JPH0647575A - Optical scanning type laser beam machine - Google Patents

Optical scanning type laser beam machine

Info

Publication number
JPH0647575A
JPH0647575A JP4205833A JP20583392A JPH0647575A JP H0647575 A JPH0647575 A JP H0647575A JP 4205833 A JP4205833 A JP 4205833A JP 20583392 A JP20583392 A JP 20583392A JP H0647575 A JPH0647575 A JP H0647575A
Authority
JP
Japan
Prior art keywords
beam diameter
optical scanning
lens
laser beam
laser processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4205833A
Other languages
Japanese (ja)
Inventor
Norio Karube
規夫 軽部
Yoshinori Nakada
嘉教 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP4205833A priority Critical patent/JPH0647575A/en
Priority to PCT/JP1993/001036 priority patent/WO1994003302A1/en
Publication of JPH0647575A publication Critical patent/JPH0647575A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To enlarge an allowable stroke and to execute laser beam machining in a wide range in an optical scanning type laser beam machine. CONSTITUTION:A moving condensing system 8 is composed of a beam diameter correcting lens 20, reflecting mirror 5 and condenser lens 6 and their positions are controlled by command from a CNC 100 as represented by arrows 9. The beam diameter correcting lens 20 is provided short of the reflecting mirror 5 and its position is controlled by the command from the CNC 100 as represented by the arrow 21. Thus, even when the moving condensing system 8 is moved and the beam diameter D1 on the condensor lens 6 is changed due to its movement, the beam diameter D1 is held at a fixed value by controlling the position of the beam diameter correcting lens 20. That is, even when the stroke of the moving condensing system 8 is enlarged from the nearest point S3 to the farest point S4, laser beam machining in a wide range is executed while the uniform machining quality is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は移動集光系を用いてレー
ザビームをワーク上に集光照射し加工を行う光走査型レ
ーザ加工機に関し、特に移動集光系のストローク(光走
査ストローク)を拡大した光走査型レーザ加工機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning type laser processing machine for concentrating and irradiating a laser beam onto a work by using a moving condensing system, and more particularly to a stroke (optical scanning stroke) of the moving condensing system. The present invention relates to an optical scanning type laser processing machine which is expanded.

【0002】[0002]

【従来の技術】レーザ加工機は、切断、溶接等の加工に
広く使用されている。そのレーザ加工機において、移動
集光系を移動させてレーザ加工を行うタイプの光走査型
レーザ加工機が知られている。
2. Description of the Related Art Laser processing machines are widely used for processing such as cutting and welding. As the laser processing machine, an optical scanning type laser processing machine of a type in which a moving focusing system is moved to perform laser processing is known.

【0003】図2は従来の光走査型レーザ加工機を概略
的に示す図である。レーザ発振器1は全反射鏡2と出力
結合鏡3から成り、レーザビーム4を出力する。レーザ
ビーム4は、自由空間を伝播する際に回折現象によって
径が拡大し、移動集光系8に入射する。移動集光系8に
入射したレーザビーム4は、反射鏡5によって偏向した
後、集光レンズ6によって集光しワーク7に照射する。
移動集光系8はその位置が矢印9で示す様に変化し、そ
の変化に応じてレーザビーム4はワーク7上を走査され
る。
FIG. 2 is a diagram schematically showing a conventional optical scanning laser processing machine. The laser oscillator 1 comprises a total reflection mirror 2 and an output coupling mirror 3, and outputs a laser beam 4. The laser beam 4 expands in diameter due to a diffraction phenomenon when propagating in the free space, and enters the moving light converging system 8. The laser beam 4 that has entered the moving light condensing system 8 is deflected by the reflecting mirror 5 and then condensed by the condensing lens 6 to irradiate the work 7.
The position of the moving light condensing system 8 changes as shown by an arrow 9, and the laser beam 4 scans the work 7 according to the change.

【0004】レーザビーム4のビーム径Dは、集光レン
ズ6上ではD1である。また、ワーク7上では焦点の一
点に集光されず、スポット径D2に集光される。
The beam diameter D of the laser beam 4 is D1 on the condenser lens 6. Further, on the work 7, the light is not focused on one point of the focus, but is focused on the spot diameter D2.

【0005】[0005]

【発明が解決しようとする課題】上記従来の光走査型レ
ーザ加工機には下記の欠点がある。スポット径D2は、
集光レンズ6上でのビーム径D1に依存する。そのビー
ム径D1は、移動集光系8の位置の関数として変化する
ので、結果としてスポット径D2も移動集光系8の位置
の関数として変化する。このことは、カーフ(切断溝)
がワーク7上の異なった位置で変化することを意味する
ため、一様な切断品質が保証できないことになる。
The above-mentioned conventional optical scanning type laser beam machine has the following drawbacks. The spot diameter D2 is
It depends on the beam diameter D1 on the condenser lens 6. Since the beam diameter D1 changes as a function of the position of the moving light focusing system 8, as a result, the spot diameter D2 also changes as a function of the position of the moving light focusing system 8. This is the calf (cutting groove)
Means that it changes at different positions on the work 7, so that uniform cutting quality cannot be guaranteed.

【0006】また、スポット径D2は、ワーク7の材
質、板厚、表面状態、所要切断面粗さ等の諸条件によっ
て異なり、それを常時最適化するのは困難である。した
がって、たまたまビーム径D1がワーク7の諸条件に適
合している場合のみ、スポット径D2及びカーフが最適
となるように保持される。その場合、移動集光系8の許
容ストロークSは、図に示す最近点S1から最遠点S2
の範囲となるが、その範囲は、一般の用途には過度に小
さい。このように、従来の光走査型レーザ加工機では、
レーザ加工できる範囲が狭い範囲に限定されていた。
Further, the spot diameter D2 varies depending on various conditions such as the material of the work 7, the plate thickness, the surface condition, and the required cut surface roughness, and it is difficult to always optimize it. Therefore, the spot diameter D2 and the kerf are held to be optimum only when the beam diameter D1 happens to meet various conditions of the work 7. In that case, the allowable stroke S of the moving light converging system 8 is from the closest point S1 to the farthest point S2 shown in the figure.
However, the range is too small for general use. Thus, in the conventional optical scanning laser processing machine,
The range of laser processing was limited to a narrow range.

【0007】本発明はこのような点に鑑みてなされたも
のであり、許容ストロークを拡大して広範囲でレーザ加
工を行うことができる光走査型レーザ加工機を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical scanning type laser processing machine capable of enlarging an allowable stroke and performing laser processing in a wide range.

【0008】また、本発明の他の目的は、ワーク毎に最
適カーフでレーザ加工を行うことができる光走査型レー
ザ加工機を提供することである。
Another object of the present invention is to provide an optical scanning type laser processing machine capable of performing laser processing with an optimum kerf for each work.

【0009】[0009]

【課題を解決するための手段】本発明では上記課題を解
決するために、レーザ発振器から出力されたレーザビー
ムを移動集光系を用いてワーク上に集光照射し加工を行
う光走査型レーザ加工機において、前記移動集光系の集
光レンズと、前記移動集光系に設けられ前記集光レンズ
との間の相互間距離が制御可能な光学部品と、を有する
ことを特徴とする光走査型レーザ加工機が、提供され
る。
According to the present invention, in order to solve the above-mentioned problems, an optical scanning laser for performing processing by converging and irradiating a laser beam output from a laser oscillator onto a work by using a moving condensing system. In a processing machine, light including a condenser lens of the movable condenser system and an optical component provided in the movable condenser system and capable of controlling a mutual distance between the condenser lens. A scanning laser machine is provided.

【0010】[0010]

【作用】移動集光系内に、集光レンズと、その集光レン
ズとの間の相互間距離が制御可能な光学部品とが設けら
れる。このため、移動集光系が移動し、その移動によっ
て集光レンズ上のビーム径が変化しても、光学部品の位
置を制御することによってビーム径を一定値に保持する
ことができる。したがって、移動集光系の許容ストロー
クを拡大することができ、広範囲でのレーザ加工が可能
となる。
In the moving light condensing system, the condensing lens and the optical component capable of controlling the mutual distance between the condensing lens are provided. Therefore, even if the moving condensing system moves and the beam diameter on the condensing lens changes due to the movement, the beam diameter can be maintained at a constant value by controlling the position of the optical component. Therefore, the allowable stroke of the moving light converging system can be expanded, and laser processing in a wide range becomes possible.

【0011】また、ワークの材質、板厚、表面状態、所
要切断面粗さ等の諸条件に対して、集光レンズ上の最適
ビーム径が設定された場合、光学部品の位置を制御する
ことによってビーム径をその最適ビーム径に常時制御す
ることができる。したがって、スポット径も常時最適に
制御され、ワーク毎に最適カーフでのレーザ加工が可能
になる。
Further, when the optimum beam diameter on the condenser lens is set for various conditions such as the work material, plate thickness, surface condition, required cut surface roughness, etc., the position of the optical component should be controlled. Thus, the beam diameter can be constantly controlled to the optimum beam diameter. Therefore, the spot diameter is always optimally controlled, and it becomes possible to perform laser processing with an optimal kerf for each work.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の光走査型レーザ加工機を概略的
に示す図である。本発明の光走査型レーザ加工機は、C
NC100、レーザ発振器1及び移動集光系8から構成
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing an optical scanning laser processing machine of the present invention. The optical scanning laser processing machine of the present invention is C
It is composed of an NC 100, a laser oscillator 1 and a moving light condensing system 8.

【0013】レーザ発振器1は全反射鏡2と出力結合鏡
3から成り、レーザビーム4を出力する。移動集光系8
は、ビーム径補正レンズ20、反射鏡5及び集光レンズ
6から構成され、その位置が矢印9で示すようにCNC
100からの指令によって制御される。ビーム径補正レ
ンズ20は、反射鏡5の手前に設けられ、その位置が矢
印21で示すようにCNC100からの指令によって制
御される。このビーム径補正レンズ20の位置制御によ
って、集光レンズ6とビーム径補正レンズ20との間の
相互間距離が制御可能となる。ビーム径補正レンズ20
には長焦点レンズ等が用いられる。なお、移動集光系8
及びビーム径補正レンズ20の位置制御は、ここでは図
示されていないサーボモータとボールネジの機構を介し
て行われる。
The laser oscillator 1 comprises a total reflection mirror 2 and an output coupling mirror 3, and outputs a laser beam 4. Moving light collection system 8
Is composed of a beam diameter correction lens 20, a reflecting mirror 5 and a condenser lens 6, and its position is represented by a CNC as shown by an arrow 9.
It is controlled by a command from 100. The beam diameter correction lens 20 is provided in front of the reflecting mirror 5, and its position is controlled by a command from the CNC 100 as indicated by an arrow 21. By controlling the position of the beam diameter correction lens 20, the mutual distance between the condenser lens 6 and the beam diameter correction lens 20 can be controlled. Beam diameter correction lens 20
A long-focus lens or the like is used for this. The moving light condensing system 8
The position control of the beam diameter correction lens 20 is performed via a mechanism of a servo motor and a ball screw (not shown).

【0014】CNC100は、プロセッサ(図示せず)
を中心に構成され、加工プログラムに基づいてレーザ加
工機全体を制御する。すなわち、レーザ発振器1に対し
てはレーザ出力指令を、また、上述したように、移動集
光系8及びビーム径補正レンズ20に対しては、移動指
令をそれぞれ出力し、制御する。さらに、CNC100
を構成するメモリ(図示せず)には、ワーク7の材質、
板厚、表面状態、所要切断面粗さ等の諸条件に対する集
光レンズ6上の最適ビーム径D10が予め設定されてい
る。CNC100は、その最適ビーム径D10に基づい
て、ビーム径補正レンズ20の位置指令信号を出力す
る。
The CNC 100 is a processor (not shown).
And controls the entire laser processing machine based on a processing program. That is, a laser output command is output to the laser oscillator 1 and, as described above, a movement command is output to the moving focusing system 8 and the beam diameter correction lens 20, respectively, for control. Furthermore, CNC100
The memory (not shown) constituting the
The optimum beam diameter D10 on the condenser lens 6 is preset for various conditions such as plate thickness, surface condition, required cut surface roughness, and the like. The CNC 100 outputs a position command signal for the beam diameter correction lens 20 based on the optimum beam diameter D10.

【0015】レーザ発振器1から出力されたレーザビー
ム4は、移動集光系8に入射した後、さらにビーム径補
正レンズ20、反射鏡5及び集光レンズ6を経由してワ
ーク7に照射される。その照射されたレーザビーム4に
よってレーザ加工が行われる。
The laser beam 4 output from the laser oscillator 1 is incident on the moving light condensing system 8 and is then irradiated on the work 7 via the beam diameter correcting lens 20, the reflecting mirror 5 and the condensing lens 6. . Laser processing is performed by the irradiated laser beam 4.

【0016】このように、本実施例では、移動集光系8
内に、集光レンズ6と、その集光レンズ6との間の相互
間距離が制御可能なビーム径補正レンズ20とを設け
る。このため、移動集光系8が移動し、その移動によっ
て集光レンズ6上のビーム径D1が変化しても、ビーム
径補正レンズ20の位置を制御することによってビーム
径D1を一定値に保持することができる。すなわち、移
動集光系8のストロークを、図に示すように最近点S3
から最遠点S4まで拡大しても、ビーム径D1を一定値
に保持することができ、移動集光系8の可動範囲が大幅
に広がる。したがって、一様な加工品質を維持したまま
で、広範囲でのレーザ加工が可能となる。
As described above, in this embodiment, the moving light condensing system 8 is used.
Inside, a condenser lens 6 and a beam diameter correction lens 20 whose mutual distance between the condenser lens 6 can be controlled are provided. Therefore, even if the moving condensing system 8 moves and the beam diameter D1 on the condensing lens 6 changes due to the movement, the position of the beam diameter correcting lens 20 is controlled to keep the beam diameter D1 at a constant value. can do. That is, the stroke of the moving light converging system 8 is set to the closest point S3 as shown in the figure.
From the farthest point S4 to the farthest point S, the beam diameter D1 can be maintained at a constant value, and the movable range of the moving light condensing system 8 is greatly expanded. Therefore, it is possible to perform laser processing over a wide range while maintaining uniform processing quality.

【0017】また、ワーク7の材質等の諸条件に対し
て、最適ビーム径D10が予め設定され、ビーム径D1
がその最適ビーム径D10に保持されるように、ビーム
径補正レンズ20の位置が制御される。
The optimum beam diameter D10 is set in advance for various conditions such as the material of the work 7 and the beam diameter D1 is set.
The position of the beam diameter correction lens 20 is controlled so that the beam diameter is held at the optimum beam diameter D10.

【0018】例えば、薄板の切断加工時には、カーフを
小さくして高速化と面精度の向上が必要となるので、カ
ーフが小さくなるように最適ビーム径D10を設定す
る。また、厚板の切断加工時には、カーフを拡大して補
助ガスの流れを滑らかにする必要があるので、カーフが
大きくなるように最適ビーム径D10を設定する。ビー
ム径補正レンズ20は、その最適ビーム径D10に従っ
て位置が制御される。したがって、ワーク7毎に対応し
て最適なスポット径D2でレーザ加工を行うことがで
き、最適カーフでのレーザ加工が可能になる。このよう
に、ワーク7毎に最適カーフでのレーザ加工が行われる
ので、レーザ加工機の高度の知能化を達成することがで
きる。
For example, when cutting a thin plate, it is necessary to reduce the kerf to increase the speed and improve the surface accuracy. Therefore, the optimum beam diameter D10 is set so that the kerf can be reduced. Further, when cutting the thick plate, it is necessary to enlarge the kerf and smooth the flow of the auxiliary gas, so the optimum beam diameter D10 is set so that the kerf becomes large. The position of the beam diameter correction lens 20 is controlled according to the optimum beam diameter D10. Therefore, the laser processing can be performed with the optimum spot diameter D2 corresponding to each work 7, and the laser processing can be performed with the optimum kerf. In this way, since the laser processing is performed with the optimum kerf for each work 7, a high degree of intelligence of the laser processing machine can be achieved.

【0019】[0019]

【発明の効果】以上説明したように本発明では、光走査
型レーザ加工機の移動集光系内に、集光レンズと、その
集光レンズとの間の相互間距離が制御可能な光学部品と
を設けた。このため、移動集光系が移動し、その移動に
よって集光レンズ上のビーム径が変化しても、光学部品
の位置を制御することによってビーム径を一定値に保持
することができる。したがって、移動集光系の許容スト
ロークを拡大することができ、一様な加工品質を維持し
たままで、広範囲でのレーザ加工が可能となる。
As described above, according to the present invention, in the moving light condensing system of the optical scanning laser processing machine, the condensing lens and the optical component in which the mutual distance between the condensing lens can be controlled. And. Therefore, even if the moving condensing system moves and the beam diameter on the condensing lens changes due to the movement, the beam diameter can be maintained at a constant value by controlling the position of the optical component. Therefore, the allowable stroke of the moving light converging system can be expanded, and laser processing can be performed in a wide range while maintaining uniform processing quality.

【0020】また、集光レンズ上のビーム径を、ワーク
の諸条件毎に対応して設定された最適ビーム径に制御す
ることができる。したがって、スポット径も常時最適に
制御され、最適カーフでのレーザ加工が可能になる。
Further, the beam diameter on the condenser lens can be controlled to an optimum beam diameter set corresponding to each condition of the work. Therefore, the spot diameter is always optimally controlled, and the laser processing with the optimal kerf becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光走査型レーザ加工機を概略的に示す
図である。
FIG. 1 is a diagram schematically showing an optical scanning laser processing machine of the present invention.

【図2】従来の光走査型レーザ加工機を概略的に示す図
である。
FIG. 2 is a diagram schematically showing a conventional optical scanning laser processing machine.

【符号の説明】[Explanation of symbols]

1 レーザ発振器 4 レーザビーム 5 反射鏡 6 集光レンズ 7 ワーク 8 移動集光系 20 ビーム径補正レンズ 100 CNC(数値制御装置) 1 Laser Oscillator 4 Laser Beam 5 Reflector 6 Condenser Lens 7 Work 8 Moving Condenser System 20 Beam Diameter Correction Lens 100 CNC (Numerical Controller)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ発振器から出力されたレーザビー
ムを移動集光系を用いてワーク上に集光照射し加工を行
う光走査型レーザ加工機において、 前記移動集光系の集光レンズと、 前記移動集光系に設けられ、前記集光レンズとの間の相
互間距離が制御可能な光学部品と、 を有することを特徴とする光走査型レーザ加工機。
1. An optical scanning laser processing machine for performing processing by concentrating and irradiating a laser beam output from a laser oscillator onto a work by using a moving focusing system, wherein a focusing lens of the moving focusing system, An optical scanning laser processing machine, comprising: an optical component that is provided in the moving light condensing system and is capable of controlling a mutual distance between the movable light condensing system and the condensing lens.
【請求項2】 前記相互間距離の制御はCNCによって
行われることを特徴とする請求項1記載の光走査型レー
ザ加工機。
2. The optical scanning laser processing machine according to claim 1, wherein the control of the mutual distance is performed by a CNC.
【請求項3】 前記相互間距離の制御は、前記ワークに
対して最適加工を行えるように予め設定されたデータに
基づいて行われることを特徴とする請求項1記載の光走
査型レーザ加工機。
3. The optical scanning laser beam machine according to claim 1, wherein the control of the mutual distance is performed based on data set in advance so that the workpiece can be optimally processed. .
JP4205833A 1992-08-03 1992-08-03 Optical scanning type laser beam machine Pending JPH0647575A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4205833A JPH0647575A (en) 1992-08-03 1992-08-03 Optical scanning type laser beam machine
PCT/JP1993/001036 WO1994003302A1 (en) 1992-08-03 1993-07-23 Photo-scanning type laser machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205833A JPH0647575A (en) 1992-08-03 1992-08-03 Optical scanning type laser beam machine

Publications (1)

Publication Number Publication Date
JPH0647575A true JPH0647575A (en) 1994-02-22

Family

ID=16513472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205833A Pending JPH0647575A (en) 1992-08-03 1992-08-03 Optical scanning type laser beam machine

Country Status (2)

Country Link
JP (1) JPH0647575A (en)
WO (1) WO1994003302A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023773A1 (en) * 1995-02-03 1996-08-08 Banyu Pharmaceutical Co., Ltd. 4-oxo-2-butenoic acid derivatives
US5667707A (en) * 1994-05-02 1997-09-16 Trumpf Gmbh & Co. Laser cutting machine with focus maintaining beam delivery
JP2012000639A (en) * 2010-06-17 2012-01-05 Rezakku:Kk Laser machining device for manufacturing blanking die
US20180147659A1 (en) * 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018906C2 (en) * 2001-09-07 2003-03-11 Jense Systemen B V Laser scanner.
JP4088233B2 (en) * 2003-10-08 2008-05-21 株式会社ジェイテクト Laser processing machine
DE102007028570A1 (en) * 2006-08-30 2008-03-27 Thyssenkrupp Steel Ag Device for processing workpieces with the help of a laser beam, comprises means, which directs laser beam and is equipped with a focusing lens system and stationary means for deflecting laser beam and focusing lens system
CN107438800A (en) 2015-02-12 2017-12-05 格罗弗治公司 The mobile material in laser processing procedure
US10509390B2 (en) 2015-02-12 2019-12-17 Glowforge Inc. Safety and reliability guarantees for laser fabrication
WO2018098393A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Housing for computer-numerically-controlled machine
WO2018098395A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Improved engraving in a computer numerically controlled machine
WO2018098396A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Multi-user computer-numerically-controlled machine
CN110226137A (en) 2016-11-25 2019-09-10 格罗弗治公司 It is manufactured by image trace
WO2018098397A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Calibration of computer-numerically-controlled machine
WO2018098399A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Controlled deceleration of moveable components in a computer numerically controlled machine
US11740608B2 (en) 2020-12-24 2023-08-29 Glowforge, Inc Computer numerically controlled fabrication using projected information
US11698622B2 (en) 2021-03-09 2023-07-11 Glowforge Inc. Previews for computer numerically controlled fabrication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231276Y2 (en) * 1985-02-25 1990-08-23
JPH01159988U (en) * 1988-04-21 1989-11-07

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667707A (en) * 1994-05-02 1997-09-16 Trumpf Gmbh & Co. Laser cutting machine with focus maintaining beam delivery
WO1996023773A1 (en) * 1995-02-03 1996-08-08 Banyu Pharmaceutical Co., Ltd. 4-oxo-2-butenoic acid derivatives
JP2012000639A (en) * 2010-06-17 2012-01-05 Rezakku:Kk Laser machining device for manufacturing blanking die
US20180147659A1 (en) * 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine

Also Published As

Publication number Publication date
WO1994003302A1 (en) 1994-02-17

Similar Documents

Publication Publication Date Title
JPH0647575A (en) Optical scanning type laser beam machine
US5607606A (en) Laser beam machine for performing piercing and cutting via focus change
JP4218209B2 (en) Laser processing equipment
US11420288B2 (en) Laser machining systems and methods
WO1993005922A1 (en) Method of laser processing and system therefor
JPH04327394A (en) Light moving type laser beam machine
JP2000071088A (en) Laser processing machine
JP2000084689A (en) Laser beam machining device
JPS62263889A (en) Laser beam machine
JPH03138092A (en) Laser beam machine
JPH0332484A (en) Laser beam machine
JP4499248B2 (en) Laser processing method and apparatus
JPS6076296A (en) Working method by laser light
JP3084780B2 (en) Laser processing equipment
JPH04187393A (en) Laser beam machine
JPH05277779A (en) Laser beam machine
JPH01273683A (en) Laser beam machining device
CN220196601U (en) Laser processing system
JPS61162290A (en) Laser beam processing machine
JPH0768392A (en) Laser beam machining method and laser beam machine
JPS60177986A (en) Laser working device
JP2001205467A (en) Machine for laser machining and method of machining
JP2686286B2 (en) Three-dimensional laser controller
JPS6146388A (en) Laser working machine
CN116493737A (en) Laser processing system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981208