JPH064093B2 - Ultrafiltration amount and dialysate concentration measuring device - Google Patents

Ultrafiltration amount and dialysate concentration measuring device

Info

Publication number
JPH064093B2
JPH064093B2 JP61048150A JP4815086A JPH064093B2 JP H064093 B2 JPH064093 B2 JP H064093B2 JP 61048150 A JP61048150 A JP 61048150A JP 4815086 A JP4815086 A JP 4815086A JP H064093 B2 JPH064093 B2 JP H064093B2
Authority
JP
Japan
Prior art keywords
inflow
outflow
amount
dialysate
measuring unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61048150A
Other languages
Japanese (ja)
Other versions
JPS62204763A (en
Inventor
喜代一 浅野
文隆 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GURAMU KK
Original Assignee
GURAMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GURAMU KK filed Critical GURAMU KK
Priority to JP61048150A priority Critical patent/JPH064093B2/en
Publication of JPS62204763A publication Critical patent/JPS62204763A/en
Publication of JPH064093B2 publication Critical patent/JPH064093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、血液透析に際し、超音波を利用して限外濾過
量と透析液の濃度を測定することができる限外濾過量及
び透析液濃度測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an ultrafiltration amount and a dialysate capable of measuring the ultrafiltration amount and the concentration of the dialysate using ultrasonic waves during hemodialysis. The present invention relates to a concentration measuring device.

〔従来の技術〕[Conventional technology]

近年血液透析においては、血液透析器が高性能化するに
伴い、限外濾過量、即ち、血液からの水分除去量を自動
的に制御する必要があり、そのための測定技術は不可欠
なものとなっている。然るに、毎分500mlで流入する透
析液に対し、排出側に増加する限外濾過量は500mlの数
%以下という少量であるため、その測定精度は、500ml
に対し、0.1%以下である必要がある。
In hemodialysis in recent years, as the performance of hemodialyzers has improved, it is necessary to automatically control the amount of ultrafiltration, that is, the amount of water removed from blood, and a measurement technique for that purpose is essential. ing. However, since the amount of ultrafiltration that increases to the discharge side is a small amount of less than several percent of 500 ml for the dialysate flowing in at 500 ml per minute, the measurement accuracy is 500 ml.
However, it must be 0.1% or less.

従来限外濾過量の測定方法としては、主として次の3つ
の方法が実用化されているが、それぞれに欠点がある。
Conventionally, the following three methods have been mainly put into practical use as methods for measuring the amount of ultrafiltration, but each has its drawbacks.

その1つは定容室を、移動する隔壁で2つに分離したも
のを2組用意し、血液透析器への流入量と流出量が同じ
になるよう切換弁を動かし、限外濾過は別の手段で強制
的に行なう方法である。この方法は精度は高いが、シス
テムが複雑で高価な部品を多く必要とする。また、切換
弁の動作が頻繁で消耗しやすく、この切換弁の消耗によ
り精度が大きく低下するが、精度の低下を知るのは困難
である。
One is to prepare two sets of constant volume chambers separated by a moving partition, and move the switching valve so that the inflow rate and outflow rate to the hemodialyzer are the same, and ultrafiltration is separate. It is a method of forcibly carrying out by means of. Although this method has high accuracy, the system is complicated and requires many expensive parts. In addition, the operation of the switching valve is frequent and is easily consumed, and the accuracy is greatly reduced due to the consumption of the switching valve, but it is difficult to know the deterioration of the accuracy.

第2の方法は、血液透析器の流入回路と流出回路を一時
閉鎖し、トランスメンブレン圧と限外濾過量を計測し、
その関係から、閉鎖していない大半の時間の限外濾過量
をトランスメンブレン圧から推定し、計算する方法であ
る。この方法は簡単な構成で限外濾過量を計測できる
が、高性能な血液透析器や、特殊な血液透析器を用いる
と精度が低下する欠点がある。また、閉鎖時の条件と計
算時の条件は種々異なり、時間的にも条件が変化するた
め、測定値の信頼性は低い。
The second method is to temporarily close the inflow circuit and the outflow circuit of the hemodialyzer, measure the transmembrane pressure and the ultrafiltration amount,
From that relationship, it is a method of estimating and calculating the amount of ultrafiltration for most of the time when it is not closed from the transmembrane pressure. Although this method can measure the amount of ultrafiltration with a simple configuration, it has a drawback in that the accuracy decreases when a high-performance hemodialyzer or a special hemodialyzer is used. In addition, the condition at the time of closing and the condition at the time of calculation are different from each other, and the condition also changes with time, so the reliability of the measured value is low.

第3の方法は、血液透析器への流入量と流出量を直接流
量計で計測し、その流量差より限外濾過量を求める方法
である。この方法は基本的なものであるが、使用に耐え
られる精度の流量計の入手が難しい事と、流出側は汚れ
がひどく、長期間精度を維持できないため、実用化され
ている例は少ない。精度の悪い流量計を切り換えて使用
する例(特公昭59−10227)もあるが、流入回路
と流出回路を共用しているため、汚染や消毒の点で問題
がある。
The third method is a method in which the inflow amount and the outflow amount into the hemodialyzer are directly measured by a flow meter and the ultrafiltration amount is obtained from the difference in the flow rates. Although this method is basic, it is difficult to obtain a flow meter with an accuracy that can be used, and since the outflow side is heavily soiled and cannot maintain its accuracy for a long period of time, there are few practical applications. There is also an example of switching and using a flow meter with poor accuracy (Japanese Patent Publication No. 59-10227), but since the inflow circuit and the outflow circuit are shared, there is a problem in terms of contamination and disinfection.

一方、透析液の濃度を知る方法としては、液の電気伝導
度を金属又は炭素の電極を用いて電気的に計測するのが
一般的である。しかし、近年は患者に与える悪影響の少
ない重炭酸塩系の透析液を使用することが多く、この透
析液は、何らかの原因で組織のバランスがくずれると、
電気的に絶縁物である炭酸塩が電極表面に析出してしま
う欠点がある。このことは、透析液の濃度制御がうまく
いかず、しかし濃度異常に対する警報も出ない場合があ
ることを意味する。このような異常な濃度の透析液は患
者に対して極めて危険である。
On the other hand, as a method of knowing the concentration of the dialysate, it is common to electrically measure the electrical conductivity of the dialysate using a metal or carbon electrode. However, in recent years, a bicarbonate-based dialysate, which has little adverse effect on patients, is often used, and when the dialysate loses its tissue balance for some reason,
There is a drawback that carbonate, which is an electrically insulating material, is deposited on the electrode surface. This means that the concentration control of the dialysate may not be successful, but the concentration abnormality may not be alarmed. Such abnormal concentrations of dialysate are extremely dangerous to the patient.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の限外濾過量測定方法及び透析液濃度測定方法は、
それぞれ上述したような欠点があるため実用に適さな
い。
Conventional ultrafiltration amount measuring method and dialysate concentration measuring method,
Each of them has the above-mentioned drawbacks and is not suitable for practical use.

本発明はそれらの欠点を除去すべくなされたものであ
る。即ち、本発明は、高価な部品や消耗部分がなく、簡
単な構成にて、透析液の流入量と流出量を直接測定して
連続的に限外濾過量を知ることができ、種々の条件下に
おいても測定精度が低下しない限外濾過量測定装置を提
供することを課題とする。
The present invention has been made to eliminate those drawbacks. That is, the present invention can measure the inflow rate and outflow rate of the dialysate directly and continuously know the ultrafiltration rate with a simple configuration without expensive parts and consumable parts, and various conditions can be obtained. An object of the present invention is to provide an ultrafiltration amount measuring device in which the measurement accuracy does not deteriorate even under the conditions.

また、本発明は、限外濾過量測定装置と同一の構成であ
って、炭酸塩が析出しても影響を受けず、安全に使用で
きる透析液濃度測定装置を提供することを課題とするも
のである。
Another object of the present invention is to provide a dialysate concentration measuring device which has the same structure as the ultrafiltration amount measuring device and is not affected by the precipitation of carbonate and can be used safely. Is.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、上下に超音波振動子を配設した測定管を設
け、前記測定管の中間に超音波は透過するが透析液は通
さない隔壁を設置して、前記測定管を超音波通過距離と
流路断面を等しくした流入量測定部と流出量測定部とに
区分し、前記各測定部における超音波振動子設置側端部
にそれぞれ流入路又は流出路を設けると共に、前記隔壁
設置側端部にそれぞれ流出路又は流入路を設け、前記流
入量測定部における前記流入路と流出路間の距離と、前
記流出量測定部における前記流入路と流出路間の距離と
が等しくなるようにし、前記流入量測定部の流出路を血
液透析器の流入回路に接続し、前記血液透析器の流出回
路を前記流出量測定部の流入路に接続し、前記流入量測
定部と前記流出量測定部とで流れの方向が逆になるよう
に設定して成る限外濾過量及び透析液濃度測定装置、を
以て上記課題を解決した。
The present invention provides a measuring tube having ultrasonic transducers arranged on the upper and lower sides, and an intermediate wall of the measuring tube is provided with a partition wall that transmits ultrasonic waves but does not pass dialysate. And an inflow quantity measuring section and an outflow quantity measuring section having the same flow path cross section, and an inflow path or an outflow path is provided at the ultrasonic transducer installation side end of each measurement section, and the partition wall installation side end is provided. An outflow passage or an inflow passage in each of the parts, so that the distance between the inflow passage and the outflow passage in the inflow amount measuring unit and the distance between the inflow passage and the outflow passage in the outflow amount measuring unit are equal, The outflow passage of the inflow amount measuring unit is connected to the inflow circuit of the hemodialyzer, the outflow circuit of the hemodialyzer is connected to the inflow passage of the outflow amount measuring unit, and the inflow amount measuring unit and the outflow amount measuring unit An ultra limit set with and so that the flow direction is reversed. Overdose and dialysate concentration measuring apparatus has solved the above problems with a.

〔作用〕[Action]

超音波が、一方の振動子から他方の振動子に到達するま
での時間と、逆に前記他方の振動子から前記一方の振動
子に到達するまでの時間の差と、振動子間の距離と、限
外濾過量によって流出量測定部において増加した流速
と、流入液が静止している場合の超音波の伝播速度との
間の相関関係から、限外濾過により増加した流速を算出
できる。その数値と流量測定部の断面積より限外濾過量
を知ることができる。
The difference between the time required for the ultrasonic wave to reach the other transducer from one transducer and the time to reach the one transducer from the other transducer, and the distance between the transducers. The flow velocity increased by ultrafiltration can be calculated from the correlation between the flow velocity increased by the amount of ultrafiltration in the outflow amount measurement unit and the propagation velocity of ultrasonic waves when the inflow liquid is stationary. The ultrafiltration amount can be known from the numerical value and the cross-sectional area of the flow rate measuring unit.

透析液の濃度は、超音波の伝播速度と、液温度と、液の
濃度との間の相関関係により算出できる。
The dialysate concentration can be calculated from the correlation between the ultrasonic wave propagation velocity, the liquid temperature, and the liquid concentration.

〔実施例〕〔Example〕

以下本発明につき更に詳述する。 The present invention will be described in more detail below.

超音波流量計で透析液の流量を計測すると、液の温度や
濃度により超音波の伝播速度が変わり、影響を受ける。
この変化量は、目的とする限外濾過量と比べ数千倍も大
きなものである。そこで本発明では、液温度や濃度の影
響を受けず、透析液の流入流量と流出流量を打ち消すよ
う構成し、限外濾過量のみを測定できるようにしてあ
る。
When the flow rate of dialysate is measured with an ultrasonic flow meter, the propagation speed of ultrasonic waves changes depending on the temperature and concentration of the solution and is affected.
This change amount is several thousand times larger than the target ultrafiltration amount. Therefore, in the present invention, the inflow rate and the outflow rate of the dialysate are canceled without being affected by the liquid temperature and the concentration, and only the ultrafiltration amount can be measured.

先ず、超音波による流量測定法を第1図によって説明す
ると、測定すべき液は、流入回路1より流量測定部3を
流速v6で通過し、流出回路2より出ていく。この時超
音波振動子4より超音波を出すと、流量測定部3におけ
る伝播速度V7は、静止した液中を超音波が伝播する速
度Vとすると、(1)式で得られる。
First, the flow rate measurement method using ultrasonic waves will be described with reference to FIG. 1. The liquid to be measured passes through the flow rate measurement unit 3 from the inflow circuit 1 at a flow velocity v 6 and exits from the outflow circuit 2. At this time, when ultrasonic waves are emitted from the ultrasonic transducer 4, the propagation velocity V 7 in the flow rate measuring unit 3 is obtained by the equation (1), where V is the velocity at which the ultrasonic waves propagate in the stationary liquid.

7=V+v6 …(1) (1)式より、超音波が振動子4より振動子5まで伝播す
る時間T45は、流量測定部の距離をl3とすると(2)式
となる。
V 7 = V + v 6 (1) From the equation (1), the time T 45 for the ultrasonic wave to propagate from the transducer 4 to the transducer 5 is given by the equation (2) when the distance of the flow rate measuring unit is l 3. Become.

同様にして、超音波が振動子5から振動子4に伝播する
時間T54は、(3)式となる。
Similarly, the time T 54 for the ultrasonic wave to propagate from the oscillator 5 to the oscillator 4 is given by the equation (3).

(2)と(3)式より、T54とT45の時間差ΔTを求める
と、(4)式となる。
When the time difference ΔT between T 54 and T 45 is calculated from the equations (2) and (3), the equation (4) is obtained.

(4)式よりΔTを計測すれば、l3とVは既知であるとこ
ろから、液の流速v6が分る。更に、測定部断面とv6
り、液の流量も知ることができる。
If ΔT is measured from the equation (4), l 3 and V are known, so that the flow velocity v 6 of the liquid is known. Further, the flow rate of the liquid can also be known from the cross section of the measuring portion and v 6 .

次に、本発明の構成を第2図によって説明する。透析液
は、流入回路14より流入量測定部15を流速v15で通過
し、血液透析器入口12より血液透析器11内に入り、透析
器11内で血液より老廃物と水分の除去、つまり限外濾過
を行ない、その分増加した透析液が血液透析器出口13を
出て、流出量測定部16を下方から流速v16で通過し、排
出回路17より出ていく。流入量測定部15と流出量測定部
16は、超音波のみ透過し液は通さない隔壁18で上下に二
分され、隔壁18を挟んで超音波の通過軸上に位置する。
隔壁18の素材としては、透析液と隔壁18の境界面での超
音波の損失をできるだけ少なくするという意味におい
て、固有音響インピーダンス、即ち、素材の密度と伝播
速度の積が、透析液に近いものを選択する。具体的に
は、医療用シリコン樹脂やウレタン樹脂等が採用され
る。金属であっても、チタン箔のように密度が小さくて
薄いものであれば利用可能である。流入量測定部15と流
出量測定部16は、流量に対する流速が同じになるよう
に、測定部の流路断面を等しくする。更に、流入と流出
の流れの方向を反対にし、即ち、隔壁18を挟んで逆行又
は対向方向に選び、測定部の距離l15とl16を等しくし
て、流入量と流出量が超音波の伝播速度に与える影響を
打ち消し合うようにする。以上の構成において、超音波
の両方向の伝播時間の差を計測すれば、流入量測定部15
と流出量測定部16の流速の差が分り、更に、測定部の流
路断面より、流量の差を知ることができる。つまり限外
濾過量を測定できる。上記構成における血液透析の条件
では、液の温度や濃度の変化幅が小さく、影響は無視で
きる。
Next, the configuration of the present invention will be described with reference to FIG. The dialysate passes from the inflow circuit 14 through the inflow amount measuring unit 15 at a flow rate v 15 , enters the hemodialyzer 11 through the hemodialyzer inlet 12, and removes waste and water from the blood in the dialyzer 11, that is, Ultrafiltration is performed, and the dialysate increased by that amount exits the hemodialyzer outlet 13, passes through the outflow amount measuring unit 16 from below at a flow velocity v 16 , and exits from the discharge circuit 17. Inflow amount measuring unit 15 and outflow amount measuring unit
The partition 16 is divided into upper and lower parts by a partition wall 18 that transmits only ultrasonic waves and does not allow liquid to pass through, and is located on the ultrasonic wave passing axis with the partition wall 18 interposed therebetween.
As the material of the partition wall 18, in the sense that the loss of ultrasonic waves at the interface between the dialysate and the partition wall 18 is minimized, the characteristic acoustic impedance, that is, the product of the density of the material and the propagation velocity is close to that of the dialysate. Select. Specifically, medical silicone resin, urethane resin, or the like is adopted. Even a metal can be used as long as it has a low density and is thin like titanium foil. The inflow amount measuring unit 15 and the outflow amount measuring unit 16 make the flow passage cross sections of the measuring unit equal so that the flow velocity with respect to the flow rate is the same. Furthermore, the flow directions of the inflow and the outflow are made opposite, that is, they are selected in the reverse direction or the opposite direction with the partition wall 18 sandwiched therebetween, and the distances l 15 and l 16 of the measurement portions are made equal to each other, and the inflow amount and the outflow amount are ultrasonic waves. Try to cancel out the influence on the propagation speed. In the above configuration, if the difference in the propagation time of ultrasonic waves in both directions is measured, the inflow amount measuring unit 15
And the flow rate difference between the outflow amount measuring unit 16 and the flow rate difference of the measuring unit can be known. That is, the amount of ultrafiltration can be measured. Under the hemodialysis conditions in the above configuration, the range of change in the temperature and concentration of the liquid is small, and the influence can be ignored.

次に、上記構成において、限外濾過量を算出する方法を
具体的に説明する。超音波を超音波振動子19より送り出
し、流入液が静止している場合の超音波の伝播速度をV
sとすると、流入量測定部15の超音波の伝播速度V
21は、Vsに液の流速v15が加わり(5)式となる。
Next, a method for calculating the ultrafiltration amount in the above configuration will be specifically described. The ultrasonic wave is sent from the ultrasonic oscillator 19 and the ultrasonic wave propagation speed when the inflow liquid is stationary is V
When s, the propagation speed of the ultrasonic inflow amount measuring section 15 V
In the case of 21 , the equation (5) is obtained by adding the liquid flow velocity v 15 to V s .

21=Vs+v15 …(5) 流入量測定部15の距離をl15とすれば、超音波の流入量
測定部15を通過する伝播時間TF15は、(6)式となる。
V 21 = V s + v 15 (5) If the distance of the inflow amount measuring unit 15 is l 15 , the propagation time T F15 of the ultrasonic wave passing through the inflow amount measuring unit 15 is given by the formula (6).

また、流出量測定部16における超音波の伝播速度V
23は、上記Vsと、流入量測定部15に対する流出量測定
部16の液温や濃度の差によって生じる伝播速度の差を±
△Vsとすると、流出量測定部16を通過する伝播時間T
F16は、(6)式と同様にして(7)式となる。
In addition, the propagation velocity V of the ultrasonic wave in the outflow amount measuring unit 16
Reference numeral 23 denotes the difference between the above-mentioned V s and the difference in the propagation velocity caused by the difference in the liquid temperature and the concentration of the outflow rate measurement unit 16 with respect to the inflow rate measurement unit 15.
Let ΔV s be the propagation time T through the outflow amount measurement unit 16
F16 becomes the formula (7) similarly to the formula (6).

隔壁18を通過する時間をTF18とすると、超音波が振動
子19から振動子20に達するまでの時間TFは(8)式とな
る。
When the time to pass through the partition wall 18 and T F18, ultrasonic time T F from the oscillator 19 to reach the transducer 20 is (8).

F=TF15+TF18+TF16 …(8) 逆に、超音波振動子20から振動子19の方向に超音波を伝
播させた場合の流出量測定部16における伝播時間TR16
は、(9)式となる。
T F = T F15 + T F18 + T F16 (8) Conversely, the propagation time T R16 in the outflow amount measuring unit 16 when the ultrasonic wave is propagated from the ultrasonic vibrator 20 to the vibrator 19
Becomes equation (9).

同様に、流入量測定部15における伝播時間TR15は、(1
0)式となる。
Similarly, the propagation time T R15 in the inflow measurement unit 15 is (1
It becomes expression (0).

超音波が、振動子20から振動子19に到達する時間T
Rは、(11)式となる。
Time T when the ultrasonic wave reaches the vibrator 19 from the vibrator 20
R becomes equation (11).

R=TR16+TR18+TR15 …(11) 以上の(8)と(11)式より超音波の伝播時間の差ΔTを求
めると、TF18とTR18は等しいので打ち消し合い、(12)
式となる。
T R = T R16 + T R18 + T R15 (11) When the difference ΔT in ultrasonic wave propagation time is calculated from the above equations (8) and (11), T F18 and T R18 are equal, so cancel each other out, (12)
It becomes an expression.

ΔT=TR−TF=TR16+TR15 −(TF15+TF16) …(12) 限外濾過量によって流出量測定部16において増加した流
速をΔvとすれば、v16=v15+Δvとなり、これを
(7)、(9)式に代入し、それらを更に。(12)に代入する。
(12)式に(6)、(10)式も代入すると(13)式となる。
ΔT = T R −T F = T R16 + T R15 − (T F15 + T F16 ) ... (12) If the flow rate increased in the outflow rate measurement unit 16 by the ultrafiltration amount is Δv, then v 16 = v 15 + Δv. ,this
Substituting them into equations (7) and (9) and further adding them. Substitute in (12).
Substituting equations (6) and (10) into equation (12) yields equation (13).

15とl16は等しいので、共にlとしてまとめると(14)
式となる。
Since l 15 and l 16 are the same, if they are put together as l (14)
It becomes an expression.

(14)式において±ΔVsとΔvとv15は、Vsに比べ小さ
いので、分母内の項を無視すれば(15)式となる。
In equation (14), ± ΔV s , Δv, and v 15 are smaller than V s , so equation (15) is obtained if the term in the denominator is ignored.

以上よりΔTを測定すれば、(15)式より限外濾過のより
増加した流速Δvが分り、流量測定部の断面積より限外
濾過量を知ることができる。このことは、透析液の如く
使用温度範囲が狭く、流入液と流出液の温度や濃度の差
が小さいという条件の下では、全体の流量に対して極め
て少ない限外濾過量を簡単な構成で高精度に測定できる
ことを示している。なお、超音波の伝播時間の測定は、
通常の超音波の伝播時間の測定法であるシングアラウン
ド法やPLL法で行ない、測定した時間差より、マイク
ロコンピュータを用いて気泡の混入等による異常データ
の除去と、オフセットの打ち消しを行なうことにより、
より高精度な限外濾過量を求めることができる。
By measuring ΔT from the above, the flow velocity Δv increased by the ultrafiltration can be found from the equation (15), and the ultrafiltration amount can be known from the cross-sectional area of the flow rate measuring section. This means that, under the condition that the operating temperature range is narrow like the dialysate, and the difference in the temperature and concentration of the inflow and outflow is small, the ultrafiltration volume is extremely small with respect to the total flow rate with a simple configuration. It shows that it can be measured with high accuracy. In addition, the measurement of the propagation time of ultrasonic waves,
Performed by the sing-around method or the PLL method, which is a method of measuring the propagation time of an ordinary ultrasonic wave, and based on the measured time difference, the abnormal data is removed and the offset is canceled by using a microcomputer using a microcomputer.
A more accurate ultrafiltration amount can be obtained.

続いて、透析液濃度の測定方法につき説明する。超音波
の水溶液中における伝播速度は、その水溶液の濃度が高
い程速くなる。換言すれば、水溶液の濃度が高い程超音
波が伝播されやすいということは周知の事実である。そ
して、超音波の伝播速度と水溶液の温度、圧力及び濃度
との間に相関関係があることも知られている。
Next, a method for measuring the dialysate concentration will be described. The propagation velocity of ultrasonic waves in an aqueous solution becomes higher as the concentration of the aqueous solution becomes higher. In other words, it is a well-known fact that the higher the concentration of the aqueous solution, the more easily the ultrasonic waves propagate. It is also known that there is a correlation between the propagation velocity of ultrasonic waves and the temperature, pressure and concentration of the aqueous solution.

ところで、上述した構成及び構造において超音波の伝播
速度の絶対値は、限外濾過量の測定において知ることが
できる。また、透析液の温度を知ることは透析に当って
不可欠の事項であって、透析用の装置であれば必ず温度
測定機能を備えているので、透析液の温度を知ることも
容易である。圧力の変化はこの場合無視し得る。これら
のデータから超音波の伝播速度と、液温度と、液の濃度
の相関関係より、透析液の濃度を算出することができ
る。透析液の如く使用温度範囲が狭い場合でも、伝播速
度と温度と濃度の関係は非線型ではあるが、マイクロコ
ンピュータを用いれば容易に濃度を計算することができ
る。
By the way, the absolute value of the propagation velocity of ultrasonic waves in the above-described configuration and structure can be known by measuring the amount of ultrafiltration. Further, knowing the temperature of the dialysate is an indispensable item in dialysis, and since the device for dialysis always has a temperature measuring function, it is easy to know the temperature of the dialysate. The change in pressure is negligible in this case. From these data, the concentration of the dialysate can be calculated from the correlation between the ultrasonic wave propagation velocity, the liquid temperature, and the liquid concentration. Even when the operating temperature range is narrow like a dialysate, the relationship between the propagation velocity, temperature and concentration is non-linear, but the concentration can be easily calculated by using a microcomputer.

よって上述した限外濾過量測定装置に、何らの構成も付
加することなく、信頼性の高い透析液濃度測定装置を構
成できる。
Therefore, a highly reliable dialysate concentration measuring device can be configured without adding any constitution to the ultrafiltration amount measuring device described above.

更に本装置は、炭酸塩の析出による影響を受けないた
め、動作不良の虞れがなく、安全性が高く、限外濾過量
測定装置と併用すれば、きわめて安価に透析液濃度測定
装置を得ることができる。
Furthermore, since this device is not affected by the precipitation of carbonates, there is no risk of malfunction, and it is highly safe. When used in combination with an ultrafiltration amount measuring device, a dialysate concentration measuring device can be obtained at extremely low cost. be able to.

〔発明の効果〕〔The invention's effect〕

本発明は上述した通りであるので、構成簡易にして、汚
れや使用条件に影響されず、可動部や消耗部分がなく、
安全で信頼性の高い限外濾過量測定装置を安価に供給し
うるものである。また、限外濾過量測定装置と同一の構
成にて、炭酸塩の析出による影響を受けず、動作不良の
虞れがなく、安全性も高い透析液濃度測定装置が得られ
る効果がある。
Since the present invention is as described above, it has a simple structure, is not affected by dirt and use conditions, has no moving parts and consumable parts,
A safe and highly reliable ultrafiltration measuring device can be supplied at low cost. In addition, there is an effect that a dialysate concentration measuring device having the same configuration as the ultrafiltration amount measuring device can be obtained without being affected by precipitation of carbonate, without fear of malfunction, and having high safety.

【図面の簡単な説明】[Brief description of drawings]

第1図は超音波流量計の概略構成図、第2図は本発明の
実施例を示す概略構成図である。 符号の説明 11…血液透析器、14…流入回路 15…流入量測定部、16…流出量測定部 17…排出回路、18…隔壁 19、20…超音波振動子
FIG. 1 is a schematic configuration diagram of an ultrasonic flowmeter, and FIG. 2 is a schematic configuration diagram showing an embodiment of the present invention. Explanation of symbols 11 ... Hemodialyzer, 14 ... Inflow circuit 15 ... Inflow amount measurement unit, 16 ... Outflow amount measurement unit 17 ... Discharge circuit, 18 ... Separator 19, 20 ... Ultrasonic transducer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】上下に超音波振動子を配設した測定管を設
け、前記測定管の中間に超音波は透過するが透析液は通
さない隔壁を設置して、前記測定管を超音波通過距離と
流路断面を等しくした流入量測定部と流出量測定部とに
区分し、前記各測定部における超音波振動子設置側端部
にそれぞれ流入路又は流出路を設けると共に、前記隔壁
設置側端部にそれぞれ流出路又は流入路を設け、前記流
入量測定部における前記流入路と流出路間の距離と、前
記流出量測定部における前記流入路と流出路間の距離と
が等しくなるようにし、前記流入量測定部の流出路を血
液透析器の流入回路に接続し、前記血液透析器の流出回
路を前記流出量測定部の流入路に接続し、前記流入量測
定部と前記流出量測定部とで流れの方向が逆になるよう
に設定して成る限外濾過量及び透析液濃度測定装置。
1. A measurement tube provided with ultrasonic transducers on the upper and lower sides, and a partition wall which transmits ultrasonic waves but does not pass dialysate is provided in the middle of the measurement tubes so that ultrasonic waves pass through the measurement tube. The flow rate is divided into an inflow rate measuring section and an outflow rate measuring section having the same distance and flow path cross section, and an inflow path or an outflow path is provided at each end of the ultrasonic transducer installation side of each of the measurement sections, and the partition wall installation side. An outflow passage or an inflow passage is provided at each end so that the distance between the inflow passage and the outflow passage in the inflow amount measuring unit is equal to the distance between the inflow passage and the outflow passage in the outflow amount measuring unit. Connecting the outflow path of the inflow rate measuring unit to the inflow circuit of the hemodialyzer, connecting the outflow circuit of the hemodialyzer to the inflow path of the outflow rate measuring unit, and measuring the inflow rate measuring unit and the outflow rate The limit is set so that the flow direction is opposite to that of the part Filtration rate and dialysate concentration measuring device.
JP61048150A 1986-03-05 1986-03-05 Ultrafiltration amount and dialysate concentration measuring device Expired - Lifetime JPH064093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61048150A JPH064093B2 (en) 1986-03-05 1986-03-05 Ultrafiltration amount and dialysate concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61048150A JPH064093B2 (en) 1986-03-05 1986-03-05 Ultrafiltration amount and dialysate concentration measuring device

Publications (2)

Publication Number Publication Date
JPS62204763A JPS62204763A (en) 1987-09-09
JPH064093B2 true JPH064093B2 (en) 1994-01-19

Family

ID=12795331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61048150A Expired - Lifetime JPH064093B2 (en) 1986-03-05 1986-03-05 Ultrafiltration amount and dialysate concentration measuring device

Country Status (1)

Country Link
JP (1) JPH064093B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726662B2 (en) * 2011-07-22 2015-06-03 学校法人上智学院 Blood impedance measuring device, artificial dialysis device, and method for operating blood impedance measuring device
CN111529788B (en) * 2020-05-07 2023-01-24 深圳市中医院 Peritoneal dialysis-based ultrafiltration volume prediction method

Also Published As

Publication number Publication date
JPS62204763A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
JP2556701B2 (en) Ultrafiltration amount and dialysate concentration measuring device
US8040493B2 (en) Thermal flow meter
US5230341A (en) Measuring the change of intravascular blood volume during blood filtration
US4923598A (en) Apparatus for the treatment of blood in particular for hemodialysis and hemofiltration
US7879241B2 (en) Method of treating a bodily fluid
US7341568B2 (en) Method and device for determining blood volume during an extracorporeal blood treatment
EP0100584B1 (en) Ultrasonic flowmeter
JP2532261B2 (en) Equipment for hemodialysis treatment
JP2017176847A5 (en)
JP6946318B2 (en) Methods and systems for detecting obstruction in the blood circuit of a dialysis system
JPS60117131A (en) Measuring tube for simultaneously measuring flow rate and concentration of fluid
JPH11290452A (en) Dialysis liquid supply device and monitoring method for selected dialysis liquid parameter
JPH02211173A (en) Blood purifier having measuring device for change intravascular blood volume
JP2516928B2 (en) Dialysis machine
JPH0752114B2 (en) Measuring device for dialysis target
US4596549A (en) Blood dialyzing method and apparatus
JPH064093B2 (en) Ultrafiltration amount and dialysate concentration measuring device
EP3004855B1 (en) Liquid conductivity measurement cell
JP4311242B2 (en) Dialysis machine
JP4352825B2 (en) Bubble amount detection system and medical device equipped with the bubble amount detection system
WO2019078113A1 (en) Ultrasonic flowmeter and blood purification device
JPS6325803B2 (en)
JPH01131670A (en) Blood dialyzer
JPS617416A (en) Ultrasonic wave flow-rate transducer
CN115461098A (en) Dialysis device with a device for determining at least two hemodialysis parameters