin, which has excellent electrical insulation properties, and mass-produced by the transfer molding method.

【0005】図7により一般的なリード線タイプの表面
実装型半導体装置について説明すると,先端部分が平坦
面を形成するよう曲げられた一対のリード電極50,5
1の一方の平坦面に半導体素子52がハンダ付けされ,
その半導体素子52は内部リード端子53により他方の
リード電極51に接続されており,リード電極50,5
1の平坦部と半導体素子52は封止樹脂54でモールド
されている。また,小形・薄型化や省力化,工程削減の
ため,ベアチップやフリップチップを基板の導電パター
ン上にダイボンディング法などで直接搭載して接着し、
必要に応じて電極や配線パタ−ンを含む導電パターンに
ボンディングを行い,絶縁性の良好なエポキシ樹脂を滴
下しコ−ティングする方法もある。この例として特開昭
62-208652 号公報に記載されたものがある。これは図8
に示されているように,先ず基板61にダイボンド材6
2を用いて半導体素子63を接着し,金属細線63によ
り電気接続を行い,その後ダム65の上に鋳型部材66
をあてがい,ダム65の溝64からパッケージ内に封止
樹脂67を注入する。そして封止樹脂67の硬化後,鋳
型部材66を除去し,樹脂封止した半導体装置を得る。
Referring to FIG. 7, a general lead wire type surface mount type semiconductor device will be described. A pair of lead electrodes 50 and 5 whose tip portions are bent to form a flat surface.
The semiconductor element 52 is soldered to one flat surface of 1,
The semiconductor element 52 is connected to the other lead electrode 51 by an internal lead terminal 53.
The flat portion 1 and the semiconductor element 52 are molded with a sealing resin 54. In addition, in order to reduce the size and thickness, save labor, and reduce the number of processes, bare chips and flip chips are directly mounted on the conductive pattern of the substrate by die bonding, etc.
There is also a method in which a conductive pattern including an electrode and a wiring pattern is bonded if necessary, and an epoxy resin having a good insulating property is dropped and coated. As an example of this,
There is one described in Japanese Patent No. 62-208652. This is Figure 8
First, as shown in FIG.
2, the semiconductor element 63 is adhered, and the thin metal wire 63 is used for electrical connection, and then the mold member 66 is placed on the dam 65.
Then, the sealing resin 67 is injected into the package from the groove 64 of the dam 65. After the encapsulating resin 67 is cured, the mold member 66 is removed to obtain a resin-encapsulated semiconductor device.

【0006】[0006]

【発明が解決しようとする課題】しかし,図9の半導体
装置の場合には一対のリード電極50,51がコの字状
に曲げられているので,薄型化という点で大きな難点が
あり,また一対のリード電極50,51の一部分を含め
て1つ1つ順次トランスファーモールドしなければなら
ないので,特別のトランスファーモールド装置が必要で
あり,しかも量産化が難しい。さらに一対のリード電極
50,51をコの字状に曲げて使用しているので,小型
化も難しい。次に図10に示したものの場合には,上面
の平坦な樹脂封止を得ようとすると,1個づつダム65
の上に鋳型部材66をあてがい,ダム65の溝64から
パッケージ内に封止樹脂67を注入する工程が必要とな
るので,量産化には不向きであり,またダム65の面積
分だけ基板を大きくせざるを得ないので,小型化の面で
も問題がある。また図示していないが,封止樹脂からリ
ード線が延びる電力用の半導体装置にあっては,樹脂で
封止後,リード線のつけ根のバリ取りを含む複数のバリ
取り工程を行わねばならず,半導体装置事態を小型化す
るのも困難であった。本発明は,特に比較的容量の大き
いショットキバリアダイオード,バイポーラトランジス
タ,電界効果トランジスタなどの半導体素子,又は他の
回路部品などを樹脂封止してなるフラットな小形,薄
型,軽量で量産性が高く,熱衝撃性,耐湿性,PCT試
験など信頼性の良好な特性を有する製造方法を提供する
ことを目的としている。
However, in the case of the semiconductor device of FIG. 9, since the pair of lead electrodes 50 and 51 are bent in a U-shape, there is a great difficulty in reducing the thickness. Since it is necessary to sequentially perform transfer molding one by one including a part of the pair of lead electrodes 50 and 51, a special transfer molding device is required and mass production is difficult. Furthermore, since the pair of lead electrodes 50 and 51 are bent and used in a U-shape, it is difficult to reduce the size. Next, in the case of the one shown in FIG.
It is not suitable for mass production because it requires a step of placing a mold member 66 on top and injecting the sealing resin 67 into the package from the groove 64 of the dam 65. Moreover, the substrate is enlarged by the area of the dam 65. Since there is no choice but to do so, there is a problem in terms of miniaturization. Although not shown, in a power semiconductor device in which a lead wire extends from a sealing resin, a plurality of deburring steps including deburring at the root of the lead wire must be performed after sealing with the resin. However, it was difficult to reduce the size of semiconductor devices. The present invention is highly compact, thin, and lightweight, and is highly mass-producible, especially when a semiconductor element such as a Schottky barrier diode having a relatively large capacity, a bipolar transistor, a field effect transistor, or another circuit component is resin-sealed. , A thermal shock resistance, a moisture resistance, a PCT test, and the like, and an object of the present invention are to provide a manufacturing method having good characteristics.

【0007】[0007]

【課題を解決するための手段】このような問題点を解決
するため,第1の発明では,所定の導電パターンを一方
の主面に複数有し,かつ前記所定の導電パターンにかか
らないように少なくとも一方の主面に複数のスクライブ
ラインの形成された大面積の電気絶縁性基板を備え,前
記所定の導電パターンのそれぞれに半導体素子を固着し
た後,前記大面積の電気絶縁性基板の前記導電パターン
の形成された部分の全面にわたって表面が平坦になるよ
う封止樹脂で封止し,必要に応じてその封止樹脂の前記
スクライブラインに対応する箇所に沿って所定の深さの
溝を形成している。第2の発明は,所定の導電パターン
を一方の主面に複数有し,かつ前記所定の導電パターン
にかからないように少なくとも一方の主面に複数のスク
ライブラインの形成された大面積の電気絶縁性基板を備
え,前記所定の導電パターンのそれぞれに1つ以上の半
導体素子を固着した後,前記大面積の電気絶縁性基板の
前記導電パターンの形成された部分の全面にわたって表
面が平坦になるよう封止樹脂で封止し,その封止樹脂の
硬化の途中で,外力を与えて前記電気絶縁性基板と封止
樹脂とを前記スクライブラインに沿って分割して個別の
半導体装置,電子回路装置を得ている。
In order to solve such a problem, in the first invention, a plurality of predetermined conductive patterns are provided on one main surface, and at least the predetermined conductive pattern is not applied. A large area electrically insulating substrate having a plurality of scribe lines formed on one main surface is provided, and after a semiconductor element is fixed to each of the predetermined conductive patterns, the electrically conductive pattern of the large area electrically insulating substrate is provided. The whole surface of the part where the is formed is sealed with a sealing resin so that the surface is flat, and if necessary, a groove of a predetermined depth is formed along the position corresponding to the scribe line of the sealing resin. ing. A second aspect of the present invention is a large area electrical insulating material having a plurality of predetermined conductive patterns on one main surface and having a plurality of scribe lines formed on at least one main surface so as not to cover the predetermined conductive pattern. A substrate is provided, and after fixing one or more semiconductor elements to each of the predetermined conductive patterns, the large-area electrically insulating substrate is sealed so that the surface is flat over the entire surface of the conductive pattern formed portion. Sealing with a sealing resin, and during curing of the sealing resin, an external force is applied to divide the electrically insulating substrate and the sealing resin along the scribe line to separate individual semiconductor devices and electronic circuit devices. It has gained.

【0008】[0008]

【実施例】図1により本発明の一実施例について説明す
る。図1はトランジスタの1例を示すもので,1は無機
質のアルミナ,窒化アルミ,ガラスなどのセラミックス
やアルミ,銅などの金属板にポリイミドなどの絶縁被膜
を接着させたものなどからなる大面積の電気絶縁性基板
であり,一方の主面には所定の導電パターン1Aがマト
リクス状に規則正しく形成されている。その他方の主面
には,各導電パターン1Aのそれぞれに対応する別の電
極パターン1Bが形成されており,導電パターン1Aと
電極パターン1Bは図示していない通常のバイアホール
によって所望の接続がされている。これら各導電パター
ン1Aと電極パターン1Bは銅,タングステンなどの導
電ぺ−ストをシルク印刷等で印刷し焼き付けて,トラン
ジスタ用の電極として形成されたものである。電極パタ
ーン1Bは図示していないプリント基板などの印刷回路
パターンにハンダ付けされる外部電極としての機能をも
つ。そして導電パターン1Aと電極パターン1Bにかか
ることがないように,電極パターン1Bの形成された面
又は他方の面,或いは双方の面に格子状にスクライブラ
イン1Cが形成されている。このスクライブライン1C
は,後で大面積成形物を割り易くするためのものであ
り,機械的に形成されたV字状などの溝,又は超音波な
どの作用により所望ラインに沿って形成された微少クラ
ック群,ライン状に材質を脆弱化させたものなどからな
り,溝以外は外見上,見分けがつかない場合が多い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 shows an example of a transistor. 1 is a large area made of an inorganic alumina, aluminum nitride, ceramics such as glass, or a metal plate such as aluminum or copper to which an insulating film such as polyimide is adhered. It is an electrically insulating substrate, and a predetermined conductive pattern 1A is regularly formed in a matrix on one main surface. Another electrode pattern 1B corresponding to each of the conductive patterns 1A is formed on the other main surface, and the conductive pattern 1A and the electrode pattern 1B are connected to each other as desired by an ordinary via hole (not shown). ing. The conductive patterns 1A and the electrode patterns 1B are formed as electrodes for transistors by printing a conductive paste of copper, tungsten or the like by silk printing and baking. The electrode pattern 1B has a function as an external electrode soldered to a printed circuit pattern such as a printed circuit board (not shown). The scribe lines 1C are formed in a grid pattern on the surface on which the electrode pattern 1B is formed, the other surface, or both surfaces so that the conductive pattern 1A and the electrode pattern 1B are not covered. This scribe line 1C
Is for facilitating the splitting of a large-area molded product later, and is a group of minute cracks formed along a desired line by mechanically formed V-shaped grooves or the like by the action of ultrasonic waves, It is made of a weakened material in a line shape, and it is often indistinguishable from the outside except for grooves.

【0009】次に半導体素子2をそれぞれの導電パター
ン1Aの所定部分にハンダ層3で固着し,しかる後金属
線4をワイヤボンディングしてトランジスタのエミッタ
電極,ベース電極を導電パターン1Aの所定部分に接続
する。次に図示していないが,ポリイミドワニスなどの
プリコート樹脂により通常のパッシベーションが行わ
れ,その後特定の封止樹脂5で全ての導電パターン1A
および半導体素子2を一様に封止し,しかる後に分割し
て個々の半導体装置を得る。この際,スクライブライン
1Cが,封止樹脂5で覆われる面とは反対の大面積の電
気絶縁性基板主面に形成されていると容易に分割できる
が,スクライブライン1Cが封止樹脂5で覆われる面だ
けに形成されていると,非常に分割し難い。ここで,図
1に示す導電パターン1Aと電極パターン1Bは単体の
半導体素子2用のものであるが,各導電パターン1Aと
電極パターン1Bを半導体素子を1個以上,また他の能
動素子,受動素子少なくとも1個以上搭載した混成集積
回路,電源回路など回路構成に適した回路パターンとす
ることも容易に可能であり,それら各素子を搭載・接着
し,所定の接続を行った後に,同様にしてこれらを一様
に封止し,しかる後に分割して個々の電子回路装置を得
ることもできる。
Next, the semiconductor element 2 is fixed to a predetermined portion of each conductive pattern 1A with a solder layer 3, and then a metal wire 4 is wire-bonded so that the emitter electrode and the base electrode of the transistor are fixed to the predetermined portion of the conductive pattern 1A. Connecting. Next, although not shown, normal passivation is performed with a precoat resin such as polyimide varnish, and then all conductive patterns 1A are formed with a specific sealing resin 5.
Then, the semiconductor element 2 is uniformly sealed, and then divided into individual semiconductor devices. At this time, if the scribe line 1C is formed on the main surface of the large-area electrically insulating substrate opposite to the surface covered with the sealing resin 5, the scribe line 1C can be easily divided. If it is formed only on the covered surface, it is very difficult to divide. Here, the conductive pattern 1A and the electrode pattern 1B shown in FIG. 1 are for the single semiconductor element 2, but each conductive pattern 1A and the electrode pattern 1B include one or more semiconductor elements, other active elements and passive elements. It is also possible to easily form a circuit pattern suitable for the circuit configuration such as a hybrid integrated circuit or a power supply circuit in which at least one element is mounted, and after mounting and bonding each of these elements and making a predetermined connection, the same is done. It is also possible to uniformly seal them and then divide them to obtain individual electronic circuit devices.

【00010】次にこの樹脂封止について詳しく説明す
る。先ず,封止樹脂5としてはエポキシ樹脂,フェノ−
ル樹脂,ポリエステル樹脂,などの電気絶縁性樹脂が適
しており,加熱により徐々に硬化する組成の熱硬化性樹
脂が好ましい。後述する理由から半硬化或いはBステ−
ジ状態を経由する樹脂で,特にエポキシ樹脂をベ−スと
するものが適当であり,硬化剤、触媒としては酸無水
物,フェノ−ル樹脂,芳香族アミン,イミダゾ−ルなど
が使用できる。また顔料、充填剤、添加剤も特性保持の
ために使用できる。充填剤は石英粉、アルミナなどが使
用でき、一般に60% 程度以上含有するするものが良
い。電気絶縁性基板1との密着性,分割性,離型性,流
れ性,低温硬化性,脱泡性,低チクソ性などの作業性を
良くすること,低膨脹,含有不純物イオンの低いこなど
も要求される。熱可塑性樹脂としてはPPOや液晶ポリ
マ−が使用できるが,溶融させて注入することが必要で
ある。
Next, the resin sealing will be described in detail. First, as the sealing resin 5, epoxy resin, phenol
An electrically insulating resin such as a resin or a polyester resin is suitable, and a thermosetting resin having a composition that is gradually hardened by heating is preferable. For the reasons described below, semi-curing or B-stain
A resin that passes through a di-state, particularly one based on an epoxy resin, is suitable, and acid anhydrides, phenol resins, aromatic amines, imidazoles, etc. can be used as curing agents and catalysts. In addition, pigments, fillers and additives can be used to maintain the properties. Quartz powder, alumina, etc. can be used as the filler, and generally, the content of about 60% or more is preferable. Improving workability such as adhesion to the electrically insulating substrate 1, splittability, releasability, flowability, low temperature curing, defoaming, low thixotropy, low expansion, low content of impurity ions, etc. Is also required. As the thermoplastic resin, PPO or liquid crystal polymer can be used, but it is necessary to melt and inject it.

【00011】次にエポキシ樹脂系封止樹脂の具体的な
配合例を述べる。 エピクロン#850(大日本インキ化学工業) 15部 チッソノックス#221(日本チッソ) 10部 チッソノックス#221(日本チッソ) 10部 反応性希釈剤GAN(日本火薬) 5部 ヒユ−ズレックスY−60(竜森) 133部 エピクロン#B−4136(大日本インキ化学工業) 27部 1B2MZ(四国化成) 0.5部 消泡剤(TSAー750(東芝シリコーン) 0.01部 合計 190.51部 このようにして得た配合品を攪拌機で良く混合し、真空
中で脱泡した。
Next, a concrete example of the epoxy resin-based sealing resin will be described. Epicron # 850 (Dainippon Ink and Chemicals) 15 parts Chisso Knox # 221 (Nissan Chisso) 10 parts Chisso Knox # 221 (Nissan Chisso) 10 parts Reactive Diluent GAN (Nippon Kayaku) 5 parts Hiyu-Rex Y-60 ( Tatsumori) 133 parts Epicron # B-4136 (Dainippon Ink and Chemicals) 27 parts 1B2MZ (Shikoku Kasei) 0.5 parts Defoamer (TSA-750 (Toshiba Silicone) 0.01 parts Total 190.51 parts like this The compounded product obtained in 1 above was thoroughly mixed with a stirrer and defoamed in a vacuum.

【00012】次にこのように処理された封止樹脂を用
いて上面のフラットな封止樹脂の成型物の作成方法など
について述べる。上述のように,必要に応じてポリイミ
ドワニスなどのプリコ−ト樹脂で半導体素子2などを覆
った後,図2に示すように大面積の電気絶縁性基板1を
高さ5ミリの枠状の上部鋳型部材6と板状の下部鋳型部
材7で支持し,封止樹脂が漏れないようにする。ここで
鋳型部材は金属に限るものでなく,ゴムやプラスチック
などの材料でも良い。また,離型性を良好にするために
離型処理を行ったもの,或いはシリコーン樹脂の型を用
いると便利である。必要に応じて樹脂漏れのないようシ
ールやパッキング処理も行い,必要な加圧力を与えるた
めの加圧機構も備える。
Next, a method of producing a molded product of the sealing resin having a flat upper surface by using the sealing resin thus treated will be described. As described above, after covering the semiconductor element 2 or the like with a precoat resin such as a polyimide varnish as necessary, a large-area electrically insulating substrate 1 is formed into a frame shape having a height of 5 mm as shown in FIG. It is supported by the upper mold member 6 and the plate-shaped lower mold member 7 to prevent the sealing resin from leaking. Here, the mold member is not limited to metal, but may be a material such as rubber or plastic. In addition, it is convenient to use a mold that has been subjected to a mold release treatment or a mold of a silicone resin in order to improve the mold release property. If necessary, sealing and packing processes are performed to prevent resin leakage, and a pressure mechanism for applying the required pressure is also provided.

【00013】このように大面積の電気絶縁性基板1の
周辺部を上部鋳型部材6と下部鋳型部材7で挟んだ後,
前述のような液状封止樹脂をほぼ1.5ミリの厚さにな
るまで枠内全面に流し込み,真空装置(図示せず)に入
れ,真空脱泡する。予め封止樹脂中の空気を脱泡してあ
るので,封止時の脱泡時間を短縮できる。ここで言う真
空とは封止樹脂中の空気が樹脂中から除去できる程度の
減圧で、最低100mmHg程度の真空度が必要であ
る。液状封止樹脂は常圧或いは真空中で注入される。勿
論,未脱泡樹脂を注入した後に真空脱泡しても構わな
い。この脱泡工程を行わないと,封止樹脂表面に泡のあ
とが残ることが多い。そして鋳型部材を水平に保ち,2
mmHg/5分間真空脱泡し、これを160℃の雰囲気で
2時間程度加熱し硬化させる。次に鋳型部材6,7を外
して成形物を得た後,電気絶縁性基板1の裏面のスクラ
イブライン1Cに沿って外力を加えることにより個別或
いは複数個分に分割した半導体装置を得ることができ
る。ここで加熱硬化温度は,封止樹脂のタイプにもよる
が,トランスファー成形においては鋳型部材温度が18
0〜250℃で,時間は2〜10分間の範囲が量産性に
適しており,また注型方法では温度が80〜180°C
で,時間は10分〜2時間程度が適している。
After sandwiching the peripheral portion of the large-area electrically insulating substrate 1 between the upper mold member 6 and the lower mold member 7 as described above,
The liquid encapsulating resin as described above is poured over the entire surface of the frame until the thickness becomes approximately 1.5 mm, placed in a vacuum device (not shown), and vacuum defoamed. Since the air in the sealing resin has been defoamed in advance, the defoaming time at the time of sealing can be shortened. The vacuum referred to here is a pressure reduction that allows air in the sealing resin to be removed from the resin, and a vacuum degree of at least about 100 mmHg is required. The liquid sealing resin is injected under normal pressure or vacuum. Of course, vacuum defoaming may be performed after injecting undefoamed resin. If this defoaming step is not performed, bubbles will often remain on the surface of the sealing resin. And keep the mold member horizontal, 2
Vacuum degassing is performed for 5 minutes at mmHg, and this is heated in an atmosphere of 160 ° C. for about 2 hours to be cured. Next, after removing the mold members 6 and 7 to obtain a molded product, an external force is applied along the scribe line 1C on the back surface of the electrically insulating substrate 1 to obtain a semiconductor device individually or divided into a plurality of parts. it can. Here, the heat curing temperature depends on the type of sealing resin, but in transfer molding, the mold member temperature is 18
It is suitable for mass production in the range of 0 to 250 ° C and the time of 2 to 10 minutes. In the casting method, the temperature is 80 to 180 ° C.
Therefore, a suitable time is about 10 minutes to 2 hours.

【00014】封止樹脂5の厚みがほぼ2ミリ以下のと
きには半導体素子などに悪影響を及ぼすことなくスクラ
イブライン1Cに沿ってマニュアルにより容易に分割で
きるが,封止樹脂5の厚みがほぼ2ミリを越える場合に
は図3に示すように,電気絶縁性基板1の裏面のスクラ
イブライン1Cに対応する箇所に凹状,線状,V字カッ
トなどの一定の深さの溝5Aを設けるのが良い。この格
子状に形成された溝5Aは,その溝に底から電気絶縁性
基板1表面までの厚みがほぼ2ミリ以下になるような深
さをもつ。なお,半導体装置,電源などの電子回路装置
によって異なるものの,封止樹脂5の厚さは1〜5ミリ
が一般的であり,かなり厚い場合には,大面積成形物の
上面がたわむことがあり,電気特性に悪影響の生じる場
合もある。したがって,電気絶縁性基板1の裏面のスク
ライブライン1Cに対応する封止樹脂5の箇所に格子状
の溝5Aを設けることにより,たわみの比較的小さい平
坦な大面積成形物を得ることができる。
When the thickness of the sealing resin 5 is approximately 2 mm or less, it can be easily divided manually along the scribe line 1C without adversely affecting the semiconductor elements, but the thickness of the sealing resin 5 is approximately 2 mm. When it exceeds, as shown in FIG. 3, it is preferable to form a groove 5A having a constant depth such as a concave shape, a linear shape, or a V-shaped cut at a position corresponding to the scribe line 1C on the back surface of the electrically insulating substrate 1. The grooves 5A formed in a grid pattern have a depth such that the thickness from the bottom to the surface of the electrically insulating substrate 1 is approximately 2 mm or less. The thickness of the sealing resin 5 is generally 1 to 5 mm, although it depends on the electronic circuit device such as a semiconductor device and a power supply. , In some cases, the electrical characteristics may be adversely affected. Therefore, by providing the grid-shaped grooves 5A at the location of the sealing resin 5 corresponding to the scribe line 1C on the back surface of the electrically insulating substrate 1, it is possible to obtain a flat large-area molded product having relatively small deflection.

【00015】この大面積成形物は封止樹脂を電気絶縁
性基板1のほぼ全面に流し込んで形成されたものなの
で,その上面は滑らかであり,当然に分割された半導体
装置の上面も滑らかであるが,溝5Aから下の分割され
た側壁面は上面に比べて粗く,容易に分割されたことを
示す。溝5Aを大面積成形物に作る簡単な方法として,
図4に示すような押さえ鋳型部材8を用い,硬化する前
の封止樹脂5を加圧したり,上部鋳型部材6と下部鋳型
部材7に対し予め押さえ鋳型部材8をセットした状態で
液状の封止樹脂を流し込む方法がある。この押さえ鋳型
部材8は電気絶縁性基板1のスクライブライン1Cと同
一の間隔で格子状に形成された凸部,つまり畔部8Aの
形成された面をもつ。畔部8Aに囲まれた部分は畔部8
Aより低くなっており,畔部8Aの形状,高さは形成し
たい溝5Aに相当する。押さえ鋳型部材8の材質などは
上部鋳型部材6と下部鋳型部材7と同様である。ここで
図示していないが,樹脂封止を合理的に行うために,押
さえ鋳型部材で封止樹脂を押さえたとき,余分な封止樹
脂が逃げることが出来る場所を上部鋳型部材と押さえ鋳
型部材との間に作っておいてやれば良い。さらに,真空
中で押さえ鋳型部材をセットするば気泡の少ない滑らか
な面が得られる。また,必要ならばこれら鋳型部材の表
面に模様を付けたり,マ−クなどの刻印を施したりして
も良い。
Since this large-area molded product is formed by pouring the sealing resin over almost the entire surface of the electrically insulating substrate 1, its upper surface is smooth, and naturally the upper surface of the divided semiconductor device is also smooth. However, the divided side wall surface below the groove 5A is rougher than the upper surface, indicating that the side wall surface was easily divided. As a simple method to make the groove 5A in a large area molding,
A pressing mold member 8 as shown in FIG. 4 is used to pressurize the sealing resin 5 before curing, or a liquid sealing is performed in a state where the pressing mold member 8 is previously set to the upper mold member 6 and the lower mold member 7. There is a method of pouring a stop resin. The pressing mold member 8 has convex portions formed in a grid pattern at the same intervals as the scribe lines 1C of the electrically insulating substrate 1, that is, a surface on which a ridge portion 8A is formed. The part surrounded by the shore 8A is the shore 8
It is lower than A, and the shape and height of the ridge 8A correspond to the groove 5A to be formed. The material of the pressing mold member 8 is the same as that of the upper mold member 6 and the lower mold member 7. Although not shown here, in order to perform the resin sealing reasonably, when the sealing resin is pressed by the pressing mold member, the upper mold member and the pressing mold member should be located at a place where the excess sealing resin can escape. You can make it between and. Furthermore, a smooth surface with few bubbles can be obtained by setting the pressing mold member in a vacuum. If necessary, the surfaces of these mold members may be patterned or marked such as marks.

【00016】さらに樹脂封止方法の具体例について下
記に述べる。 [具体例1]第1図に示すような複数の導電パターン1
Aを印刷したアルミナ製の0.4ミリ厚の電気絶縁製基
板1に比較的電流容量の大きな複数のベアチップ半導体
素子2を搭載したものを鋳型部材にセットすると共に,
封止樹脂の厚みが1mmになるよう設定する。トランス
ファ−モ−ルド装置を用いて,トランスファ−モ−ルド
用樹脂MP−3000(日東電工製品)を加熱して溶か
し鋳型部材内全面に注入する。鋳型部材温度を180℃
にセットし、2分間加熱し硬化させる。硬化物を鋳型部
材枠から取り外すと,図5に示すような封止樹脂5の表
面全体がフラットな大面積成型物が得られた。電気絶縁
製基板1の裏面につけたスクライブライン1Cに沿って
分割すると,上面が滑らかで,4つ側壁面がザラザラし
た半導体装置が得られた。この半導体装置は従来の同様
な電流容量の素子に比べて実装面積が1/3〜1/4,
厚みも1/2以下と非常に小型化できた。
A specific example of the resin sealing method will be described below. [Specific Example 1] A plurality of conductive patterns 1 as shown in FIG.
An A-printed 0.4 mm thick electrically insulating substrate 1 made of alumina, on which a plurality of bare chip semiconductor elements 2 having a relatively large current capacity are mounted, is set as a mold member, and
The thickness of the sealing resin is set to 1 mm. Using a transfer mold device, a transfer mold resin MP-3000 (Nitto Denko product) is heated and melted, and then poured into the entire surface of the mold member. Mold member temperature is 180 ℃
And heat for 2 minutes to cure. When the cured product was removed from the mold member frame, a large area molded product having a flat entire surface of the sealing resin 5 as shown in FIG. 5 was obtained. When divided along the scribe line 1C attached to the back surface of the electrically insulating substrate 1, a semiconductor device having a smooth top surface and four rough side wall surfaces was obtained. This semiconductor device has a mounting area of ⅓ to ¼, as compared with a conventional element having a similar current capacity.
The thickness was reduced to less than 1/2, which was extremely small.

【00017】[具体例2]複数の同一の回路パターン
に所定の回路部品を搭載し接続してなるアルミナ製の
0.635ミリ厚の電気絶縁製基板の裏面に形成された
スクライブラインと対向する位置に,図3に示すように
ほぼ2ミリの深さのV字型溝を封止樹脂に与える図4に
示すような鋳型部材を位置合わせし,封止樹脂の厚みが
4mmになるようにセットする。前記配合例の封止樹脂
を鋳型部材内に圧入し,封止樹脂を4mmの厚さに成型
する。これを鋳型部材温度150℃で10時間加熱し硬
化させる。硬化後に硬化物を鋳型部材枠から取り外す
と,図3に示すような封止樹脂5の表面に格子状の溝5
Aの形成された大面積成型物が得られた。その格子状の
溝5A沿って分割すると,上面が滑らかで,4つの分割
側壁面は上面に比べてザラザラした樹脂封止型電子回路
装置が得られた。このようにして得られた電子回路装置
は初期の電気特性を維持し,樹脂封止と機械的な分割に
よる悪影響は見られず,良好な電子回路装置が得られ
た。この電子回路装置も従来の同様な装置に比べて実装
面積が1/3〜1/4,厚みもほぼ1/2と非常に小型
・軽量になった。このようにして得られた樹脂封止型半
導体装置,樹脂封止型電子回路装置はバリ取り工程が一
切不要であった。
[Specific Example 2] Opposed to a scribe line formed on the back surface of a 0.635 mm thick electrically insulating substrate made of alumina in which predetermined circuit components are mounted and connected to a plurality of identical circuit patterns. The mold member as shown in FIG. 4 which gives a V-shaped groove having a depth of about 2 mm to the sealing resin as shown in FIG. 3 is aligned with the position so that the thickness of the sealing resin becomes 4 mm. set. The sealing resin of the above formulation example is press-fitted into the mold member to mold the sealing resin to a thickness of 4 mm. This is heated at a mold member temperature of 150 ° C. for 10 hours to be cured. When the cured product is removed from the mold member frame after curing, the grid-shaped grooves 5 are formed on the surface of the sealing resin 5 as shown in FIG.
A large-area molded product in which A was formed was obtained. When divided along the lattice-shaped grooves 5A, a resin-sealed electronic circuit device having a smooth upper surface and four divided side wall surfaces that were rougher than the upper surface was obtained. The electronic circuit device thus obtained maintained the initial electrical characteristics, no adverse effects due to resin sealing and mechanical division were observed, and a good electronic circuit device was obtained. This electronic circuit device has a mounting area of ⅓ to ¼ and a thickness of almost ½, which is extremely small and lightweight, as compared with a conventional similar device. The resin-sealed semiconductor device and the resin-sealed electronic circuit device thus obtained did not require any deburring step.

【00018】以上の実施例については封止樹脂が完全
に硬化した後で,大面積成形物を分割する場合について
述べたが,封止樹脂として半硬化或いはBステ−ジ状態
を経由する熱硬化性樹脂を用い,その封止樹脂が熱硬化
の過程で半硬化(完全硬化状態のほぼ90%以下)の状
態に至ったとき,加熱を止め,分割する例について述べ
る。この場合には封止樹脂の硬化後の分割に比べてかな
り小さな外力で大面積成形物を分割できる。この実施例
では,前述と同様にして複数の回路パターンの印刷され
たアルミナ製の電気絶縁性基板1に複数の半導体素子,
抵抗器,コンデンサ,インダクタなどの回路部品(それ
らの一部分はベアチップ)を搭載し固着させた後,所定
の接続を行って電源回路を構成し,しかる後その上に高
さ2ミリのシリコ−ンゴム製の(金)型を載せ,密着さ
せる。前述配合例のエポキシ系封止樹脂を2ミりの高さ
に全面に注入し,真空脱泡を行いながら120℃の雰囲
気中で15分間加熱し,半硬化させて大面積成形物を得
た。この封止樹脂の完全硬化時の熱変形温度は165℃
であるが,このときの半硬化時の熱変形温度は72℃で
あった。そしてシリコ−ンゴム製の(金)型を外すと,
封止樹脂の高さが2ミリのフラットな大面積成型物が得
られ,電気的絶縁基板1の裏面のスクライブラインに沿
って分割すると簡単に割ることができた。
In the above embodiments, the case where the large area molded product is divided after the sealing resin is completely cured has been described. However, as the sealing resin, it is semi-cured or thermoset through the B stage state. An example will be described in which a heat-resistant resin is used, and when the sealing resin reaches a semi-cured state (90% or less of the completely cured state) in the process of thermosetting, heating is stopped and the resin is divided. In this case, a large-area molded product can be divided with an external force that is considerably smaller than that after the sealing resin is cured. In this embodiment, a plurality of semiconductor elements are mounted on the electrically insulating substrate 1 made of alumina on which a plurality of circuit patterns are printed in the same manner as described above.
After mounting circuit components such as resistors, capacitors, and inductors (some of which are bare chips) and fixing them, make a predetermined connection to form a power supply circuit, and then add 2 mm high silicone rubber to it. Place the (mold) mold made of them, and bring them into close contact. A large area molded product was obtained by injecting the epoxy-based encapsulating resin of the above formulation example to a height of 2 mm and heating it in an atmosphere of 120 ° C. for 15 minutes while vacuum defoaming and semi-curing. . The heat distortion temperature at the time of complete curing of this sealing resin is 165 ° C.
However, the heat distortion temperature at the time of semi-curing at this time was 72 ° C. Then, if you remove the (rubber) mold made of silicone rubber,
A flat large-area molded product having a height of the sealing resin of 2 mm was obtained, and could be easily split by dividing along the scribe line on the back surface of the electrically insulating substrate 1.

【00019】次に幾つかの具体例について述べる。 [具体例1]第1図に示すような複数の導電パターン1
Aを印刷したアルミナ製の0.5ミリ厚の電気絶縁製基
板1に複数の半導体素子2を搭載したものを高さ3ミリ
の上部鋳型部材および下部鋳型部材にセットし,液状エ
ポキシ系封止樹脂を鋳型部材内全面に注入し,溢れさ
せ,その高さを3ミリとした。次に758mmHgで1
0分間真空脱泡し,これを80℃の雰囲気で60分間加
熱し半硬化させる。この樹脂の完全硬化時の熱変形温度
はほぼ165℃であり、半硬化時の熱変形温度は64℃
であった。このようにして得られた封止樹脂の高さが3
ミリのフラットな大面積成型物は,ほとんど撓みがな
く,電気絶縁製基板1の裏面のスクライブライン1Cに
沿って分割すると簡単に割ることができた。そして分割
した個々の半導体装置を150℃程度の雰囲気温度で2
0時間程度加熱し,完全硬化させた。このようにして分
割された側壁面は,上面の滑らかさに比べて粗いがスク
ライブライン1Cに沿ってきれいに割れており,半導体
製品として十分に供することのできるものであった。
Next, some specific examples will be described. [Specific Example 1] A plurality of conductive patterns 1 as shown in FIG.
A plurality of semiconductor elements 2 mounted on a 0.5 mm thick electrically insulating substrate 1 made of alumina printed with A is set in an upper mold member and a lower mold member having a height of 3 mm, and liquid epoxy-based encapsulation is performed. The resin was poured into the entire surface of the mold member to make it overflow and the height was set to 3 mm. Then 1 at 758 mmHg
Vacuum degassing is performed for 0 minutes, and this is heated in an atmosphere of 80 ° C. for 60 minutes to be semi-cured. The heat distortion temperature of this resin when it is completely cured is approximately 165 ° C, and the heat distortion temperature when it is half cured is 64 ° C.
Met. The height of the sealing resin thus obtained is 3
A large-area molded product having a flat millimeter had almost no bending and could be easily broken by dividing along the scribe line 1C on the back surface of the electrically insulating substrate 1. Then, the divided individual semiconductor devices are heated at an ambient temperature of about 150.degree.
It was heated for about 0 hours and completely cured. The side wall surface divided in this manner was rougher than the smoothness of the upper surface, but was finely cracked along the scribe line 1C, and could be sufficiently used as a semiconductor product.

【00020】[具体例2]複数の同一の回路パターン
に所定の回路部品を搭載し接続してなるアルミナ製の
0.4ミリ厚の電気絶縁製基板の裏面に形成されたスク
ライブラインと対向する位置に,図3に示すようにほぼ
1ミリの深さのV字型溝を封止樹脂に与える図4に示す
ような鋳型部材を位置合わせし,封止樹脂の厚みが3m
mになるようにセットする。配合例のようなシリカ粉7
0%含有のエポキシ/酸無水物/イミダゾ−ル系封止樹
脂を鋳型部材内に圧入し,封止樹脂を3mmの厚さに成
型する。これを鋳型部材温度160℃で10分間加熱し
半硬化させ,その半硬化の状態で大面積成形物を鋳型部
材枠から取り外した。この大面積成形物は具体例1より
も撓みも若干小さく,格子状の溝5Aに沿って行った分
割は更に容易であった。なお,この樹脂の完全硬化時の
熱変形温度は165℃であるのに対し,半硬化時の熱変
形温度は130℃であった。このようにして得られた半
導体置はいずれも初期の電気特性を維持し,樹脂封止と
機械的な分割による悪影響は見られなかった。その他い
ろいろ半硬化状態の封止樹脂の分割などについて試験を
行った結果,以上の実施例で用いる封止樹脂は,完全硬
化時における熱変形温度の80% 以下の温度では半硬化
状態にあり,好ましくはその50%以下の温度の半硬化
状態では容易に割ることができることが判明した。ま
た,この場合,分割時の機械的ストレスが小さくでき,
また加熱硬化を完全硬化時よりも低い温度で行うので封
止樹脂の硬化時の機械的ストレスも小さくなり,したが
って半導体素子などの回路部品に対する影響を十分軽減
できることも分かった。
[Specific Example 2] Opposed to a scribe line formed on the back surface of an electrically insulating substrate made of alumina and having a thickness of 0.4 mm, in which predetermined circuit components are mounted and connected to a plurality of identical circuit patterns. A mold member as shown in FIG. 4, which gives a V-shaped groove having a depth of about 1 mm to the sealing resin as shown in FIG. 3, is aligned with the position, and the thickness of the sealing resin is 3 m.
Set so that m. Silica powder 7 like compounding example
An epoxy / acid anhydride / imidazole-based encapsulating resin containing 0% is press-fitted into the mold member to mold the encapsulating resin to a thickness of 3 mm. This was heated at a mold member temperature of 160 ° C. for 10 minutes to be semi-cured, and the large-area molded product was removed from the mold member frame in the semi-cured state. This large-area molded product had a slightly smaller bending than that of Example 1, and the division along the lattice-shaped grooves 5A was easier. The heat distortion temperature of this resin at the time of complete curing was 165 ° C, whereas the heat distortion temperature at the time of semi-curing was 130 ° C. Each of the semiconductor devices thus obtained maintained the initial electrical characteristics, and no adverse effects due to resin encapsulation and mechanical division were observed. As a result of various other tests on the splitting of the sealing resin in a semi-cured state, the sealing resin used in the above examples is in a semi-cured state at a temperature of 80% or less of the thermal deformation temperature at the time of complete curing, It has been found that it can be easily cracked in the semi-cured state, preferably at a temperature below 50% thereof. Also, in this case, the mechanical stress at the time of division can be reduced,
It was also found that since the heat curing is performed at a temperature lower than that during complete curing, the mechanical stress during curing of the encapsulating resin is reduced, and therefore the effect on circuit components such as semiconductor elements can be sufficiently reduced.

【00021】以上の実施例では熱硬化性樹脂を用いた
が,次に紫外線硬化型樹脂,電子線硬化型樹脂のような
活性エネルギ線で硬化する活性エネルギ線硬化型樹脂を
用いた半導体装置又は電子回路装置の製造方法および製
造装置について説明する。先ず活性エネルギ線硬化型樹
脂の代表的な組成を挙げると,樹脂組成物としては,ア
クリル酸基,アリル基,イタコン酸基,共役2重結合な
どの不飽和基が導入されたアルキッド樹脂,アクリル樹
脂,ウレタン樹脂,ポリウレタン樹脂,エポキシ樹脂な
どが挙げられる。その他の構成物質として,オリゴマー
モノマーなどが粘度調節に使用され,また光重合開始
剤,熱硬化触媒も用いられ,さらに通常の顔料,染料,
充填剤,添加剤が加えられる。また,必要に応じて熱硬
化型樹脂など活性エネルギ線に反応し難い樹脂を併用す
ることもできる。具体的な紫外線硬化型樹脂の配合例と
して, ゴーセラックUVー7000B(日本合成化学工業株製) 66重量部 TMPTA(トリメチルプロパントリアクリレート) 30重量部 イルガキュア651(チバ ガイギー社製) 4重量部 ────────── が挙げられる。 100重量部
Although the thermosetting resin is used in the above embodiments, a semiconductor device using an active energy ray curable resin such as an ultraviolet ray curable resin or an electron beam curable resin which is cured by an active energy ray, or A method and apparatus for manufacturing an electronic circuit device will be described. First, to give a typical composition of the active energy ray-curable resin, as the resin composition, an alkyd resin having an acrylic acid group, an allyl group, an itaconic acid group, an unsaturated group such as a conjugated double bond, or an acrylic resin is introduced. Resin, urethane resin, polyurethane resin, epoxy resin, etc. may be mentioned. As other constituents, oligomeric monomers are used for viscosity control, photopolymerization initiators and thermosetting catalysts are also used, and ordinary pigments, dyes,
Fillers and additives are added. If necessary, a resin such as a thermosetting resin that is hard to react with active energy rays can be used together. As a concrete example of the composition of the ultraviolet curable resin, Gocerac UV-7000B (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 66 parts by weight TMPTA (trimethylpropane triacrylate) 30 parts by weight Irgacure 651 (manufactured by Ciba Geigy) 4 parts by weight ── ──────── is mentioned. 100 parts by weight

【00022】次にこのような配合例の紫外線硬化型樹
脂を用いて,以上の実施例で述べてきたような大面積の
電気絶縁製基板1の面を島状に複数樹脂封止する製造装
置について,図5を用いて説明する。図5(A),
(B)はそれぞれこの製造装置の一部分を構成する押さ
え鋳型部材8の正面図,側面図を示し,これはシリコン
樹脂,アクリル樹脂などのプラスチック樹脂,又はガラ
スのようなほぼ透明な材料からなる。押さえ鋳型部材8
はベース部8Aと押さえ部8Bとからなる。押さえ部8
Bは,同図(C)に示す枠状の上部鋳型部材6の内壁に
囲まれた面とほぼ同じ大きさの押さえ面8B1を有し,
その押さえ面8B1には大面積の電気絶縁製基板1に形
成された格子状スクライブラインに合致するパターンの
断面V字状の畦部8B2が格子状に形成されている。畦
道8B2の高さは大面積の電気絶縁製基板1に形成され
る封止樹脂の厚みを決定し,つまりその封止樹脂の厚み
はほぼ畦道8B2の高さに等しくなる。また,押さえ部
8Bの4隅には余剰の封止樹脂を逃がすための透孔8B
3が形成されており,それら透孔8B3はベース部8A
に形成された各透孔8A1に通じている。
Next, using the ultraviolet curable resin having such a composition example, a manufacturing apparatus for encapsulating a plurality of electrically insulating substrates 1 having a large area as described in the above embodiments in the form of islands. This will be described with reference to FIG. FIG. 5 (A),
(B) shows a front view and a side view of the pressing mold member 8 constituting a part of the manufacturing apparatus, which is made of a plastic resin such as silicone resin or acrylic resin, or a substantially transparent material such as glass. Holding mold member 8
Consists of a base portion 8A and a holding portion 8B. Holding part 8
B has a pressing surface 8B1 having substantially the same size as the surface surrounded by the inner wall of the frame-shaped upper mold member 6 shown in FIG.
On the pressing surface 8B1, ridges 8B2 having a V-shaped cross section are formed in a grid pattern in a pattern matching the grid scribe lines formed on the large-area electrically insulating substrate 1. The height of the ridge 8B2 determines the thickness of the sealing resin formed on the large-area electrically insulating substrate 1, that is, the thickness of the sealing resin is substantially equal to the height of the ridge 8B2. In addition, through holes 8B for releasing excess sealing resin are provided at the four corners of the pressing portion 8B.
3 are formed, and the through holes 8B3 are formed in the base portion 8A.
To each of the through holes 8A1 formed in.

【00023】そして同図(C)に示すように上部鋳型
部材6は,内壁下部に沿って大面積の電気絶縁製基板1
の厚みとその外形にほぼ等しい部分6Aが切除されてお
り,したがって下部鋳型部材7の平坦面にセットされた
大面積の電気絶縁製基板1は下部鋳型部材7と上部鋳型
部材6の切除部分6Aの壁とによって隙間なく保持され
る。このような状態で,前記配合例の紫外線硬化型樹脂
(図示せず)が上部鋳型部材6内に注入され,真空脱泡
される。しかる後,同図(B)において押さえ部8Bの
押さえ面8B1が下になるようにして,上部鋳型部材6
内に押さえ鋳型部材8の押さえ部8Bを押し込み,その
断面V字状の畦道8B2が大面積の電気絶縁製基板1の
表面に達した状態(図6)に保持される。この状態で,
押さえ鋳型部材8の上方から紫外線を照射する。格子状
の畦部8B2の高さがほぼ1.5mm,つまり封止樹脂
5の厚みがほぼ1.5mmの場合,メタルハライドラン
プ(120W/cm)を封止樹脂5の上面からほぼ10
cmの高さの位置で照射し,6m/分の速度で10回通
過させて良好に硬化させることができた。しかる後,大
面積の電気絶縁製基板1を鋳型部材から外し,外力を加
えて大面積の電気絶縁製基板1のスクライブライン1C
で分割し,封止樹脂が個別の電気絶縁製基板周端からほ
ぼ垂直に立ち上がる非常に小型で薄型の樹脂封止型半導
体装置,又は樹脂封止型電子回路装置を得た。このよう
にして得られた樹脂封止型半導体装置,樹脂封止型電子
回路装置は,同様な装置に比べて実装面積が1/3〜1
/4,厚みもほぼ1/2と非常に小型・軽量である。ま
た,封止樹脂のバリ取り工程は一切不要である。
As shown in FIG. 2C, the upper mold member 6 is a large-area electrically insulating substrate 1 along the lower part of the inner wall.
6A is cut away, and therefore the large-area electrically insulating substrate 1 set on the flat surface of the lower mold member 7 is cut away from the lower mold member 7 and the upper mold member 6A. It is held tightly by the wall of. In such a state, the ultraviolet curable resin (not shown) of the above formulation example is injected into the upper mold member 6 and degassed in vacuum. After that, the pressing surface 8B1 of the pressing portion 8B is turned downward in FIG.
The pressing portion 8B of the pressing mold member 8 is pushed in, and the ridge 8B2 having a V-shaped cross section is held in a state of reaching the surface of the large-area electrically insulating substrate 1 (FIG. 6). In this state,
Ultraviolet rays are irradiated from above the pressing mold member 8. When the height of the grid-shaped ridges 8B2 is approximately 1.5 mm, that is, when the thickness of the sealing resin 5 is approximately 1.5 mm, the metal halide lamp (120 W / cm) is approximately 10 mm from the upper surface of the sealing resin 5.
Irradiation was carried out at a position with a height of cm, and the material was allowed to pass 10 times at a speed of 6 m / min for good curing. Thereafter, the large-area electrically insulating substrate 1 is removed from the mold member, and an external force is applied to the large-area electrically insulating substrate 1 scribe line 1C.
Thus, a very small and thin resin-encapsulated semiconductor device or resin-encapsulated electronic circuit device in which the encapsulating resin rises almost vertically from the peripheral edge of each electrically insulating substrate was obtained. The resin-encapsulated semiconductor device and resin-encapsulated electronic circuit device thus obtained have a mounting area of 1/3 to 1 as compared with similar devices.
/ 4, the thickness is almost 1/2, which is very small and lightweight. Also, no deburring process of the sealing resin is required.

【00024】次に図7は図1に示したような大面積の
電気絶縁製基板1を用い,スクライブライン1Cが形成
された側の電気絶縁製基板面に半導体素子などを搭載し
樹脂封止した例である。この場合には,畦道8B2の頂
部が平坦で狭い幅をもつ押さえ鋳型部材8を用いる。こ
のような鋳型部材8を用いることにより,封止樹脂がほ
ぼ個別の電気絶縁製基板周端から垂直に立ち上がる非常
に小型で薄型の樹脂封止型半導体装置,又は樹脂封止型
電子回路装置を得ることができる。
Next, FIG. 7 uses a large-area electrically insulating substrate 1 as shown in FIG. 1, and mounts a semiconductor element or the like on the surface of the electrically insulating substrate on which the scribe line 1C is formed and seals it with resin. It is an example. In this case, a pressing mold member 8 having a flat top and a narrow width of the ridge 8B2 is used. By using the mold member 8 as described above, a very small and thin resin-sealed semiconductor device or resin-sealed electronic circuit device in which the sealing resin rises vertically from the peripheral edge of the substantially electrically insulating substrate is provided. Obtainable.

【00025】次に図8に,以上述べたような半導体装
置に適用するのに好適なプレーナ型トランジスタのベア
チップを示す。このプレーナ型トランジスタは,n型不
純物濃度の高いn+ 半導体基板10の上に成長されたn
型不純物濃度の十分に低いn- エピタキシャル層11,
そのエピタキシャル層11内に形成されたp型不純物濃
度の高いp+ エミッタ領域12,その半導体領域12内
に形成されたn型不純物濃度の高いn+ ベース領域1
3,少なくとも半導体基板10の表面まで延びる孔にお
ける半導体基板10の露出面に形成されたコレクタ電極
14,コレクタ電極14上に形成されたコレクタバンプ
電極15,エミッタ領域12とオーミックコンタクトと
なるよう形成されたエミッタ電極16とその上のエミッ
タバンプ電極17,ベース領域12とオーミックコンタ
クトとなるよう形成されたベース電極18とその上に形
成されたベースバンプ電極19,横方向抵抗低減用金属
膜20などからなる。このプレーナ型トランジスタの特
徴は,コレクタバンプ電極15とエミッタバンプ電極1
7とベースバンプ電極19が全て同一面にあり,しかも
その高さが全て同一レベルにあるところにある。
Next, FIG. 8 shows a bare chip of a planar transistor suitable for being applied to the semiconductor device as described above. This planar transistor has an n-type semiconductor grown on an n + semiconductor substrate 10 having a high n-type impurity concentration.
N - epitaxial layer 11 having sufficiently low type impurity concentration,
A p + emitter region 12 having a high p-type impurity concentration formed in the epitaxial layer 11 and an n + base region 1 having a high n-type impurity concentration formed in the semiconductor region 12
3, a collector electrode 14 formed on the exposed surface of the semiconductor substrate 10 in a hole extending at least to the surface of the semiconductor substrate 10, a collector bump electrode 15 formed on the collector electrode 14, and an emitter region 12 so as to form ohmic contact. From the emitter electrode 16 and the emitter bump electrode 17 thereon, the base electrode 18 formed to make ohmic contact with the base region 12, the base bump electrode 19 formed thereon, and the lateral resistance reducing metal film 20. Become. The feature of this planar type transistor is that the collector bump electrode 15 and the emitter bump electrode 1
7 and the base bump electrode 19 are all on the same surface, and their heights are all at the same level.

【00026】図1に示した電気絶縁性基板1の導電パ
ターンを,コレクタバンプ電極15とエミッタバンプ電
極17とベースバンプ電極19の位置と一致するように
予め印刷しておき,その導電パターンにコレクタバンプ
電極15とエミッタバンプ電極17とベースバンプ電極
19をクリームハンダなどで固着することにより,ワイ
ヤボンデングが不要であり,ワイヤボンデングに関連す
る問題点を避けることができる。これと同様に一方の主
面側に全ての電極を備えたダイオード,FET,サイリ
スタ,抵抗器,コンデンサなどの部品を用いれば,ワイ
ヤボンディング不要の安価で小型,薄型の樹脂封止型の
半導体装置,電源などの電子回路装置を量産することが
できる。なお,電気絶縁性基板1の裏面の各スクライブ
ライン1Cは,必ずしも単一の導電パターン1Aを囲む
ように形成する必要はなく,複数の導電パターン1Aを
まとめて1単位としてスクライブラインを作ってもよ
い。また,電気絶縁性基板は所望の回路パターン,導電
パターンを予め形成してなる多層基板を用いることもで
き,封止樹脂の付着を向上させるような楔や孔を電気絶
縁性基板に施したものも有効である。
The conductive pattern of the electrically insulating substrate 1 shown in FIG. 1 is printed in advance so as to coincide with the positions of the collector bump electrode 15, the emitter bump electrode 17, and the base bump electrode 19, and the collector pattern is applied to the conductive pattern. By fixing the bump electrode 15, the emitter bump electrode 17, and the base bump electrode 19 with cream solder or the like, wire bonding is unnecessary and problems associated with wire bonding can be avoided. Similarly, if parts such as a diode, an FET, a thyristor, a resistor, and a capacitor provided with all electrodes on one main surface side are used, an inexpensive, compact, and thin resin-sealed semiconductor device that does not require wire bonding is used. It is possible to mass-produce electronic circuit devices such as power supplies. Each scribe line 1C on the back surface of the electrically insulating substrate 1 does not necessarily have to be formed so as to surround a single conductive pattern 1A, and a plurality of conductive patterns 1A may be collectively formed as one unit to form a scribe line. Good. Further, the electrically insulating substrate may be a multi-layer substrate in which desired circuit patterns and conductive patterns are formed in advance, and the electrically insulating substrate is provided with wedges or holes to improve adhesion of the sealing resin. Is also effective.

【00027】[00027]

【発明の効果】以上述べたように,この発明によれば非
常に小型,薄型,軽量で,封止樹脂のバリ取りが不要な
安価な樹脂封止型の半導体装置,或いは小型電源のよう
な電子回路装置を簡単で安価な設備で容易に量産するこ
とができ,実用上の効果は極めて大きい。
As described above, according to the present invention, a very small, thin, lightweight, inexpensive resin-encapsulated semiconductor device that does not require deburring of the encapsulating resin, or a small power source can be used. Electronic circuit devices can be easily mass-produced with simple and inexpensive equipment, and the practical effects are extremely large.

【図面の簡単な説明】[Brief description of drawings]

図1は,この発明の一実施例を示す図である。図2は,
この発明の一実施例を説明するための図である。図3
は,この発明の一実施例を示す図である。図4は,この
発明の一実施例を説明するための図である。図5は,こ
の発明の一実施例を示す図である。図6は,この発明の
一実施例を示す図である。図7は,この発明の一実施例
を示す図である。図8は,この発明の一実施例を説明す
るための図である。図9は,従来例を示す図である。図
10は,従来例を示す図である。
FIG. 1 is a diagram showing an embodiment of the present invention. Figure 2
It is a figure for demonstrating one Example of this invention. Figure 3
FIG. 3 is a diagram showing an embodiment of the present invention. FIG. 4 is a diagram for explaining one embodiment of the present invention. FIG. 5 is a diagram showing an embodiment of the present invention. FIG. 6 is a diagram showing an embodiment of the present invention. FIG. 7 is a diagram showing an embodiment of the present invention. FIG. 8 is a diagram for explaining one embodiment of the present invention. FIG. 9 is a diagram showing a conventional example. FIG. 10 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1・・・電気絶縁性基板 1A・・導
電パターン 1B・・電極パターン 1C・・ス
クライブライン 2・・・半導体素子 3・・・ハ
ンダ層 4・・・金属線 5・・・封
止樹脂 6・・・上部鋳型部材 7・・・下
部鋳型部材 8・・・押さえ鋳型部材 10・・・半
導体基板 11・・・エピタキシャル層 12・・・
エミッタ領域 13・・・ベース領域
DESCRIPTION OF SYMBOLS 1 ... Electrically insulating substrate 1A ... Conductive pattern 1B ... Electrode pattern 1C ... Scribing line 2 ... Semiconductor element 3 ... Solder layer 4 ... Metal wire 5 ... Sealing resin 6 ... ..Upper mold member 7 ... Lower mold member 8 ... Pressing mold member 10 ... Semiconductor substrate 11 ... Epitaxial layer 12 ...
Emitter region 13 ... Base region

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月3日[Submission date] March 3, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】図10により一般的なリード線タイプの表
面実装型半導体装置について説明すると,先端部分が平
坦面を形成するよう曲げられた一対のリード電極50,
51の一方の平坦面に半導体素子52がハンダ付けさ
れ,その半導体素子52は内部リード端子53により他
方のリード電極51に接続されており,リード電極5
0,51の平坦部と半導体素子52は封止樹脂54でモ
ールドされている。また,小形・薄型化や省力化,工程
削減のため,ベアチップやフリップチップを基板の導電
パターン上にダイボンディング法などで直接搭載して接
着し、必要に応じて電極や配線パターンを含む導電パタ
ーンにボンディングを行い,絶縁性の良好なエポキシ樹
脂を滴下しコーティングする方法もある。この例として
特開昭62−208652号公報に記載されたものがあ
る。これは図11に示されているように,先ず基板61
にダイボンド材62を用いて半導体素子63を接着し,
金属細線63により電気接続を行い,その後ダム65の
上に鋳型部材66をあてがい,ダム65の溝64からパ
ッケージ内に封止樹脂67を注入する。そして封止樹脂
67の硬化後,鋳型部材66を除去し,樹脂封止した半
導体装置を得る。
Referring to FIG. 10 , a general lead wire type surface mount semiconductor device will be described. A pair of lead electrodes 50 whose tip portions are bent so as to form a flat surface,
A semiconductor element 52 is soldered on one flat surface of 51, and the semiconductor element 52 is connected to the other lead electrode 51 by an internal lead terminal 53.
The flat portions 0 and 51 and the semiconductor element 52 are molded with a sealing resin 54. In addition, in order to reduce the size and thickness, save labor, and reduce the number of processes, a bare chip or flip chip is directly mounted on the conductive pattern of the substrate by a die bonding method or the like and bonded, and if necessary, a conductive pattern including electrodes and wiring patterns. There is also a method in which the epoxy resin with good insulation is dropped and coated by performing bonding on the surface. An example of this is described in JP-A-62-208652. This is as shown in FIG.
The semiconductor element 63 is bonded to the
Electrical connection is made by the thin metal wires 63, a mold member 66 is then placed on the dam 65, and the sealing resin 67 is injected into the package from the groove 64 of the dam 65. After the encapsulating resin 67 is cured, the mold member 66 is removed to obtain a resin-encapsulated semiconductor device.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【発明が解決しようとする課題】しかし,図10の半導
体装置の場合には一対のリード電極50,51がコの字
状に曲げられているので,薄型化という点で大きな難点
があり,また一対のリード電極50,51の一部分を含
めて1つ1つ順次トランスファーモールドしなければな
らないので,特別のトランスファーモールド装置が必要
であり,しかも量産化が難しい。さらに一対のリード電
極50,51をコの字状に曲げて使用しているので,小
型化も難しい。次に図11に示したものの場合には,上
面の平坦な樹脂封止を得ようとすると,1個づつダム6
5の上に鋳型部材66をあてがい,ダム65の溝64か
らパッケージ内に封止樹脂67を注入する工程が必要と
なるので,量産化には不向きであり,またダム65の面
積分だけ基板を大きくせざるを得ないので,小型化の面
でも問題がある。また図示していないが,封止樹脂から
リード線が延びる電力用の半導体装置にあっては,樹脂
で封止後,リード線のつけ根のバリ取りを含む複数のバ
リ取り工程を行わねばならず,半導体装置事態を小型化
するのも困難であった。本発明は,特に比較的容量の大
きいショットキバリアダイオード,バイポーラトランジ
スタ,電界効果トランジスタなどの半導体素子,又は他
の回路部品などを樹脂封止してなるフラットな小形,薄
型,軽量で量産性が高く,熱衝撃性,耐湿性,PCT試
験など信頼性の良好な特性を有する製造方法を提供する
ことを目的としている。
However, in the case of the semiconductor device of FIG. 10 , since the pair of lead electrodes 50 and 51 are bent in a U-shape, there is a great difficulty in reducing the thickness. Since it is necessary to sequentially perform transfer molding one by one including a part of the pair of lead electrodes 50 and 51, a special transfer molding device is required and mass production is difficult. Furthermore, since the pair of lead electrodes 50 and 51 are bent and used in a U-shape, it is difficult to reduce the size. Next, in the case of the one shown in FIG. 11 , when it is attempted to obtain a flat resin seal on the upper surface, the dams 6
5, it is not suitable for mass production because it requires a step of applying the mold member 66 on top of 5 and injecting the sealing resin 67 into the package from the groove 64 of the dam 65. Since there is no choice but to increase the size, there is also a problem in terms of miniaturization. Although not shown, in a power semiconductor device in which a lead wire extends from a sealing resin, a plurality of deburring steps including deburring at the root of the lead wire must be performed after sealing with the resin. However, it was difficult to reduce the size of semiconductor devices. The present invention is highly compact, thin, and lightweight, and is highly mass-producible, especially when a semiconductor element such as a Schottky barrier diode having a relatively large capacity, a bipolar transistor, a field effect transistor, or another circuit component is resin-sealed. , A thermal shock resistance, a moisture resistance, a PCT test, and the like, and an object of the present invention are to provide a manufacturing method having good characteristics.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】00022[Name of item to be corrected] 00022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【00022】次にこのような配合例の紫外線硬化型樹
脂を用いて,以上の実施例で述べてきたような大面積の
電気絶縁製基板1の面を島状に複数樹脂封止する製造装
置について,図を用いて説明する。図(A),
(B)はそれぞれこの製造装置の一部分を構成する押さ
え鋳型部材8の正面図,側面図を示し,これはシリコン
樹脂,アクリル樹脂などのプラスチック樹脂,又はガラ
スのようなほぼ透明な材料からなる。押さえ鋳型部材8
はベース部8Aと押さえ部8Bとからなる。押さえ部8
Bは,同図(C)に示す枠状の上部鋳型部材6の内壁に
囲まれた面とほぼ同じ大きさの押さえ面8B1を有し,
その押さえ面8B1には大面積の電気絶縁製基板1に形
成された格子状スクライブラインに合致するパターンの
断面V字状の畦部8B2が格子状に形成されている。畦
道8B2の高さは大面積の電気絶縁製基板1に形成され
る封止樹脂の厚みを決定し,つまりその封止樹脂の厚み
はほぼ畦道8B2の高さに等しくなる。また,押さえ部
8Bの4隅には余剰の封止樹脂を逃がすための透孔8B
3が形成されており,それら透孔8B3はベース部8A
に形成された各透孔8A1に通じている。
Next, using the ultraviolet curable resin having such a composition example, a manufacturing apparatus for encapsulating a plurality of electrically insulating substrates 1 having a large area as described in the above embodiments in the form of islands. for be described with reference to FIG. FIG. 6 (A),
(B) shows a front view and a side view of the pressing mold member 8 constituting a part of the manufacturing apparatus, which is made of a plastic resin such as silicone resin or acrylic resin, or a substantially transparent material such as glass. Holding mold member 8
Consists of a base portion 8A and a holding portion 8B. Holding part 8
B has a pressing surface 8B1 having substantially the same size as the surface surrounded by the inner wall of the frame-shaped upper mold member 6 shown in FIG.
On the pressing surface 8B1, ridges 8B2 having a V-shaped cross section are formed in a grid pattern in a pattern matching the grid scribe lines formed on the large-area electrically insulating substrate 1. The height of the ridge 8B2 determines the thickness of the sealing resin formed on the large-area electrically insulating substrate 1, that is, the thickness of the sealing resin is substantially equal to the height of the ridge 8B2. In addition, through holes 8B for releasing excess sealing resin are provided at the four corners of the pressing portion 8B.
3 are formed, and the through holes 8B3 are formed in the base portion 8A.
To each of the through holes 8A1 formed in.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】00023[Name of item to be corrected] 00002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【00023】そして同図(C)に示すように上部鋳型
部材6は,内壁下部に沿って大面積の電気絶縁製基板1
の厚みとその外形にほぼ等しい部分6Aが切除されてお
り,したがって下部鋳型部材7の平坦面にセットされた
大面積の電気絶縁製基板1は下部鋳型部材7と上部鋳型
部材6の切除部分6Aの壁とによって隙間なく保持され
る。このような状態で,前記配合例の紫外線硬化型樹脂
(図示せず)が上部鋳型部材6内に注入され,真空脱泡
される。しかる後,同図(B)において押さえ部8Bの
押さえ面8B1が下になるようにして,上部鋳型部材6
内に押さえ鋳型部材8の押さえ部8Bを押し込み,その
断面V字状の畦道8B2が大面積の電気絶縁製基板1の
表面に達した状態(図)に保持される。この状態で,
押さえ鋳型部材8の上方から紫外線を照射する。格子状
の畦部8B2の高さがほぼ1.5mm,つまり封止樹脂
5の厚みがほぼ1.5mmの場合,メタルハライドラン
プ(120W/cm)を封止樹脂5の上面からほぼ10
cmの高さの位置で照射し,6m/分の速度で10回通
過させて良好に硬化させることができた。しかる後,大
面積の電気絶縁製基板1を鋳型部材から外し,外力を加
えて大面積の電気絶縁製基板1のスクライブライン1C
で分割し,封止樹脂が個別の電気絶縁製基板周端からほ
ぼ垂直に立ち上がる非常に小型で薄型の樹脂封止型半導
体装置,又は樹脂封止型電子回路装置を得た。このよう
にして得られた樹脂封止型半導体装置,樹脂封止型電子
回路装置は,同様な装置に比べて実装面積が1/3〜1
/4,厚みもほぼ1/2と非常に小型・軽量である。ま
た,封止樹脂のバリ取り工程は一切不要である。
As shown in FIG. 2C, the upper mold member 6 is a large-area electrically insulating substrate 1 along the lower part of the inner wall.
6A is cut away, and therefore the large-area electrically insulating substrate 1 set on the flat surface of the lower mold member 7 is cut away from the lower mold member 7 and the upper mold member 6A. It is held tightly by the wall of. In such a state, the ultraviolet curable resin (not shown) of the above formulation example is injected into the upper mold member 6 and degassed in vacuum. After that, the pressing surface 8B1 of the pressing portion 8B is turned downward in FIG.
The pressing portion 8B of the pressing mold member 8 is pushed in, and the ridge 8B2 having a V-shaped cross section is held in a state of reaching the surface of the large-area electrically insulating substrate 1 (FIG. 7 ). In this state,
Ultraviolet rays are irradiated from above the pressing mold member 8. When the height of the grid-shaped ridges 8B2 is approximately 1.5 mm, that is, when the thickness of the sealing resin 5 is approximately 1.5 mm, the metal halide lamp (120 W / cm) is approximately 10 mm from the upper surface of the sealing resin 5.
Irradiation was carried out at a position with a height of cm, and the material was allowed to pass 10 times at a speed of 6 m / min for good curing. Thereafter, the large-area electrically insulating substrate 1 is removed from the mold member, and an external force is applied to the large-area electrically insulating substrate 1 scribe line 1C.
Thus, a very small and thin resin-encapsulated semiconductor device or resin-encapsulated electronic circuit device in which the encapsulating resin rises almost vertically from the peripheral edge of each electrically insulating substrate was obtained. The resin-encapsulated semiconductor device and resin-encapsulated electronic circuit device thus obtained have a mounting area of 1/3 to 1 as compared with similar devices.
/ 4, the thickness is almost 1/2, which is very small and lightweight. Also, no deburring process of the sealing resin is required.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】00024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【00024】次に図は図1に示したような大面積の
電気絶縁製基板1を用い,スクライブライン1Cが形成
された側の電気絶縁製基板面に半導体素子などを搭載し
樹脂封止した例である。この場合には,畦道8B2の頂
部が平坦で狭い幅をもつ押さえ鋳型部材8を用いる。こ
のような鋳型部材8を用いることにより,封止樹脂がほ
ぼ個別の電気絶縁製基板周端から垂直に立ち上がる非常
に小型で薄型の樹脂封止型半導体装置,又は樹脂封止型
電子回路装置を得ることができる。
Next, FIG. 8 uses the large-area electrically insulating substrate 1 as shown in FIG. 1 and mounts a semiconductor element or the like on the surface of the electrically insulating substrate on which the scribe line 1C is formed and seals it with resin. It is an example. In this case, a pressing mold member 8 having a flat top and a narrow width of the ridge 8B2 is used. By using the mold member 8 as described above, a very small and thin resin-sealed semiconductor device or resin-sealed electronic circuit device in which the sealing resin rises vertically from the peripheral edge of the substantially electrically insulating substrate is provided. Obtainable.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】00025[Name of item to be corrected] 00025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【00025】次に図に,以上述べたような半導体装
置に適用するのに好適なプレーナ型トランジスタのベア
チップを示す。このプレーナ型トランジスタは,n型不
純物濃度の高いn半導体基板10の上に成長されたn
型不純物濃度の十分に低いnエピタキシャル層11,
そのエピタキシャル層11内に形成されたp型不純物濃
度の高いpエミッタ領域12,その半導体領域12内
に形成されたn型不純物濃度の高いnベース領域1
3,少なくとも半導体基板10の表面まで延びる孔にお
ける半導体基板10の露出面に形成されたコレクタ電極
14,コレクタ電極14上に形成されたコレクタバンプ
電極15,エミッタ領域12とオーミックコンタクトと
なるよう形成されたエミッタ電極16とその上のエミッ
タバンプ電極17,ベース領域12とオーミックコンタ
クトとなるよう形成されたベース電極18とその上に形
成されたベースバンプ電極19,横方向抵抗低減用金属
膜20などからなる。このプレーナ型トランジスタの特
徴は,コレクタバンプ電極15とエミッタバンプ電極1
7とベースバンプ電極19が全て同一面にあり,しかも
その高さが全て同一レベルにあるところにある。
Next, FIG. 9 shows a bare chip of a planar transistor suitable for being applied to the semiconductor device as described above. This planar transistor has an n-type semiconductor grown on an n + semiconductor substrate 10 having a high n-type impurity concentration.
N - epitaxial layer 11 having a sufficiently low type impurity concentration,
A p + emitter region 12 having a high p-type impurity concentration formed in the epitaxial layer 11, and an n + base region 1 having a high n-type impurity concentration formed in the semiconductor region 12
3, a collector electrode 14 formed on the exposed surface of the semiconductor substrate 10 in a hole extending at least to the surface of the semiconductor substrate 10, a collector bump electrode 15 formed on the collector electrode 14, and an emitter region 12 so as to form ohmic contact. From the emitter electrode 16 and the emitter bump electrode 17 thereon, the base electrode 18 formed to make ohmic contact with the base region 12, the base bump electrode 19 formed thereon, and the lateral resistance reducing metal film 20. Become. The feature of this planar type transistor is that the collector bump electrode 15 and the emitter bump electrode 1
7 and the base bump electrode 19 are all on the same surface, and their heights are all at the same level.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】 図1は,この発明の一実施例を示す図である。図2は,
この発明の一実施例を説明するための図である。図3
は,この発明の一実施例を示す図である。図4は,この
発明の一実施例を説明するための図である。図5は,こ
の発明の一実施例を示す図である。図6は,この発明の
一実施例を示す図である。図7は,この発明の一実施例
を示す図である。図8は,この発明の一実施例を示す
である。図9は,この発明に用いられる半導体装置に一
例を示す図である。図10は,従来例を示す図である。
図11は,従来例を示す図である。 ─────────────────────────────────────────────────────
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an embodiment of the present invention. Figure 2
It is a figure for demonstrating one Example of this invention. Figure 3
FIG. 3 is a diagram showing an embodiment of the present invention. FIG. 4 is a diagram for explaining one embodiment of the present invention. FIG. 5 is a diagram showing an embodiment of the present invention. FIG. 6 is a diagram showing an embodiment of the present invention. FIG. 7 is a diagram showing an embodiment of the present invention. FIG. 8 is a diagram showing an embodiment of the present invention. FIG. 9 shows a semiconductor device used in the present invention .
It is a figure which shows an example. FIG. 10 is a diagram showing a conventional example.
FIG. 11 is a diagram showing a conventional example. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月27日[Submission date] May 27, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】この発明の一実施例を説明するための図であ
る。
FIG. 2 is a diagram for explaining one embodiment of the present invention.

【図3】この発明の一実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the present invention.

【図4】この発明の一実施例を説明するための図であ
る。
FIG. 4 is a diagram for explaining one embodiment of the present invention.

【図5】この発明の一実施例を示す図である。FIG. 5 is a diagram showing an embodiment of the present invention.

【図6】この発明の一実施例を示す図である。FIG. 6 is a diagram showing an embodiment of the present invention.

【図7】この発明の一実施例を示す図である。FIG. 7 is a diagram showing an embodiment of the present invention.

【図8】この発明の一実施例を示す図である。FIG. 8 is a diagram showing an embodiment of the present invention.

【図9】この発明に用いられる半導体装置の一例を示す
図である。
FIG. 9 is a diagram showing an example of a semiconductor device used in the present invention.

【図10】従来例を示す図である。FIG. 10 is a diagram showing a conventional example.

【図11】従来例を示す図である。FIG. 11 is a diagram showing a conventional example.

【符号の説明】 1・・・電気絶縁性基板 1A・・導
電パターン 1B・・電極パターン 1C・・ス
クライブライン 2・・・半導体素子 3・・・ハ
ンダ層 4・・・金属線 5・・・封
止樹脂 6・・・上部鋳型部材 7・・・下
部鋳型部材 8・・・押さえ鋳型部材 10・・・半
導体基板 11・・・エピタキシャル層 12・・・
エミッタ領域 13・・・ベース領域
[Explanation of Codes] 1 ... Electrically insulating substrate 1A ... Conductive pattern 1B ... Electrode pattern 1C ... Scribing line 2 ... Semiconductor element 3 ... Solder layer 4 ... Metal wire 5 ... Sealing resin 6 ... Upper mold member 7 ... Lower mold member 8 ... Pressing mold member 10 ... Semiconductor substrate 11 ... Epitaxial layer 12 ...
Emitter region 13 ... Base region

フロントページの続き (72)発明者 桑原 正文 東京都豊島区高田1丁目18番1号 オリジ ン電気株式会社内 (72)発明者 二ノ宮 春雄 東京都豊島区高田1丁目18番1号 オリジ ン電気株式会社内Front Page Continuation (72) Inventor Masafumi Kuwahara 1-1-18 Takada, Toshima-ku, Tokyo Origin Electric Co., Ltd. (72) Haruo Ninomiya 1-1-18 Takada, Toshima-ku, Tokyo Origin Electric Co., Ltd. In the company

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 電気絶縁性基板の一方の主面上に形成さ
れた所定の導電パターンに固着された1つ以上の半導体
素子を封止樹脂で封止してなる半導体装置において,前
記封止樹脂は前記電気絶縁性基板の主面の面積とほぼ同
等な大きさの平坦な上面をもつと共に,前記電気絶縁性
基板の周縁から前記上面にほぼ垂直に延びる成形側壁面
を有することを特徴とする半導体装置。
1. A semiconductor device in which one or more semiconductor elements fixed to a predetermined conductive pattern formed on one main surface of an electrically insulating substrate are sealed with a sealing resin. The resin has a flat upper surface having a size substantially equal to the area of the main surface of the electrically insulating substrate, and a molding side wall surface extending from the peripheral edge of the electrically insulating substrate substantially perpendicularly to the upper surface. Semiconductor device.
【請求項2】 電気絶縁性基板の一方の主面上に形成さ
れた所定の導電パターンに固着された1つ以上の半導体
素子を封止樹脂で封止してなる半導体装置において,前
記封止樹脂は前記電気絶縁性基板の主面の面積とほぼ同
等な大きさの滑らかな上面をもつと共に,前記電気絶縁
性基板の周縁から前記上面にほぼ垂直に延び,かつ該滑
らかな上面よりも粗面の分割側壁面を有することを特徴
とする半導体装置。
2. A semiconductor device in which at least one semiconductor element fixed to a predetermined conductive pattern formed on one main surface of an electrically insulating substrate is sealed with a sealing resin. The resin has a smooth upper surface having a size substantially equal to the area of the main surface of the electrically insulating substrate, extends from the peripheral edge of the electrically insulating substrate substantially perpendicularly to the upper surface, and is rougher than the smooth upper surface. A semiconductor device having a divided side wall surface.
【請求項3】 所定の導電パターンを一方の主面に複数
有し,かつ前記所定の導電パターンにかからないように
少なくとも一方の主面に複数のスクライブラインの形成
された大面積の電気絶縁性基板,前記所定の導電パター
ンのそれぞれに固着された1つ以上の半導体素子,前記
大面積の電気絶縁性基板の前記導電パターンの形成され
た部分の全面にわたって表面が平坦になるよう封止する
封止樹脂,その封止樹脂の前記スクライブラインに対応
する箇所に沿って所定の深さに形成された溝を備えたこ
とを特徴とする大面積の半導体装置。
3. A large area electrically insulating substrate having a plurality of predetermined conductive patterns on one main surface and having a plurality of scribe lines formed on at least one main surface so as not to cover the predetermined conductive pattern. , One or more semiconductor elements fixed to each of the predetermined conductive patterns, and sealing for sealing the entire surface of the large-area electrically insulating substrate where the conductive patterns are formed so that the surface is flat A large-area semiconductor device comprising a resin and a groove formed at a predetermined depth along a portion of the sealing resin corresponding to the scribe line.
【請求項4】 請求項3の記載において,前記溝の底が
前記大面積の電気絶縁性基板の表面に達することを特徴
とする大面積の半導体装置。
4. The large-area semiconductor device according to claim 3, wherein the bottom of the groove reaches the surface of the large-area electrically insulating substrate.
【請求項5】 請求項3の記載において,前記溝の底と
前記大面積の電気絶縁性基板の表面との間の距離がほぼ
2mm以下であり,かつ前記スクライブラインは封止樹
脂が存在する側とは反対の前記大面積の電気絶縁性基板
面に形成されていることを特徴とする大面積の半導体装
置。
5. The method according to claim 3, wherein the distance between the bottom of the groove and the surface of the large-area electrically insulating substrate is approximately 2 mm or less, and the scribe line has a sealing resin. A large-area semiconductor device formed on the surface of the large-area electrically insulating substrate opposite to the side.
【請求項6】 所定の導電パターンを一方の主面に複数
有し,かつ前記所定の導電パターンにかからないように
少なくとも一方の主面に複数のスクライブラインの形成
された大面積の電気絶縁性基板,前記所定の導電パター
ンのそれぞれに固着された1つ以上の半導体素子,前記
大面積の電気絶縁性基板の前記導電パターンの形成され
た部分の全面にわたって表面が平坦になるよう封止する
2mm以下の厚みの封止樹脂を備えたことを特徴とする
大面積の半導体装置。
6. A large-area electrically insulating substrate having a plurality of predetermined conductive patterns on one main surface and having a plurality of scribe lines formed on at least one main surface so as not to cover the predetermined conductive patterns. , One or more semiconductor elements fixed to each of the predetermined conductive patterns, 2 mm or less for sealing the entire surface of the large-area electrically insulating substrate on which the conductive patterns are formed so that the surface is flat A semiconductor device having a large area, which is provided with a sealing resin having a thickness of 1.
【請求項7】 請求項1乃至請求項6のいずれかの記載
において,前記電気絶縁性基板の一方の主面上の所定の
導電パターンにバイアホールを介して接続される別の所
望の電極パターンを前記電気絶縁性基板の他方の主面上
に形成してなることを特徴とする表面実装型の半導体装
置。
7. The desired electrode pattern according to claim 1, which is connected to a predetermined conductive pattern on one main surface of the electrically insulating substrate via a via hole. Is formed on the other main surface of the electrically insulating substrate.
【請求項8】 請求項1乃至請求項7のいずれかの記載
において,前記半導体素子は一方の主面に異なる電極を
備え,それら電極を導電パターンの独立した導電膜にそ
れぞれ固着することを特徴とする表面実装型の半導体装
置。
8. The semiconductor device according to claim 1, wherein the semiconductor element has different electrodes on one main surface, and these electrodes are respectively fixed to independent conductive films of a conductive pattern. Surface mount semiconductor device.
【請求項9】 請求項1乃至請求項8のいずれかの記載
において,前記半導体素子の他に他の回路部品も前記導
電パターンに電気的に接続されていることを特徴とする
電子回路装置。
9. The electronic circuit device according to claim 1, wherein other circuit components besides the semiconductor element are electrically connected to the conductive pattern.
【請求項10】 所定の導電パターンを一方の主面に複
数有し,かつ前記所定の導電パターンにかからないよう
に少なくとも一方の主面に複数のスクライブラインの形
成された大面積の電気絶縁性基板を備え,前記所定の導
電パターンのそれぞれに1つ以上の半導体素子を固着し
た後,前記大面積の電気絶縁性基板の前記導電パターン
の形成された部分の全面にわたって表面が平坦になるよ
う封止樹脂で封止し,その封止樹脂の硬化の途中で,外
力を与えて前記電気絶縁性基板と封止樹脂とを前記スク
ライブラインに沿って分割して個別の半導体装置を得る
ことを特徴とする半導体装置の製造方法。
10. A large area electrically insulating substrate having a plurality of predetermined conductive patterns on one main surface and having a plurality of scribe lines formed on at least one main surface so as not to cover the predetermined conductive pattern. And fixing one or more semiconductor elements to each of the predetermined conductive patterns, and then sealing the entire surface of the large-area electrically insulating substrate where the conductive patterns are formed so that the surface is flat. A semiconductor device is obtained by sealing with a resin and applying an external force during the curing of the sealing resin to divide the electrically insulating substrate and the sealing resin along the scribe line to obtain individual semiconductor devices. Of manufacturing a semiconductor device.
【請求項11】 請求項10の記載において,前記封止
樹脂の完全硬化時の熱変形温度の80%以下の温度で半
硬化させた状態で分割することを特徴とする半導体装置
の製造方法。
11. The method of manufacturing a semiconductor device according to claim 10, wherein the encapsulating resin is divided in a semi-cured state at a temperature of 80% or less of a heat deformation temperature at the time of complete curing.
【請求項12】 請求項10又は請求項11の記載にお
いて,個別の半導体装置に分割した後に更に加熱して硬
化させることを特徴とする半導体装置の製造方法。
12. The method of manufacturing a semiconductor device according to claim 10, wherein the semiconductor device is divided into individual semiconductor devices and then further heated and cured.
【請求項13】 所定の導電パターンを一方の主面に複
数有し,かつ前記所定の導電パターンにかからないよう
に少なくとも一方の主面に複数のスクライブラインの形
成された大面積の電気絶縁性基板を備え,前記所定の導
電パターンのそれぞれに1つ以上の半導体素子を固着し
た後,前記大面積の電気絶縁性基板の前記導電パターン
の形成された部分の全面にわたって表面が平坦になるよ
う封止樹脂で封止すると共に,前記スクライブラインに
対応する前記封止樹脂の箇所に沿って所定の深さの溝を
形成し,しかる後に加熱硬化を行い,外力を与えて前記
電気絶縁性基板と封止樹脂とを前記スクライブラインに
沿って分割して個別の半導体装置を得ることを特徴とす
る半導体装置の製造方法。
13. A large-area electrically insulating substrate having a plurality of predetermined conductive patterns on one main surface and having a plurality of scribe lines formed on at least one main surface so as not to cover the predetermined conductive patterns. And fixing one or more semiconductor elements to each of the predetermined conductive patterns, and then sealing the entire surface of the large-area electrically insulating substrate where the conductive patterns are formed so that the surface is flat. Along with sealing with a resin, a groove having a predetermined depth is formed along the portion of the sealing resin corresponding to the scribe line, and thereafter, heat curing is performed and external force is applied to seal the electrically insulating substrate. A method for manufacturing a semiconductor device, characterized in that the resin and the resin are divided along the scribe line to obtain individual semiconductor devices.
【請求項14】 請求項13の記載において,平坦面に
前記スクライブラインに対応する箇所に沿って所定の高
さの幅の狭い畔部を形成してなる鋳型部材を用い,その
所定の高さの幅の狭い畔部によって前記スクライブライ
ンに対応する前記封止樹脂の箇所に沿って所定の深さの
溝を形成することを特徴とする半導体装置の製造方法。
14. The mold member according to claim 13, wherein a flat side is formed with a narrow side portion having a predetermined height along a location corresponding to the scribe line, and the predetermined height is used. A method of manufacturing a semiconductor device, characterized in that a groove having a predetermined depth is formed along the portion of the sealing resin corresponding to the scribe line by the narrow side portion.
【請求項15】 所定の導電パターンを一方の主面に複
数有し,かつ前記所定の導電パターンにかからないよう
に少なくとも一方の主面に複数のスクライブラインの形
成された大面積の電気絶縁性基板を備え,前記所定の導
電パターンのそれぞれに1つ以上の半導体素子を固着し
た後,前記大面積の電気絶縁性基板の前記導電パターン
の形成された部分の全面にわたって表面が平坦になるよ
う活性エネルギ線硬化型樹脂を供給して覆い,その上を
ほぼ透明の材料からなる,前記スクライブラインに対応
する前記活性エネルギ線硬化型樹脂の箇所に沿って所定
の高さをもつ複数の畦部をもつ鋳型部材で押さえ,しか
る後に該鋳型部材を通して活性エネルギ線を照射するこ
とにより活性エネルギ線硬化型樹脂を硬化させることを
特徴とする半導体装置の製造方法。
15. A large-area electrically insulating substrate having a plurality of predetermined conductive patterns on one main surface and having a plurality of scribe lines formed on at least one main surface so as not to cover the predetermined conductive pattern. And fixing one or more semiconductor elements to each of the predetermined conductive patterns, and then activating energy so that the surface of the large-area electrically insulating substrate is flattened over the entire surface of the conductive pattern formed portion. A plurality of ridges having a predetermined height are provided along a portion of the active energy ray-curable resin corresponding to the scribe line, which is made of a substantially transparent material, by supplying and covering the ray-curable resin. A semiconductor device characterized in that an active energy ray-curable resin is cured by pressing with a mold member and then irradiating with active energy ray through the mold member. Manufacturing method.
【請求項16】 請求項10乃至請求項15のいずれか
の記載において,前記半導体素子の他に他の回路部品も
前記導電パターンに電気的に接続されていることを特徴
とする電子回路装置の製造方法。
16. The electronic circuit device according to claim 10, wherein other circuit components other than the semiconductor element are electrically connected to the conductive pattern. Production method.
【請求項17】 所定の導電パターンを一方の主面に複
数有し,かつ前記所定の導電パターンにかからないよう
に少なくとも一方の主面に複数のスクライブラインの形
成された大面積の電気絶縁性基板であって,その所定の
導電パターンのそれぞれに1つ以上の半導体素子を固着
した大面積の電気絶縁性基板に適合する枠部を持つ鋳型
部材と,ほぼ透明の材料からなり,かつ前記複数のスク
ライブラインに対応する箇所に沿って所定の高さをもつ
複数の畦部を有すると共に,余剰の封止樹脂を逃がすた
めの透孔を備えた押さえ鋳型部材からなる半導体装置の
製造装置。
17. A large area electrically insulating substrate having a plurality of predetermined conductive patterns on one main surface and having a plurality of scribe lines formed on at least one of the main surfaces so as not to cover the predetermined conductive patterns. And a mold member having a frame portion suitable for a large-area electrically insulating substrate having one or more semiconductor elements fixed to each of the predetermined conductive patterns, and made of a substantially transparent material. An apparatus for manufacturing a semiconductor device, comprising a pressing mold member having a plurality of ridges having a predetermined height along a location corresponding to a scribe line and having a through hole for allowing an excess sealing resin to escape.
JP24275392A 1992-06-10 1992-08-19 Semiconductor device, electronic circuit device, and manufacturing method thereof Expired - Lifetime JP2617402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24275392A JP2617402B2 (en) 1992-06-10 1992-08-19 Semiconductor device, electronic circuit device, and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17622592 1992-06-10
JP4-176225 1992-06-10
JP24275392A JP2617402B2 (en) 1992-06-10 1992-08-19 Semiconductor device, electronic circuit device, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0661417A true JPH0661417A (en) 1994-03-04
JP2617402B2 JP2617402B2 (en) 1997-06-04

Family

ID=26497230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24275392A Expired - Lifetime JP2617402B2 (en) 1992-06-10 1992-08-19 Semiconductor device, electronic circuit device, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2617402B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026288A1 (en) * 1997-11-14 1999-05-27 T.I.F. Co., Ltd. Semiconductor device and method for manufacturing the same
WO1999026289A1 (en) * 1997-11-18 1999-05-27 T.I.F. Co., Ltd. Semiconductor device and method for manufacturing the same
WO1999028970A1 (en) * 1997-11-28 1999-06-10 T.I.F. Co., Ltd. Semiconductor device and method for manufacturing the same
JP2006013318A (en) * 2004-06-29 2006-01-12 Hitachi Metals Ltd Laminated board and high-frequency electronic part, and method for manufacturing the same
US7199306B2 (en) 1994-12-05 2007-04-03 Freescale Semiconductor, Inc. Multi-strand substrate for ball-grid array assemblies and method
JP2008205515A (en) * 2008-05-29 2008-09-04 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
JP2008205516A (en) * 2008-05-29 2008-09-04 Sanyo Electric Co Ltd Semiconductor device
JP2008235913A (en) * 2008-03-31 2008-10-02 Renesas Technology Corp Method of manufacturing semiconductor device
JP2010219420A (en) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152665A (en) * 1974-05-27 1975-12-08
JPS5856458A (en) * 1981-09-30 1983-04-04 Nec Corp Manufacture of electronic parts
JPS6414991A (en) * 1987-07-09 1989-01-19 Toshiba Corp Manufacture of circuit module
JPH0270498A (en) * 1988-09-06 1990-03-09 Asahi Glass Co Ltd Manufacture of ic cartridge
JPH02119246A (en) * 1988-10-28 1990-05-07 Shindengen Electric Mfg Co Ltd Semiconductor device and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152665A (en) * 1974-05-27 1975-12-08
JPS5856458A (en) * 1981-09-30 1983-04-04 Nec Corp Manufacture of electronic parts
JPS6414991A (en) * 1987-07-09 1989-01-19 Toshiba Corp Manufacture of circuit module
JPH0270498A (en) * 1988-09-06 1990-03-09 Asahi Glass Co Ltd Manufacture of ic cartridge
JPH02119246A (en) * 1988-10-28 1990-05-07 Shindengen Electric Mfg Co Ltd Semiconductor device and manufacture thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199306B2 (en) 1994-12-05 2007-04-03 Freescale Semiconductor, Inc. Multi-strand substrate for ball-grid array assemblies and method
US7397001B2 (en) 1994-12-05 2008-07-08 Freescale Semiconductor, Inc. Multi-strand substrate for ball-grid array assemblies and method
US6281026B1 (en) 1997-11-14 2001-08-28 Niigata Seimitsu Co., Ltd. Semiconductor device and method for manufacturing the same
WO1999026288A1 (en) * 1997-11-14 1999-05-27 T.I.F. Co., Ltd. Semiconductor device and method for manufacturing the same
WO1999026289A1 (en) * 1997-11-18 1999-05-27 T.I.F. Co., Ltd. Semiconductor device and method for manufacturing the same
US6291309B1 (en) 1997-11-28 2001-09-18 Niigata Seimitsu Co., Ltd. Semiconductor device and method for manufacturing the same
WO1999028970A1 (en) * 1997-11-28 1999-06-10 T.I.F. Co., Ltd. Semiconductor device and method for manufacturing the same
JP2006013318A (en) * 2004-06-29 2006-01-12 Hitachi Metals Ltd Laminated board and high-frequency electronic part, and method for manufacturing the same
JP4505803B2 (en) * 2004-06-29 2010-07-21 日立金属株式会社 Manufacturing method of high-frequency electronic components
JP2008235913A (en) * 2008-03-31 2008-10-02 Renesas Technology Corp Method of manufacturing semiconductor device
JP2008205515A (en) * 2008-05-29 2008-09-04 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
JP2008205516A (en) * 2008-05-29 2008-09-04 Sanyo Electric Co Ltd Semiconductor device
JP2010219420A (en) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2617402B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US7037756B1 (en) Stacked microelectronic devices and methods of fabricating same
US7520052B2 (en) Method of manufacturing a semiconductor device
US8822274B2 (en) Packaged IC having printed dielectric adhesive on die pad
JP4757398B2 (en) Manufacturing method of semiconductor device
JPH10303352A (en) Semiconductor device and manufacture of semiconductor device
JP2003124400A (en) Semiconductor power module and manufacturing method therefor
US6822339B2 (en) Semiconductor device
JP2617402B2 (en) Semiconductor device, electronic circuit device, and manufacturing method thereof
JPH0870081A (en) Ic package and its manufacture
US6975512B1 (en) Thermally enhanced heat sink BGA package
US20060199302A1 (en) Semiconductor device and a manufacturing method of the same
JP2002093982A (en) Semiconductor device and manufacturing method therefor
KR20090089399A (en) An integrated circuit package and a method for dissipating heat in an integrated circuit package
JP2003124401A (en) Module and method for producing it
EP1503412A2 (en) Semiconductor device and manufacturing method of the same
JP2003197680A (en) Method of manufacturing semiconductor device
JP3459622B2 (en) Electronic component manufacturing method
JP2010086996A (en) Method of manufacturing circuit device
JP3453113B2 (en) Manufacturing method of electronic component and liquid resin used in the method
JP2928755B2 (en) Electronic component manufacturing method
JPH07283345A (en) Semiconductor device, its manufacture, and resin sealed object
KR102365004B1 (en) Semiconductor package and a method of manufacturing the same
KR100499328B1 (en) Flip Chip Packaging Method using Dam
KR20180062479A (en) Semiconductor package and a method of manufacturing the same
JP2004103641A (en) Semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16