JPH0650946B2 - Series resonant converter - Google Patents

Series resonant converter

Info

Publication number
JPH0650946B2
JPH0650946B2 JP63098695A JP9869588A JPH0650946B2 JP H0650946 B2 JPH0650946 B2 JP H0650946B2 JP 63098695 A JP63098695 A JP 63098695A JP 9869588 A JP9869588 A JP 9869588A JP H0650946 B2 JPH0650946 B2 JP H0650946B2
Authority
JP
Japan
Prior art keywords
resonance
circuit
connection point
diode
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63098695A
Other languages
Japanese (ja)
Other versions
JPH01270768A (en
Inventor
義雄 鈴木
幹雄 伊藤
康夫 木井
亮治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP63098695A priority Critical patent/JPH0650946B2/en
Priority to CA000593007A priority patent/CA1318349C/en
Priority to DE68926585T priority patent/DE68926585T2/en
Priority to EP89302335A priority patent/EP0332436B1/en
Publication of JPH01270768A publication Critical patent/JPH01270768A/en
Priority to US07/641,808 priority patent/US5075836A/en
Publication of JPH0650946B2 publication Critical patent/JPH0650946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02B70/1433

Landscapes

  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は負荷に必要な直流電圧を得ることのできる直列
共振コンバータに関する。
TECHNICAL FIELD The present invention relates to a series resonant converter capable of obtaining a DC voltage required for a load.

〔従来の技術〕[Conventional technology]

直列共振コンバータにおける共振電流の大きさは,共振
用リアクタのインダクタンス値,共振用キャパシタのキ
ャパシタンス値,直流入力電圧及び直流出力電圧の値に
よって決定される。従って,これらの値と共振電流との
関係について研究が盛んに行われている。これらの研究
により,直列共振コンバータの出力電圧を出力電流の値
によらずに定電圧制御するためには,主スイッチ素子の
オフ期間を変える,いわゆる周波数制御により出力電流
の大きさ(共振電流の平均値)を調整することが必要と
されている。しかし,直列共振コンバータを周波数制御
で定電圧制御する場合には,出力電流と動作周波数とが
比例関係にあるので,軽負荷時(出力電流の小さい場
合)に動作周波数が可聴音領域まで下がってしまい,騒
音が発生するという問題がある。
The magnitude of the resonance current in the series resonance converter is determined by the inductance value of the resonance reactor, the capacitance value of the resonance capacitor, the DC input voltage and the DC output voltage. Therefore, much research has been conducted on the relationship between these values and the resonance current. According to these studies, in order to control the output voltage of the series resonant converter at a constant voltage without depending on the value of the output current, the magnitude of the output current (resonance current It is necessary to adjust the average value). However, when the series resonant converter is controlled by a constant voltage by frequency control, since the output current and the operating frequency are in a proportional relationship, the operating frequency drops to the audible range when the load is light (when the output current is small). However, there is a problem that noise is generated.

この問題を解決するために,共振周波数でインピーダン
スが無限大になる並列共振回路からなるタンク回路を直
列共振ループに挿入し,軽負荷時に共振ループのインピ
ーダンスを高くすることにより,動作周波数の負荷依存
性を制御する第3図に示すように直列共振コンバータが
提案されている。
To solve this problem, a tank circuit consisting of a parallel resonant circuit whose impedance becomes infinite at the resonant frequency is inserted in the series resonant loop, and the impedance of the resonant loop is increased when the load is light, so that the operating frequency depends on the load. A series resonant converter has been proposed as shown in FIG.

第3図により従来の直列共振コンバータを説明すると,
バイポーラトランジスタのようなスイッチ素子11,1
2を順方向に直列に接続した第1の回路13と,ダイオ
ード14,15を順方向に直列に接続した第2の回路1
6と,共振用キャパシタ17,18が直列に接続された
第3の回路19との各両端間に直流電源21が接続され
る。スイッチ素子11,12は直流電源21と順方向で
あるが,ダイオード14,15は逆方向の極性とされ
る。ダイオード14,15の接続点と共振用コンデンサ
17,18の接続点とが互に接続され,この接続点22
とスイッチ素子11,12の接続点23との間に第4の
回路24が接続される。第4の回路24は整流回路25
と,共振用インダクタ26とタンク回路27との直列接
続よりなり,タンク回路27は共振用インダクタ28及
び共振用キャパシタ29の並列回路よりなる。整流回路
25はダイオード31〜34のブリッジ回路よりなり,
その出力端子間に出力キャパシタ35が接続され,出力
キャパシタ35と並列に負荷36が接続される。
The conventional series resonant converter will be described with reference to FIG.
Switch elements 11, 1 such as bipolar transistors
A first circuit 13 in which 2 is connected in series in the forward direction and a second circuit 1 in which diodes 14 and 15 are connected in series in the forward direction
A DC power supply 21 is connected between both ends of the circuit 6 and the third circuit 19 in which the resonance capacitors 17 and 18 are connected in series. The switch elements 11 and 12 are in the forward direction with respect to the DC power source 21, but the diodes 14 and 15 are in the reverse direction. The connection point of the diodes 14 and 15 and the connection point of the resonance capacitors 17 and 18 are connected to each other.
A fourth circuit 24 is connected between the connection point 23 of the switch elements 11 and 12. The fourth circuit 24 is a rectifier circuit 25.
And a resonance inductor 26 and a tank circuit 27 connected in series. The tank circuit 27 is composed of a resonance inductor 28 and a resonance capacitor 29 in parallel. The rectifier circuit 25 includes a bridge circuit of diodes 31 to 34,
An output capacitor 35 is connected between the output terminals, and a load 36 is connected in parallel with the output capacitor 35.

初期条件としては共振用キャパシタ17が直流電源21
の電圧に充電され,共振用キャパシタ18が零電圧に放
電されている場合を仮定し,動作を説明する。この状態
で半導体スイッチ11をオンにすると,直流電源21よ
り半導体スイッチ11→整流回路25のダイオード31
→負荷36(キャパシタ35)→整流回路25のダイオ
ード33→共振用インダクタ26→タンク回路27を通
して共振用キャパシタ18への充電電流i1が流れ,同時
にスイッチ素子11→整流回路25のダイオード31→
負荷36(キャパシタ35)→整流回路25のダイオー
ド33→共振用インダクタ26→タンク回路27を通し
て共振用キャパシタ17の放電電流i2が流れる。この電
流は共振用キャパシタ17を放電,共振用キャパシタ1
8を充電する共振電流であり,タンク回路27のキャパ
シタ29のキャパシタンスCpは共振用キャパシタ17
(又は共振用キャパシタ18)のキャパシタCsより大き
く設定されているから,出力キャパシタ35の電圧(出
力電圧)をVo,共振用インダクタ26のインダクタをL
s,直流電源21の電圧をViとすれば,約 後に共振用キャパシタ17の電圧は零,共振用キャパシ
タ18の電圧は電源電圧Viになる。この瞬間にダイオー
ド14が導通し,共振用インダクタ26に流れていた電
流は共振用インダクタ26→タンク回路27→ダイオー
ド14→スイッチ素子11→整流回路25→負荷36
(キャパシタ35)→整流回路25を通して電流i2とし
て流れる。この電流i2は負荷36で消費され,やがて零
になる。
As an initial condition, the resonance capacitor 17 is the DC power supply 21.
The operation will be described on the assumption that the resonance capacitor 18 is discharged to zero voltage and the resonance capacitor 18 is discharged to zero voltage. When the semiconductor switch 11 is turned on in this state, the DC power supply 21 causes the semiconductor switch 11 → the diode 31 of the rectifier circuit 25
→ load 36 (capacitor 35) → diode 33 of the rectifier circuit 25 → inductor 26 for resonance → charging current i1 to the capacitor 18 for resonance flows through the tank circuit 27, and at the same time switch element 11 → diode 31 of the rectifier circuit 25 →
The discharge current i2 of the resonance capacitor 17 flows through the load 36 (capacitor 35) → the diode 33 of the rectifier circuit 25 → the resonance inductor 26 → the tank circuit 27. This current discharges the resonance capacitor 17, and the resonance capacitor 1
8 is the resonance current that charges the capacitor 8, and the capacitance Cp of the capacitor 29 of the tank circuit 27 is
(Or is set to be larger than the capacitor Cs of the resonance capacitor 18), the voltage of the output capacitor 35 (output voltage) is Vo and the inductor of the resonance inductor 26 is L.
s, if the voltage of the DC power supply 21 is Vi, then After that, the voltage of the resonance capacitor 17 becomes zero and the voltage of the resonance capacitor 18 becomes the power supply voltage Vi. At this moment, the diode 14 becomes conductive and the current flowing through the resonance inductor 26 is the resonance inductor 26 → tank circuit 27 → diode 14 → switch element 11 → rectifier circuit 25 → load 36.
(Capacitor 35) → Flows as a current i2 through the rectifier circuit 25. This current i2 is consumed by the load 36 and eventually becomes zero.

以上で動作の半周期は終了し次にスイッチ素子12をオ
ンにすると,共振用キャパシタ17が充電,共振用キャ
パシタ18が放電を行い,前述と同様な動作が生じ,次
の半周期は終了する。
When the switching element 12 is turned on next after the half cycle of the operation is completed, the resonance capacitor 17 is charged and the resonance capacitor 18 is discharged, the same operation as described above occurs, and the next half cycle ends. .

なおタンク回路27のキャパシタ29のキャパシタンス
Cpとインダクタ28のインダクタンスLpとの共振周波数 を共振用キャパシタ17(又はキャパシタ18)のキャ
パシタンスCsと共振用インダクタ26インダクタンスLs
との共振周波数 より低く設定し,周波数 f近においてタンク回路27
のインピーダンスを増大させることにより動作周波数の
最低値を fにクランプしている。つまり周囲に騒音を
与えないように,動作周波数は可聴周波数よりも高い周
波数としており,また出力電流を減少するには動作周波
数をさげるが,軽負荷でも動作できるようにタンク回路
27で並列共振させ,電流を制限して僅かな出力電流を
供給するようにしていた。このようなタンク回路を用い
ることにより動作周波数を可聴周波数に下げることな
く,軽負荷でも動作させることができる。なお一般に出
力電圧又は出力電流を一定に保持するため,その変動を
検出して動作周波数を自動的に制御している。
The capacitance of the capacitor 29 of the tank circuit 27
Resonance frequency of Cp and inductance Lp of inductor 28 Is the capacitance Cs of the resonance capacitor 17 (or the capacitor 18) and the resonance inductor 26 inductance Ls.
Resonance frequency with Was set lower, the frequency f 1 tank circuit in the near 27
The minimum value of the operating frequency is clamped to f 0 by increasing the impedance of. In other words, the operating frequency is higher than the audible frequency so as not to give noise to the surroundings, and the operating frequency is reduced to reduce the output current, but the tank circuit 27 causes parallel resonance so that it can operate even at a light load. The current was limited to supply a small output current. By using such a tank circuit, it is possible to operate even under a light load without lowering the operating frequency to the audible frequency. Generally, in order to keep the output voltage or output current constant, the fluctuation is detected and the operating frequency is automatically controlled.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような従来回路では,出力側に所望のエネルギを伝
達するためには,タンク回路27の共振キャパシタ29は共
振キャパシタ17又は18よりも4〜5 倍以上大きなキャパ
シタンスを持たざるを得ないから,タンク回路27の取扱
いエネルギは大きくなる。従って,共振用インダクタも
大型のものを用いねばならず,電力損失も大きくなると
いう欠点があった。また,別途タンク回路27用に容量の
大きな共振用キャパシタを備えなければならないという
欠点もあった。
In such a conventional circuit, in order to transfer the desired energy to the output side, the resonance capacitor 29 of the tank circuit 27 has to have a capacitance 4 to 5 times larger than that of the resonance capacitor 17 or 18. The handling energy of the tank circuit 27 becomes large. Therefore, a large resonance inductor must be used, and power loss will increase. In addition, there is also a drawback that a large-capacity resonance capacitor must be separately provided for the tank circuit 27.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

このような従来回路の欠点を除去するためにこの発明で
は,直列共進回路と並列共進回路とで共振用キャパシタ
を共用しており,共振用キャパシタのキャパシタンスが
従来のタンク回路の共振用キャパシタよりはるかに小さ
くなるので,その取扱いエネルギも小さくなり,従っ
て,共振用インッダクタを小型化でき,また電力損失も
小さくできる。
In order to eliminate such a defect of the conventional circuit, in the present invention, the resonance capacitor is shared by the series co-advance circuit and the parallel co-advance circuit, and the capacitance of the resonance capacitor is much larger than that of the conventional tank circuit. Since the size of the resonance inductor is small, the handling energy is small, and therefore, the resonance inductor can be downsized and the power loss can be reduced.

〔実施例〕〔Example〕

第1図により本発明に係る直列共振コンバータの一実施
例を説明する。第1図において,第3図と対応する部分
には同一符号を付けてある。
An embodiment of the series resonant converter according to the present invention will be described with reference to FIG. In FIG. 1, parts corresponding to those in FIG. 3 are designated by the same reference numerals.

この直列共振コンバータでは,第2の回路16のダイオー
ド14と15との接続点,及び第3の回路19の共振用キャパ
シタ17と18との接続点を示す接続点Aと,直流電源21の
中点電位点Bとの間に共振用インダクタ28を備え,共振
用キャパシタ17と18は共振用インダクタ28と並列共振を
行い,また共振用インダクタ26と夫々直列共振を行い,
第1の回路13を流れる主電流は第3の回路19を流れる構
成となっている。
In this series resonance converter, the connection point between the diodes 14 and 15 of the second circuit 16 and the connection point between the resonance capacitors 17 and 18 of the third circuit 19 and the DC power supply 21 The resonance inductor 28 is provided between the point potential point B, the resonance capacitors 17 and 18 perform parallel resonance with the resonance inductor 28, and perform series resonance with the resonance inductor 26, respectively.
The main current flowing through the first circuit 13 is configured to flow through the third circuit 19.

この回路の動作は上記従来回路の動作とほぼ同様であ
り,いま,スイッチ素子11をオンにすると,直流電源21
よりスイッチ素子11−トランス40の1次巻線−共振用イ
ンダクタ26−接続点Aを介して共振用キャパシタ18への
充電電流が流れ,同時にスイッチ素子11−トランス40の
1次巻線−共振用インダクタ26を介して共振用キャパシ
タ17の放電電流が流れる。この電流は共振用キャパシタ
18をほぼ電源電圧に充電し,共振用キャパシタ17をほぼ
零電圧に放電した後,第2の回路16のダイオード14が導
通し,共振用インダクタ26に蓄積されたエネルギがダイ
オード14−スイッチ素子11−トランス40を介して出力側
に伝達される。
The operation of this circuit is almost the same as that of the conventional circuit described above. Now, when the switch element 11 is turned on, the DC power supply 21
The switching element 11-the primary winding of the transformer 40-the inductor 26 for resonance-the charging current to the resonance capacitor 18 flows through the connection point A, and at the same time the switching element 11-the primary winding of the transformer 40-for resonance The discharge current of the resonance capacitor 17 flows through the inductor 26. This current is a resonance capacitor
After charging 18 to almost the power supply voltage and discharging the resonance capacitor 17 to almost zero voltage, the diode 14 of the second circuit 16 becomes conductive, and the energy stored in the resonance inductor 26 becomes diode 14-switch element 11 -Transmitted to the output side via the transformer 40.

そしてスイッチ素子11と12の双方のオフ期間後スイッチ
素子12がオンするが,イッチ素子12のオン動作はスイッ
チ素子11の場合と同様であるので,説明を省略する。
Then, the switch element 12 is turned on after both the switch elements 11 and 12 have been turned off, but the ON operation of the switch element 12 is the same as that of the switch element 11, so the description thereof is omitted.

なお,ダイオード14,15 は夫々第3の回路19の共振用キ
ャパシタ17,18 と並列に接続されているので,ダイオー
ド14,15 のリカバリによる悪影響は生じない。
Since the diodes 14 and 15 are respectively connected in parallel with the resonance capacitors 17 and 18 of the third circuit 19, no adverse effects due to the recovery of the diodes 14 and 15 occur.

ここでスイッチ素子11と12の双方がオフしている期間に
おいても,共振用キャパシタ17及び18と共振用インダク
タ28とがその固有の並列共振周波数で発振して,接続点
Aの電圧を振動させており,軽負荷時にはスイッチ素子
11又は12の両端の電圧が小さい値(直流電源21A又は21
Bの電圧から接続点Aの電圧をマイナスした振幅の小さ
い電圧)を呈する接続点Aの電圧状態でスイッチ素子11
又は12をオンさせ,トランス40の1次巻線に印加される
電圧の振幅を小さくしている。スイッチ素子11と12のス
イッチング周波数を共振用キャパシタ17又は18と共振用
インダクタ28との並列共振周波数と近づける程,接続点
Aの電圧振動の振幅は大きくなる。従って,軽負荷時に
はスイッチ素子11又は12を上記並列共振周波数に近い周
波数でスイッチングさせる。
Even when both the switching elements 11 and 12 are off, the resonance capacitors 17 and 18 and the resonance inductor 28 oscillate at the peculiar parallel resonance frequency to oscillate the voltage at the connection point A. And switch element at light load
The voltage across 11 or 12 is small (DC power supply 21A or 21
In the voltage state of the connection point A exhibiting a voltage with a small amplitude obtained by subtracting the voltage of the connection point A from the voltage of B), the switching element 11
Alternatively, 12 is turned on to reduce the amplitude of the voltage applied to the primary winding of the transformer 40. The amplitude of the voltage oscillation at the connection point A increases as the switching frequency of the switch elements 11 and 12 approaches the parallel resonance frequency of the resonance capacitor 17 or 18 and the resonance inductor 28. Therefore, when the load is light, the switching element 11 or 12 is switched at a frequency close to the parallel resonance frequency.

次に定格負荷時には,上記並列共振周波数に比べてかな
り高い周波数でスイッチ素子11と12をスイッチングさせ
るので,接続点Aの電圧振動の振幅は小さい。従って,
直流電源21A又は21Bの電圧から接続点Aの電圧をマイ
ナスした電圧値の振幅は大きく,トランス40の1次巻線
に印加される電圧は大きい。
Next, at the rated load, since the switching elements 11 and 12 are switched at a frequency considerably higher than the parallel resonance frequency, the amplitude of voltage oscillation at the connection point A is small. Therefore,
The amplitude of the voltage value obtained by subtracting the voltage at the connection point A from the voltage of the DC power supply 21A or 21B is large, and the voltage applied to the primary winding of the transformer 40 is large.

次に第2図により本発明に係る直列共振コンバータの一
実施例を説明すると,この実施例では直流電源21を3相
全波整流装置21′,チョーク43,キャパシタ41と42で構
成している。キャパシタ41と42はチョーク43とフィルタ
を構成するとともに,その中点電位点Bに直流電源電圧
のほぼ1/2 の電圧を与える。通常,キャパシタ41と42は
共振用キャパシタ17又は18に比べて10倍以上大きなキャ
パシタンスをもつよう設計されており,共振に実質的に
悪影響を与えない。
Next, referring to FIG. 2, an embodiment of the series resonance converter according to the present invention will be described. In this embodiment, the DC power supply 21 is composed of a three-phase full-wave rectifier 21 ', a choke 43, and capacitors 41 and 42. . Capacitors 41 and 42 form a choke 43 and a filter, and apply a voltage of approximately half the DC power supply voltage to the midpoint potential point B thereof. Normally, the capacitors 41 and 42 are designed to have a capacitance 10 times or more larger than that of the resonance capacitor 17 or 18, and do not substantially affect resonance.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば,入力側に比較的安定
な2つの直流電圧源を備えると共に、並列共振回路と直
列共振回路で共振用キャパシタを共用しており,この共
振用キャパシタは従来のタンク回路の共振用キャパシタ
のキャパシタンスに比べてかなり小さくなるので,その
エネルギの取扱い量を十分小さくでき,従って,別途並
列共振回路用の共振用キャパシタを備える必要の無いの
は勿論のこと,安定に動作すると共に、共振用インダク
タを小型化でき,また電力損失を低減できる。
As described above, according to the present invention, two relatively stable DC voltage sources are provided on the input side, and the resonance capacitor is shared by the parallel resonance circuit and the series resonance circuit. Since it is much smaller than the capacitance of the resonance capacitor of the tank circuit, the amount of energy that can be handled can be made sufficiently small. Therefore, it is not necessary to separately provide a resonance capacitor for the parallel resonance circuit, and it is stable. The resonance inductor can be downsized, and the power loss can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は夫々本発明にかかる直列共振コンバ
ータの異なる実施例を示す図,第3図は従来の直列共振
コンバータを説明するための図である。 11,12 ……主スイッチ素子 13……第1の回路 14,15 ……ダイオード 16……第2の回路 17,18 ……共振用キャパシタ 19……第3の回路 21……直流電流 26,28……共振用インダクタ 40……トランス
1 and 2 are views showing different embodiments of the series resonance converter according to the present invention, and FIG. 3 is a view for explaining a conventional series resonance converter. 11,12 ...... Main switch element 13 ...... First circuit 14,15 ...... Diode 16 ...... Second circuit 17,18 ...... Resonance capacitor 19 ...... Third circuit 21 ...... DC current 26, 28 …… Resonance inductor 40 …… Transformer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−234052(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Japanese Patent Laid-Open No. 1-234052 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1のスイッチ素子及び第2のスイッチ素
子を互いに順方向に直列に接続した第1の回路と, 第1のダイオード及び第2のダイオードを互いに順方向
に直列に接続した第2の回路と, 第1の共振用キャパシタ及び第2の共振用キャパシタを
直列に接続した第3の回路と, 上記第1のスイッチ素子及び第2のスイッチ素子との接
続点,及び上記第1のダイオード及び第2のダイオード
との接続点と,上記第1の共振用キャパシタ及び第2の
共振用キャパシタの接続点との間で,上記第1のスイッ
チ素子又は第2のスイッチ素子を流れる主電流の通路に
接続された第1の共振用インダクタと, 第1の直流電源と第2の直流電源とを直列接続してな
り,上記第1の回路,第2の回路及び第3の回路の各両
端間に接続されると共に,前記第1の直流電源と第2の
直流電源との接続点が,第2の共振用インダクタを介し
て前記第1のダイオード及び第2のダイオードの接続点
と,前記第1の共振用キャパシタ及び第2の共振用キャ
パシタの接続点とに結合された直流電源とからなること
を特徴とする直列共振コンバータ。
1. A first circuit in which a first switch element and a second switch element are connected in series in a forward direction with each other, and a first circuit in which a first diode and a second diode are connected in series with each other in a forward direction. The second circuit, the third circuit in which the first resonance capacitor and the second resonance capacitor are connected in series, the connection point between the first switch element and the second switch element, and the first circuit Of the first switching element or the second switching element flowing between the connection point between the second diode and the second diode and the connection point between the first resonance capacitor and the second resonance capacitor. A first resonance inductor connected to a current path, a first direct current power supply and a second direct current power supply are connected in series, and the first circuit, the second circuit and the third circuit are connected. It is connected between both ends and A connection point between the first DC power supply and the second DC power supply, a connection point between the first diode and the second diode via a second resonance inductor, the first resonance capacitor, and A series resonance converter comprising a DC power supply coupled to a connection point of a second resonance capacitor.
【請求項2】第1のスイッチ素子及び第2のスイッチ素
子を互いに順方向に直列に接続した第1の回路と, 第1のダイオード及び第2のダイオードを互いに順方向
に直列に接続した第2の回路と, 第1の共振用キャパシタ及び第2の共振用キャパシタを
直列に接続した第3の回路と, 上記第1のスイッチ素子及び第2のスイッチ素子の接続
点,及び上記第1のダイオード及び第2のダイオードの
接続点と,上記第1の共振用キャパシタ及び第2の共振
用キャパシタの接続点との間で,上記第1のスイッチ素
子又は第2のスイッチ素子を流れる主電流の通路に接続
された第1の共振用インダクタと, 整流装置と,比較的安定な2つの直流電圧を与えるため
のものであって共振に実質的に影響を与えない程度の大
きなキャパシタンスを有する一対の直列接続されたコン
デンサとからなる直流電源と, 上記第1のダイオード及び第2のダイオードの接続点
と,上記第1の共振用キャパシタ及び第2の共振用キャ
パシタとの接続点と,上記直流電源の上記コンデンサ同
士の接続点との間に接続された第2の共振用インダクタ
とからなることを特徴とする直列共振コンバータ。
2. A first circuit in which a first switch element and a second switch element are connected in series in the forward direction, and a first circuit in which a first diode and a second diode are connected in series in the forward direction. 2 circuit, a third circuit in which a first resonance capacitor and a second resonance capacitor are connected in series, a connection point of the first switch element and the second switch element, and the first circuit Between the connection point of the diode and the second diode and the connection point of the first resonance capacitor and the second resonance capacitor, the main current flowing through the first switch element or the second switch element A first resonance inductor connected to the passage, a rectifying device, and a large capacitance for giving two relatively stable DC voltages and having substantially no effect on resonance. A direct current power supply comprising a pair of capacitors connected in series, a connection point of the first diode and the second diode, a connection point of the first resonance capacitor and the second resonance capacitor, and A series resonance converter, comprising a second resonance inductor connected between the DC power supply and the connection point between the capacitors.
JP63098695A 1988-03-11 1988-04-21 Series resonant converter Expired - Lifetime JPH0650946B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63098695A JPH0650946B2 (en) 1988-04-21 1988-04-21 Series resonant converter
CA000593007A CA1318349C (en) 1988-03-11 1989-03-07 Series resonant power converter and method of controlling the same
DE68926585T DE68926585T2 (en) 1988-03-11 1989-03-09 Series resonance power converter and its control method
EP89302335A EP0332436B1 (en) 1988-03-11 1989-03-09 Series resonant power converter and method of controlling the same
US07/641,808 US5075836A (en) 1988-03-11 1991-01-16 Series resonant power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63098695A JPH0650946B2 (en) 1988-04-21 1988-04-21 Series resonant converter

Publications (2)

Publication Number Publication Date
JPH01270768A JPH01270768A (en) 1989-10-30
JPH0650946B2 true JPH0650946B2 (en) 1994-06-29

Family

ID=14226640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63098695A Expired - Lifetime JPH0650946B2 (en) 1988-03-11 1988-04-21 Series resonant converter

Country Status (1)

Country Link
JP (1) JPH0650946B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133542A (en) * 1992-10-13 1994-05-13 Yasuo Nakano Voltage converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757093B2 (en) * 1988-03-14 1995-06-14 日本電信電話株式会社 Series resonant converter

Also Published As

Publication number Publication date
JPH01270768A (en) 1989-10-30

Similar Documents

Publication Publication Date Title
EP0488478B1 (en) Inverter device
JPH02184267A (en) Series resonance inverter with non-loss snabber-reset part
US5475580A (en) Power supply circuit
US5517403A (en) Inverter device
JP4362915B2 (en) Capacitor charger
US5075836A (en) Series resonant power converter
KR19990037061A (en) Switched power supply
US4176310A (en) Device comprising a transformer for step-wise varying voltages
JPH08130871A (en) Dc-dc converter
JPH0564432A (en) Power source
US5675483A (en) Power supply comprising means for improving the power factor
JPH0650946B2 (en) Series resonant converter
JP3370522B2 (en) Boost type bridge inverter circuit and control method thereof
JPH05300667A (en) Switching power supply type charger
JPH08186981A (en) Switching power supply apparatus
JPS61277372A (en) Power supply device
JP2628204B2 (en) Driving method of series resonant converter
JPH01234052A (en) Series resonance converter
JP3583208B2 (en) Switching power supply
SU1192077A1 (en) D.c.voltage converter
JP2674267B2 (en) Power supply
JPH0710170B2 (en) Series resonance converter
JP3389932B2 (en) Inverter device
JPH0556647A (en) Power supply
JPH01255470A (en) Power source device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 14