JPH06503877A - Imaging methods for defining the structure of objects - Google Patents

Imaging methods for defining the structure of objects

Info

Publication number
JPH06503877A
JPH06503877A JP3515253A JP51525391A JPH06503877A JP H06503877 A JPH06503877 A JP H06503877A JP 3515253 A JP3515253 A JP 3515253A JP 51525391 A JP51525391 A JP 51525391A JP H06503877 A JPH06503877 A JP H06503877A
Authority
JP
Japan
Prior art keywords
radiation
detector
imaging method
imaging
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3515253A
Other languages
Japanese (ja)
Inventor
プーマライネン,パーティ
Original Assignee
ファブレッティ・ホールディングス・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファブレッティ・ホールディングス・リミテッド filed Critical ファブレッティ・ホールディングス・リミテッド
Publication of JPH06503877A publication Critical patent/JPH06503877A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/46Wood

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 物体の構造を規定するためのイメージング方法本発明は、物体の構造を規定する イメージング方法に関し、該方法において、検査対象物及び少なくとも1の放射 線源が互いに動かされ、ゆえに物体は放射線源から放出される線を通して移動す る。[Detailed description of the invention] Imaging method for defining the structure of an object The present invention provides an imaging method for defining the structure of an object. An imaging method, comprising: an object to be examined and at least one radiation; The sources are moved relative to each other and therefore the object moves through the lines emitted by the sources. Ru.

約100年間にわたり、物体の内部構造を表すために、X線技術は利用され、開 発されてきた。X線写真において、検査対象物の内部構造の詳細は、X線放射の 重畳吸収差として見いだせる。問題の物体が、例えば人体の腹領域の内部器官で のように、同じ吸収係数の数種の要素を含むならば、イメージを解釈することは 困難であり、その構造を分析するための専門家が要求される。X線技術は、例え ば不透明な物体写真など、所望の物体をより良く見いだせる種々の方法を開発し た。最近、最も有益な方法はX線断層撮影法である。断層撮影法は、検査の方向 から見た横断面イメージを与え、異なる要素が、分離してイメージの中に且つ比 較的明るい場所に見いだせる。所望の数の横断面イメージが縦方向に連続して作 成される際に、ターゲットの精密三次元イメージが得られる。放射線の他のタイ プは、すでにターゲットの三次元イメージを作成するために用いられており、最 もよく知られた方法は、超音波スキャンである。将来的に、イメージングは、お そらく赤外線放射をも用いることにより、行われるであろう。現在の装置は、複 雑であり、高価で遅い。例えば、人体の検査に要求される断層撮影法は、数秒間 で1つのイメージを連続して撮影する。For about 100 years, X-ray technology has been used to describe the internal structure of objects. It has been uttered. In an X-ray photograph, the details of the internal structure of the object being examined are revealed by the X-ray radiation. It can be found as a superimposed absorption difference. The object in question is an internal organ, for example in the abdominal region of the human body. If it contains several elements with the same absorption coefficient, such as It is difficult and requires experts to analyze its structure. X-ray technology is an example We have developed various methods to better find desired objects, such as opaque object photography. Ta. Currently, the most useful method is X-ray tomography. Tomography is the direction of examination gives a cross-sectional image as seen from It can be found in relatively bright places. The desired number of cross-sectional images are created in series in the vertical direction. When completed, a precise three-dimensional image of the target is obtained. Other ties of radiation Already used to create three-dimensional images of targets, Another well-known method is ultrasound scanning. In the future, imaging will This would probably be done by also using infrared radiation. Current equipment is It's sloppy, expensive, and slow. For example, tomography, which is required for examining the human body, takes only a few seconds Capture one image in succession.

検査対象物の内部構造の現在のイメージは、自動的に且つ素早く要求される。A current image of the internal structure of the inspected object is automatically and quickly requested.

人体の検査のために設計されたX線断層撮影機の場合に反して、これらの場合に は1mm未満の解像度は必要ではない。このタイプの典型的な応用は、望ましく ない物体、チップ及び/又は物質を検出するために、種々の物体、チップ及び物 質をスキャンすることであり、並びにこれらの物質及び物体の内部構造を規定す ることである。ある場合において、これは物体の三次元形状を規定するために十 分であるが、内部構造の検査は必要ではない。Contrary to the case of X-ray tomography machines designed for examination of the human body, in these cases does not require a resolution of less than 1 mm. A typical application of this type is preferably various objects, chips and objects to detect objects, chips and/or substances that are to scan the quality and define the internal structure of these materials and objects. Is Rukoto. In some cases this is sufficient to define the three-dimensional shape of the object. However, inspection of the internal structure is not necessary.

本発明の目的は、物体の構造を規定するためのイメージング方法を導入すること であり、該方法によって、素早く且つ現在の断層撮影技術に用いられる装置より も非常に簡単で、より経済的な装置を使用することにより、種々の応用のために 、適切に構築された三次元イメージが得られる。The aim of the invention is to introduce an imaging method for defining the structure of objects. , and the method allows for faster and more efficient use of the Also for various applications by using very simple and more economical equipment , a properly constructed three-dimensional image is obtained.

本発明の目的は、添付の請求の範囲に列記される新規な特徴によって特徴づけら れる方法によって達成される。The object of the invention is characterized by the novel features listed in the appended claims. This is achieved by the following methods.

本発明の方法において、少なくとも1の検出器が、少なくとも3の異なる角度か ら、検査対象物における少なくとも部分的に吸収される線の強度変化を測定する t;めに用いられ、これらの変化は該物体の動きの関数として測定される。ゆえ に、構造のイメージングのために要求される構造的なポイントは、少なくとも3 の異なる方向から規定され、物体を通る線の経路が、常に測定のモーメントにて 知られるように、物体の三次元構造が算出できる。本発明の最大の利点は、例え ばX線断層撮影法において、1又は複数のX線管の動きが1の静止X線管により 置換でき、また数百の放射線検出器が1の検出器だけで置換できることにある。In the method of the invention, at least one detector is arranged at at least three different angles. measuring the intensity change of the at least partially absorbed line in the object under test. t; and these changes are measured as a function of the movement of the object. Therefore The structural points required for structural imaging are at least 3 defined from different directions, and the path of the line through the object is always at the moment of measurement. As is known, the three-dimensional structure of an object can be calculated. The greatest advantage of the present invention is that, for example, For example, in X-ray tomography, the movement of one or more X-ray tubes is caused by one stationary X-ray tube. Moreover, hundreds of radiation detectors can be replaced with just one detector.

装置は簡単で、その製造及び維持コストとしては経済的である。装置に要求され ることが物体の外部形状を規定することだけであれば、用いられる放射線源は光 照射ダイオード等でよく、検出器は光感応トランジスターでよく、この場合、イ メージングに必要とされるトランスミツター/レシーバ一対は、非常に簡単で高 価ではない。The device is simple and economical to manufacture and maintain. required by the device If all that is needed is to define the external shape of the object, the radiation source used is The irradiating diode may be used as the irradiation diode, and the detector may be a photosensitive transistor. The transmitter/receiver pair required for imaging is very simple and inexpensive. It's not the price.

本発明の方法は、種々の対象物の内部構造の自動的且つ素早いスキャンに適用さ れ且つ用いられる。可能な適用は、例えば検査対象物の内部の危険な物質、例え ば、木材が鋸引きされ若しくはチップにカットされる際に丸太に付着する石及び 他の物体の検出である。さらに該方法は、鋸引き工程を最適化するために、鋸引 された木材の欠陥及び節の位置を規定する。さらに、該方法は、航空旅行者のス ーツケースの中の火薬若しくは武器の検索等の種々の他の目的に適用できる。The method of the invention can be applied to automatic and quick scanning of internal structures of various objects. and used. Possible applications are, for example, dangerous substances inside the inspected object, e.g. For example, stones and stones that adhere to logs when the wood is sawn or cut into chips. Detection of other objects. Furthermore, the method includes a sawing process to optimize the sawing process. Define the location of defects and knots in wood that has been removed. Furthermore, the method provides It can be applied for a variety of other purposes, such as searching for gunpowder or weapons in suitcases.

本発明の方法でのスキャン速度は、約100〜500イメージ/秒の高速であり 、得られる解像度は、これらの目的のために十分である。これに加えて、該方法 は、種々の物体の三次元形状の規定に用いることができる。例として、与えられ た材料の切り出されたチップの大きさ及び形状の規定、例えばパルプ産業でのチ ップの大きさ及び形状の規定、鉱業での破砕されたアグリゲート(凝集材)の大 きさ及び形状を述べる。The scanning speed in the method of the present invention is high, about 100-500 images/second. , the resolution obtained is sufficient for these purposes. In addition to this, the method can be used to define the three-dimensional shape of various objects. As an example, given Regulation of the size and shape of chips cut from raw material, e.g. chips in the pulp industry. regulation of the size and shape of crushed aggregates in the mining industry; Describe the size and shape.

添付図面を参照しつつ、本発明を以下に詳細に説明する。The invention will now be described in detail with reference to the accompanying drawings.

第1A図は本発明による方法の一つの寅施態様を説明するための側面図、簀lB 図は第1A図の実施態様の頂面図、第1C図は第1B図の実施態様における一つ の要素について異なる方向から得られた種々のイメージを示す図、 第2A図および第2B図は本発明による方法の別の実施態様を示す図であり、そ れぞれ側方および頂面から見t;図、第3図は本発明による方法の第3の実施態 様を示す側面図、第4A図および第4B図は本発明による方法の第4の実施態様 を示す図であり、それぞれ側方および頂面から見た図である。FIG. 1A is a side view for explaining one embodiment of the method according to the invention; The figure is a top view of the embodiment of FIG. 1A, and FIG. 1C is one of the embodiments of FIG. 1B. diagrams showing various images obtained from different directions of the elements of 2A and 2B illustrate another embodiment of the method according to the invention, in which FIG. 3 shows a third embodiment of the method according to the invention, viewed from the side and from the top, respectively. FIGS. 4A and 4B are side views showing a fourth embodiment of the method according to the invention. FIG.

本発明によるイメージング方法の原理は、第1A図、第1B図及びfllclc 図に図示されており、これらの図には、丸太の内部構造のイメージングが例とし て示されている。放射線源は、広いスキャン角度でX線放射を伝達するX線管で ある。検査されるべき丸太は円錐状のX線ビームの甲を通過せしめられる。放射 線はラインスキャン検出器4.5.6.7及び8によって測定される。検出器の ラインは、丸太の下方で該丸太を横切る方向に延びている。ラインスキャン検出 器は、幾つかの(例えば100〜500)平行な分離したX線検出器からなるも のとしても、あるいは、位置に対する感度のよい一つの長い検出器からなるもの としてもよく、すなわち、いずれの検出器も、その長さに関して検出されたポイ ントの位置を検出し、規定する。第1c図は、スキセンに際してX線管が丸太全 体を通過する際に、異なる複数の角度から得られる一つの要素のイメージを示す 。第1c図の下方における数字4.5.6.7および8は、これらの方向をスキ ャンするのに用いられたそれぞれのライン検出器を示す。前述した要素は、例え ば直i0.5cmでもよい。木材要素の密度は、各要素が異なる角度からイメー ジされることに基づいて決定される。これらの合計された吸収は、丸太がライン スキャン検出器のそれぞれの検出器によりスキャンされるときの時間に従ってそ れぞれの検出器から常に得られる。厚則として、スキャンには少なくとも2の検 出器のラインが常に必要である。実施例では5の検出器を使用している。検出器 のラインの数は、異なる適用にて変更してもよい。まj;、検出器の数を多くす るほど、一般的には鮮明なイメージをつくりだすことかでさる。イメージは、通 常の断層撮影におけるように、例えば横断面イメージ1〜6のように、所定面の 横断面イメージとして計算される。すべての断面イメージが処理されると、ここ で問題としている丸太の三次元密度イメージを得ることができ、それに伴い、節 、腐食部分、割れ目などが指摘され、しばしば高さ分布も得ることができる。加 えて、丸太の外部形状を規定するt;めのプロファイルリーダーを装置に設けて もよい。The principle of the imaging method according to the present invention is illustrated in FIGS. 1A, 1B and fllclc. The imaging of the internal structure of a log is illustrated in the figures as an example. is shown. The radiation source is an X-ray tube that transmits X-ray radiation over a wide scanning angle. be. The log to be inspected is passed through the shell of a conical X-ray beam. radiation The lines are measured by line scan detectors 4.5.6.7 and 8. of the detector The line extends below and across the log. Line scan detection The instrument may consist of several (e.g. 100 to 500) parallel separate X-ray detectors. or consisting of one long detector with good position sensitivity. i.e., any detector has a detected point with respect to its length. detect and define the location of the Figure 1c shows that the X-ray tube is Shows images of a single element from different angles as it passes through the body . The numbers 4, 5, 6, 7 and 8 at the bottom of Figure 1c are in these directions. Each line detector used to scan is shown. The elements mentioned above are for example The straight line may be 0.5 cm. The density of the wood elements is determined by each element being imaged from a different angle. Determined based on what is displayed. These combined absorptions are according to the time when scanned by each detector of the scanning detector. always obtained from each detector. As a rule of thumb, a scan should include at least 2 tests. An output line is always required. In the example, five detectors are used. Detector The number of lines may vary in different applications. Also, increase the number of detectors. Generally speaking, the more vivid the image, the clearer the image. The image is As in regular tomography, for example, cross-sectional images 1 to 6, a predetermined plane is Calculated as a cross-sectional image. Once all cross-sectional images have been processed, here It is possible to obtain a three-dimensional density image of the log in question, and along with this, the knot , corroded areas, cracks, etc. are noted, and often a height distribution can also be obtained. Canada Additionally, the device is equipped with a profile leader that defines the external shape of the log. Good too.

そうすると、鋸引きイメージを構築する際の計算の役に立つ。丸太のすべての要 素は、複数の方向からイメージされ、それにより、丸太を鋸引きして作り出され る製品内に存在する節の位置も直接知ることができる。This will help with calculations when constructing the sawing image. All the essentials of a log The material is imaged from multiple directions, and is then created by sawing a log. It is also possible to directly know the location of knots present in the product.

第2図〜第4図の実施態様においては、放射線源および検出器が対をなしている 。その一方は静止状態にあり、他方は円形経路に沿って移動することにより、測 定される放射線面は円錐形状となる。検査対象物は、この円錐表面を通過するこ とになるが、イメージは通常、コンピュータによって構築される。実際の適用態 様においては、複数の検出器または複数の放射線源を使用することも可能である 。異なる組み合わせによる変形例も当然可能である。例えば、垂直方向のイメー ジングを静止検出器のラインにより行い、両側から傾斜したイメージが回転板を 使用することにより得られる。In the embodiment of FIGS. 2-4, the radiation source and detector are paired. . One of them is stationary and the other one is measuring by moving along a circular path. The defined radiation surface has a conical shape. The object to be inspected cannot pass through this conical surface. However, images are usually constructed by a computer. Actual application status In some cases, it is also possible to use multiple detectors or multiple radiation sources. . Of course, modifications using different combinations are also possible. For example, a vertical image The scanning is performed by a line of stationary detectors, and the tilted image from both sides shows the rotating plate. Obtained by using

試験例1 第2図は丸太の断層撮影装置を示しており、該装置は、連続的なX線を伝達する 放射線源11(X線装置)と、所望時にX線の放射量を測定する放射線検出器1 2とからなっている。検査時、対象物、即ち丸太13は、例えばコンベア・ベル トに導かれ、等速度で断層撮影装置を通る。丸太がX線ビームの円錐円に入った とき、スポット15で横断面の吸収曲線が測定され、横断面の密度分布状態が得 られる。丸太がX線ビームの第2表面16を通ったとき、水平密度状態が得られ る。これらの交差するイメージから、明細書で先に説明したように、丸太内部の 密度分布を明らかすることができ、前記密度分布を基礎に丸太内の節、割れ目、 腐食の位置を計算することができる。実際には、イメージング速度を例えば2m /sにすることができ、そして、もし測定区域が1cm間隔に作られているなら ば、イメージング速度は1秒肖たり200区域である。もし、2個のX線検出器 を円周通路(90°の位相差で)に配置するならば、回転速度は6000rpm である。この回転速度は通常の技術で達成される。第2図で見られるように絶え 間無く注がれる放射線から検出器を防ぐために防護スクリーンが装備される。Test example 1 Figure 2 shows a log tomography device that transmits continuous X-rays. A radiation source 11 (X-ray device) and a radiation detector 1 that measures the amount of X-ray radiation when desired It consists of 2. During inspection, the object, ie the log 13, is placed on a conveyor bell, for example. It passes through the tomography device at a constant speed. The log entered the cone of the X-ray beam. At this time, the absorption curve of the cross section is measured at spot 15, and the density distribution state of the cross section is obtained. It will be done. When the log passes through the second surface 16 of the X-ray beam, a horizontal density state is obtained. Ru. From these intersecting images, we can see that inside the log, as explained earlier in the specification, The density distribution can be clarified, and based on the density distribution, knots, cracks, etc. in the log can be identified. The location of corrosion can be calculated. In practice, the imaging speed should be set to 2m, for example. /s, and if the measurement areas are made 1 cm apart. For example, the imaging speed is 200 areas per second. If two X-ray detectors is placed in a circumferential path (with a phase difference of 90°), the rotation speed is 6000 rpm. It is. This rotational speed is achieved using conventional techniques. As seen in Figure 2, A protective screen is equipped to protect the detector from the radiation that will soon fall on it.

この装置には1又は幾つかの検出器を組み入れることができ、データはコンピュ ータ14へのラインに沿って読み込まれ、そのため、一時に1個の検出器のみが 放射線にさらされる。丸太の内部構造を検査する前に丸太の横断面輪郭を明らか にするために、例えば、光学レーザ・プロフィルタを装置に装備することができ る。この情報は横断面イメージをより速く、正確に作るのを助ける。The device can incorporate one or several detectors and the data can be transmitted to a computer. along the line to the detector 14, so that only one detector at a time Exposure to radiation. Reveals the cross-sectional profile of a log before inspecting its internal structure For example, the device can be equipped with an optical laser profilter to Ru. This information helps create cross-sectional images faster and more accurately.

試験例2 第3図は石検出器を示している。例えば燃料として燃やされるビート中の石、あ るいはチップに刻まれる板材の流れの中の石の検出は、重要な仕事であるが、当 初、完全に満足な方法はなかった。なぜなら、ここで要求される解像度は以前の ケースとほぼ同じでないからであり、放射線源21は放射アイソトープ源(例え ば、100 mci Am−Hl)である。検出器22は放射線密度を測定する ために静止方式で設置されている。運搬された材料23の密度差は、コンピュー タ24により円錐垂直表面25及び傾斜円錐表面26での吸収から明らかにされ る。Test example 2 Figure 3 shows the stone detector. For example, stones in beets that are burned as fuel, Detection of stones in the flow of slabs carved into chips is an important task, but at present For the first time, no method was completely satisfactory. Because the resolution required here is This is because the radiation source 21 is not substantially the same as the case, and the radiation source 21 is a radiation isotope source (e.g. For example, 100 mci Am-Hl). Detector 22 measures radiation density It is installed in a static manner for this purpose. The difference in density of the transported material 23 is determined by a computer. 24 from the absorption on the conical vertical surface 25 and the inclined conical surface 26. Ru.

試験例3 第4図はチップ粒子のサイズの検出を示している。パルプ産業で重要な対象物の 測定はチップ粒子の径と、長さ、幅及び高さ分布である。なぜなら内部構造を観 察することが必要ないからであり、放射源として通常の光源で足りる。第4図の 測定装置では、採用される光源は発光ダイオード30で、検出器は2本の光電子 倍増管31.32である。光源は、20個又はそれ以上の個数で、回転板36に 装着されており、このケースでは回転板は約10.00Orpmの速度で回転す る。透明なコンベア・ベルト35上で、チップ33がお互いの頂部から落下しな いようにばらまかれている。ベルトは例えば1m/sのペースで運ばれ、そのt :め、透明なコンベア・ベルト35の下から、各光源の光が上方のイメージング 装置37に連続して送られる。もし、光源の個数が20個で、回転速度が10. 00Orpmならは、ベルトは1秒の1/3の間隔でスキャンされる。垂直上方 に配置された光電子倍増管のブラックアウトタイム(暗時間)に基づいて、調査 するスキャニング・ポイントでのチップの幅が得られる。傾斜した方向から探知 する光電子倍増管32手段により検出される、縁の出現時間の差から、各々のス キャニング・ポイントでのチップの高さが得られる。これらの読み取りに基づい て、チップの長さ、暢及び高さがコンピュータにより計算される。Test example 3 FIG. 4 shows the detection of chip particle size. Important objects in the pulp industry The measurements are the diameter, length, width and height distribution of the chip particles. Because if you look at the internal structure This is because there is no need to detect the radiation, and a normal light source is sufficient as the radiation source. Figure 4 In the measuring device, the light source employed is a light emitting diode 30, and the detector is two photoelectrons. These are multiplier tubes 31 and 32. The light sources are 20 or more and are mounted on the rotary plate 36. In this case, the rotating plate rotates at a speed of approximately 10.00 rpm. Ru. Chips 33 are placed on a transparent conveyor belt 35 so that they do not fall off the top of each other. They are scattered all over the place. For example, the belt is carried at a pace of 1 m/s, and its t : From below the transparent conveyor belt 35, the light from each light source is imaged upward. It is continuously sent to device 37. If the number of light sources is 20 and the rotation speed is 10. At 00Orpm, the belt is scanned at intervals of 1/3 of a second. vertically upward An investigation based on the blackout time (dark time) of a photomultiplier tube placed in The width of the chip at the scanning point is obtained. Detection from an inclined direction From the difference in the appearance times of the edges, detected by means of the photomultiplier tube 32, each step is The height of the tip at the canning point is obtained. Based on these readings Then, the length, length and height of the tip are calculated by computer.

さらに、他のタイプの変形がイメージング方法に用いられてもよく、検査対象物 の速度、並びにイメージング速度が異なる適用lこおいて変化してもよい。上述 の好ましい実施態様において、検査対象物は、放射線源及び検出器に対して動か されるが、他の実施態様においては、検査対象物が適所に存る際に、放射線源及 び/又は検出器が動かされてもよい。静止検出器列に加えて、l又は複数の回転 可能板若しくはプラントフオームが用いられてもよい。別の好ましい実施態様に おいて、回転可能プラットフォーム上に、配置された異なる放射線強度用の放射 線検出器があり、この場合には2以上の傾斜された区域が測定できる。Additionally, other types of deformation may be used in the imaging method to The speed of imaging as well as the speed of imaging may vary for different applications. mentioned above In a preferred embodiment of the invention, the test object is moved relative to the radiation source and the detector. However, in other embodiments, the radiation source and and/or the detector may be moved. Stationary detector array plus l or multiple rotations A flexible plate or plant form may also be used. Another preferred embodiment radiators for different radiation intensities arranged on a rotatable platform. There is a line detector, in which case more than one inclined area can be measured.

本発明の方法を用いる際には、用いられる放射線は、可視光、X線放射、レータ −、ガンマ、ニュートロン、赤外若しくはマイクロ波放射、パルス磁場若しくは 他の放射線あるいはこれらの組み合わせでよく、該放射線は検査対象物に相互に 影響し合う。断層撮影法の興味ある分野は、人きく回転可能な板がニュートロン 検出器に設けられるニュートロン断層撮影法である。直径が3〜5mであれば、 火薬若しくは薬物等の有機材料を検索する際に、車両、容器等をスキャンするた めに、この方法を用いることができる。When using the method of the invention, the radiation used may be visible light, X-ray radiation, radiation −, gamma, neutron, infrared or microwave radiation, pulsed magnetic fields or It may be another radiation or a combination of these, the radiation being mutually influence each other. An area of interest in tomography is the neutron, a plate that can be rotated manually. This is a neutron tomography system installed in the detector. If the diameter is 3-5m, To scan vehicles, containers, etc. when searching for organic materials such as gunpowder or drugs. This method can be used to

本発明は上述の好ましい実施態様に限定されず、添付の請求の範囲に記載されt :発明の範囲内における変更がなされてもよい。The invention is not limited to the preferred embodiments described above, but is defined in the appended claims. :Changes may be made within the scope of the invention.

ニLシrJB 二TシrJC 1ム 1ム 国際調査報告 国際調査報告 PCT/FI 91100304niLshirJB 2T sirrJC 1 mu 1 mu international search report international search report PCT/FI 91100304

Claims (1)

【特許請求の範囲】 1.検査対象物(3;13;23;33)及び少なくとも1の検出器(4〜8; 12;22;31;32)が相互に動かされることで、検査対象物が放射線源( 1;11;21;30)により伝達される放射線を通して通過するイメージング 方法であって、1以上の検出器が少なくとも3の異なる角度から、少なくとも部 分的に、検査対象物に吸収される線強度の変化を測定するために用いられ、これ らの変化が該対象物の動きの関数として測定され、対象物を通る放射線の経路が 測定のポイントにて常に知られるので、対象物の三次元構造が算出できることを 特徴とする物体の構造を規定するためのイメージング方法。 2.検査対象物(3)が、静止X線管(1)と、検査の物体の移動方向に横方向 に配列されたX線検出器(4〜8)との間に移動させられ、且つ該X線検出器が 少なくとも3の異なる角度からX線管の放射線を観測することを特徴とする請求 項1のイメージング方法。 3.検査対象物(13;23;33)が、少なくとも1の円錐状イメージング表 面(15、16;25、26)を通して移動させられ、該イメージング表面は少 なくとも1の放射線源(11;21;30)及び少なくとも1の放射線検出器( 2;22;31、32)により作成されており、これらの少なくとも1が、他が 静止状態にある際に、円形経路に沿って動かされることを特徴とする請求項1の イメージング方法。 4.検査対象物の三次元断層撮影イメージが作成され、イメージを作るために、 検査対象物の少なくとも2の発散区域(15、16)からの、静止X線管(11 )により伝達される放射線強度の読み取りから得られる値を用い、該読み取りは 回転可能プラットフォーム(17)に配列された少なくとも1の検出器(12) により測定されることを特徴とする請求項3のイメージング方法。 5.前記回転可能プラットフォーム上に、円形経路に沿って配列された検出器( 12)があり、他の検出器が前記区域(15、16)を測定する際に、検出器の 残余が放射線防護スクリーン(18)下に配置されることを特徴とする請求項4 のイメージング方法。 6.回転可能板(27)に配列されたラジオアイソトープからなる放射線源(2 3)と、請止放射線検出器(22)との間を、材料を通すことにより、異常密度 を有するアイテムが材料アロー(23)内にて同定され、該放射線検出器が前記 区域(25、26)にて放射線を測定することを特徴とする請求項3のイメージ ング方法。 7.用いられた放射線として光を用いることにより、三次元対象物(33)の形 状が規定され、該光は回転可能プラットフォーム(36)に取り付けられた光源 (30)により照射され、対象物の表面に平行な突出部が、イメージング装置( 37)の上に垂直に設けられた検出器(31)により測定され、この検出器(3 1)と、傾斜された角度から同じ光源に向いている検出器(32)との間のプラ ックアウトのタイム差から高さが算出され、ゆえに幅、長さ及び高さの最終イメ ージがこれらの検出器(31、32)及び透明なベルト(35)の速度データに 基づいて構築されることを特徴とする請求項3のイメージング方法。 8.回転可能プラットフォーム上に、配列された異なる放射線強度のための放射 線検出器があり、ゆえに3以上の傾斜された区域が断層撮影イメージのために測 定できることを特徴とする請求項3〜6のいずれかに記載のイメージング方法。 9.ラインに配列された同時に使用される両方の請止検出器と、要求された区域 を測定するための回転可能検出器とがあることを特徴とする請求項1のイメージ ング方法。[Claims] 1. Test object (3; 13; 23; 33) and at least one detector (4-8; 12; 22; 31; 32) are moved relative to each other, the object to be inspected becomes the radiation source ( 1; 11; 21; 30) passing through radiation transmitted by 1. A method, wherein the one or more detectors are viewed at least partially from at least three different angles. It is used to measure the change in the intensity of the radiation absorbed by the object under test. are measured as a function of the object's movement, and the path of the radiation through the object is determined. Since the point of measurement is always known, the three-dimensional structure of the object can be calculated. An imaging method for defining the structure of a featured object. 2. The object to be inspected (3) is located laterally to the stationary X-ray tube (1) in the direction of movement of the object to be inspected. and the X-ray detectors (4 to 8) arranged in the A claim characterized in that radiation of an X-ray tube is observed from at least three different angles. Imaging method in Section 1. 3. The object to be inspected (13; 23; 33) has at least one conical imaging table. (15, 16; 25, 26), the imaging surface is at least one radiation source (11; 21; 30) and at least one radiation detector ( 2; 22; 31, 32), at least one of which is 2. The device according to claim 1, wherein the device is moved along a circular path when in a resting state. Imaging method. 4. A three-dimensional tomographic image of the inspection object is created, and to create the image, A stationary X-ray tube (11) from at least two divergence zones (15, 16) of the object under examination. ) using the value obtained from the reading of the radiation intensity transmitted by the at least one detector (12) arranged on a rotatable platform (17) 4. The imaging method according to claim 3, wherein the imaging method is measured by: 5. On the rotatable platform there are detectors arranged along a circular path ( 12), and when another detector measures the area (15, 16), the detector Claim 4 characterized in that the remainder is arranged under a radiation protection screen (18). imaging method. 6. A radiation source (2) consisting of radioisotopes arranged on a rotatable plate (27). 3) and the radiation detector (22), the abnormal density can be detected by passing the material between the is identified in the material arrow (23) and the radiation detector is Image according to claim 3, characterized in that radiation is measured in the areas (25, 26). method. 7. By using light as the radiation used, the shape of the three-dimensional object (33) a light source mounted on a rotatable platform (36); (30), a protrusion parallel to the surface of the object is illuminated by the imaging device ( The detector (31) is installed vertically above the detector (37). 1) and a detector (32) facing the same light source from an inclined angle. The height is calculated from the difference in checkout times and therefore the final image of width, length and height. the speed data of these detectors (31, 32) and the transparent belt (35). An imaging method according to claim 3, characterized in that it is constructed based on. 8. Radiation for different radiation intensities arranged on a rotatable platform line detector, therefore three or more inclined areas are measured for tomographic images. The imaging method according to any one of claims 3 to 6, characterized in that the imaging method can be set. 9. Both alarm detectors used simultaneously arranged in line and requested area and a rotatable detector for measuring. method.
JP3515253A 1990-10-02 1991-10-02 Imaging methods for defining the structure of objects Pending JPH06503877A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI904845A FI94678C (en) 1990-10-02 1990-10-02 Imaging method for determining the structure of bodies
FI904845 1990-10-02
PCT/FI1991/000304 WO1992006367A1 (en) 1990-10-02 1991-10-02 Imaging method for defining the structure of objects

Publications (1)

Publication Number Publication Date
JPH06503877A true JPH06503877A (en) 1994-04-28

Family

ID=8531157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3515253A Pending JPH06503877A (en) 1990-10-02 1991-10-02 Imaging methods for defining the structure of objects

Country Status (5)

Country Link
EP (1) EP0551313A1 (en)
JP (1) JPH06503877A (en)
CA (1) CA2093347A1 (en)
FI (1) FI94678C (en)
WO (1) WO1992006367A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127617A (en) * 2005-11-03 2007-05-24 Tsinghua Univ Method for identifying material by fast neutron and continuous-energy spectrum x-ray and its apparatus
WO2010074030A1 (en) * 2008-12-22 2010-07-01 オムロン株式会社 X-ray inspection method and x-ray inspection apparatus
JP2014517319A (en) * 2011-06-14 2014-07-17 アナロジック コーポレイション Security scanner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940073A (en) 1996-05-03 1999-08-17 Starsight Telecast Inc. Method and system for displaying other information in a TV program guide
US9113107B2 (en) 2005-11-08 2015-08-18 Rovi Guides, Inc. Interactive advertising and program promotion in an interactive television system
NO327576B1 (en) * 2006-06-01 2009-08-17 Ana Tec As Method and apparatus for analyzing objects
US8832742B2 (en) 2006-10-06 2014-09-09 United Video Properties, Inc. Systems and methods for acquiring, categorizing and delivering media in interactive media guidance applications
TWI394490B (en) * 2008-09-10 2013-04-21 Omron Tateisi Electronics Co X-ray inspecting device and method for inspecting x ray
CN116773562B (en) * 2023-08-22 2023-11-10 中国工程物理研究院激光聚变研究中心 Double-particle high-space-time resolution backlight photographing method and device based on single-beam laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064440A (en) * 1976-06-22 1977-12-20 Roder Frederick L X-ray or gamma-ray examination device for moving objects
GB8623196D0 (en) * 1986-09-26 1986-10-29 Robinson M Visual screening system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127617A (en) * 2005-11-03 2007-05-24 Tsinghua Univ Method for identifying material by fast neutron and continuous-energy spectrum x-ray and its apparatus
WO2010074030A1 (en) * 2008-12-22 2010-07-01 オムロン株式会社 X-ray inspection method and x-ray inspection apparatus
JP2014517319A (en) * 2011-06-14 2014-07-17 アナロジック コーポレイション Security scanner

Also Published As

Publication number Publication date
FI904845A (en) 1992-04-03
FI904845A0 (en) 1990-10-02
CA2093347A1 (en) 1992-04-03
WO1992006367A1 (en) 1992-04-16
FI94678C (en) 1995-10-10
EP0551313A1 (en) 1993-07-21
FI94678B (en) 1995-06-30

Similar Documents

Publication Publication Date Title
CN1099033C (en) X-ray inspection system
Riggio et al. Application of imaging techniques for detection of defects, damage and decay in timber structures on-site
US7551718B2 (en) Scatter attenuation tomography
WO1992021016A1 (en) Method for obtaining internal structure image of object
JP4824017B2 (en) Apparatus and method for inspecting material flow by light scattering inside the material
US20050025280A1 (en) Volumetric 3D x-ray imaging system for baggage inspection including the detection of explosives
KR20170127412A (en) Non-invasive testing systems and methods for detection of substances of interest
WO1998033063A1 (en) Device for determining composition and structure of objects
US3936638A (en) Radiology
JPH06503877A (en) Imaging methods for defining the structure of objects
JPH0627249A (en) Radiation detector
AU666560B2 (en) Detecting diamonds in a rock sample
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
JPH01235839A (en) Apparatus and method for forming transmission line image
JPH11174001A (en) Inside judgment device for fruit and vegetables
US3539808A (en) Measuring corrosion on a coated metallic surface by means of backscattered nuclear radiation
RU2119660C1 (en) Gear determining composition and structure of inhomogeneous object ( versions )
JP3880033B2 (en) Radiographic inspection of objects with crystal lattices.
JP2009053090A (en) Device and method for material discrimination and inspection
JP2000111501A (en) Fluoroscope
JPH02266249A (en) Method for measuring x-ray diffraction of crystal plane
JPH0643972B2 (en) Non-destructive measurement method of DUT by X-ray
JPS58204356A (en) Method for detecting flaw on surface of metallic object
SU851213A1 (en) Method of monocrystal x-ray topography
JP2005121468A (en) Food foreign substance inspection device for hair or the like using fluorescent x-ray