JPH0637321B2 - Anti-reduction agent for dielectric ceramics - Google Patents

Anti-reduction agent for dielectric ceramics

Info

Publication number
JPH0637321B2
JPH0637321B2 JP63242952A JP24295288A JPH0637321B2 JP H0637321 B2 JPH0637321 B2 JP H0637321B2 JP 63242952 A JP63242952 A JP 63242952A JP 24295288 A JP24295288 A JP 24295288A JP H0637321 B2 JPH0637321 B2 JP H0637321B2
Authority
JP
Japan
Prior art keywords
dielectric
reduction inhibitor
lead oxide
dielectric ceramics
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63242952A
Other languages
Japanese (ja)
Other versions
JPH0230652A (en
Inventor
洋 鷹木
嘉朗 森
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63242952A priority Critical patent/JPH0637321B2/en
Publication of JPH0230652A publication Critical patent/JPH0230652A/en
Publication of JPH0637321B2 publication Critical patent/JPH0637321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は還元防止剤、特に組成成分として酸化鉛を含
有する誘電体セラミックス用還元防止剤に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a reduction inhibitor, and more particularly to a reduction inhibitor for dielectric ceramics containing lead oxide as a constituent component.

<従来の技術およびその課題> 酸化鉛系の誘電体材料は、比較的高い誘電率が得られ、
低温で焼成できるため広く利用されている。
<Prior art and its problems> The lead oxide-based dielectric material has a relatively high dielectric constant,
It is widely used because it can be fired at low temperature.

一方、酸化鉛系の誘電体材料を用いて積層コンデンサを
製造するに当たっては、各誘電体材料層の間に内部電極
が介在されるが、酸化鉛系の誘電体材料を還元性雰囲気
中で焼成すると、一般に絶縁特性が損なわれるために、
内部電極材料としては酸化性雰囲気中で焼成しても安定
なAg/Pd系の貴金属が用いられる。
On the other hand, when manufacturing a multilayer capacitor using a lead oxide-based dielectric material, internal electrodes are interposed between each dielectric material layer, but the lead oxide-based dielectric material is fired in a reducing atmosphere. Then, since the insulation characteristic is generally impaired,
As the internal electrode material, an Ag / Pd-based noble metal that is stable even when fired in an oxidizing atmosphere is used.

しかしながら、Ag/Pd系の材料は高価であり、またAgの
マイグレーションにより特性が劣化したり、導電率が小
さいなどの欠点を有している。
However, Ag / Pd-based materials are expensive, and have drawbacks such as deterioration of characteristics due to migration of Ag and low conductivity.

<発明の目的> 従って、この発明は酸化鉛系の複合酸化物誘電体材料に
添加することによって還元性雰囲気中で焼成した時に、
絶縁抵抗が損なわれるのを防ぐことのできる還元防止剤
を提供することを目的とするものである。
<Objects of the Invention> Accordingly, the present invention, when added to a lead oxide-based complex oxide dielectric material and fired in a reducing atmosphere,
It is an object of the present invention to provide a reduction inhibitor that can prevent the insulation resistance from being impaired.

<課題を解決するための手段> 上記の目的を達成するために、この発明は 一般式 a(LiO1/2+RO)−(1-a)(BO3/2+SiO2) [但し、0.01≦a≦0.80(モル比),RはMg、Ca、Sr、
Baのうち少なくとも1種] の組成からなる酸化鉛系複合酸化物誘電体セラミックス
用還元防止剤を提供するものである。
<Means for Solving the Problems> In order to achieve the above object, the present invention provides a compound represented by the general formula a (LiO 1/2 + RO)-(1-a) (BO 3/2 + SiO 2 ), where 0.01 ≦ a ≦ 0.80 (molar ratio), R is Mg, Ca, Sr,
At least one of Ba] is provided. A reduction inhibitor for a lead oxide-based complex oxide dielectric ceramics is provided.

<作用> これらの成分からなる還元防止剤は、主体となる誘電体
材料を焼結するに当たって、予め所定の割合で主成分に
添加され、混合された後成形体とされ、この後焼成プロ
セスにもたらされる。
<Operation> The reduction inhibitor composed of these components is added to the main component in a predetermined ratio in advance when sintering the main dielectric material and mixed to form a molded body, which is then subjected to a post-baking process. Be brought.

この場合、上記した還元防止剤は主成分に対して、個々
に添加してもよいが、このほか予め還元防止剤を配合し
ておき、これを熱処理した粉末か、さらに高温に熱処理
して溶融し、その後粉砕してガラス化したものを主成分
に添加混合してもよい。
In this case, the above-mentioned reduction inhibitor may be added to the main component individually, but in addition to this, the reduction inhibitor may be blended in advance and heat-treated, or it may be heat-treated at a higher temperature to melt. Then, the pulverized and vitrified product may be added to the main component and mixed.

この発明にかかる還元防止剤を上記したような組成範囲
に限定したのは次の理由による。
The reason why the reduction inhibitor according to the present invention is limited to the above composition range is as follows.

即ち、LiO1/2+ROが0.01(モル比)未満、あるいは0.8
0(モル比)を越えると、これを添加した酸化鉛系複合
酸化物誘電体材料の絶縁抵抗が1010Ωcm未満となって非
還元性が実現されないからである。
That is, LiO 1/2 + RO is less than 0.01 (molar ratio), or 0.8
This is because if it exceeds 0 (molar ratio), the insulation resistance of the lead oxide-based composite oxide dielectric material to which it is added becomes less than 10 10 Ωcm and non-reducing property cannot be realized.

この還元防止剤の主成分である誘電体材料に添加する割
合は、その主成分である誘電体材料によって異なるが、
0.05〜25.0重量%が適当である。これは0.05重量%未満
では非還元化が実現されず、一方25.0重量%を越えると
誘電体特性が著しく損われるからである。
The proportion of the reducing agent added to the dielectric material, which is the main component, depends on the dielectric material, which is the main component,
0.05 to 25.0% by weight is suitable. This is because if it is less than 0.05% by weight, non-reduction is not realized, while if it exceeds 25.0% by weight, the dielectric properties are significantly impaired.

<実施例> 以下、この発明を実施例により詳細に説明する。<Examples> Hereinafter, the present invention will be described in detail with reference to Examples.

72Pb(Mg1/3Nb2/3)O3−25Pb(Zn1/3Nb2/3)O3−3 PbTi
O3(モル比)の組成となるように、Pb3O4、MgCO3、Nb2
O3、TiO2およびZnOを秤量し、ボールミルで12時間湿
式混合したのち、蒸発乾燥して混合粉末を得た。
72Pb (Mg 1/3 Nb 2/3 ) O 3 −25Pb (Zn 1/3 Nb 2/3 ) O 3 −3 PbTi
Pb 3 O 4 , MgCO 3 , Nb 2 so that the composition is O 3 (molar ratio).
O 3 , TiO 2 and ZnO were weighed, wet mixed in a ball mill for 12 hours and then evaporated to dryness to obtain a mixed powder.

得られた粉末を800 ℃で2時間焼成した後、200 メッシ
ュの篩を通過するように粗粉砕して酸化鉛系の誘電体粉
末を準備した。
The obtained powder was calcined at 800 ° C. for 2 hours and then coarsely pulverized so as to pass through a 200-mesh sieve to prepare a lead oxide-based dielectric powder.

また、第1表の組成となるように、LiCO3、MgCO3、CaCO
3、SrCO3、BaCO3、B2O3およびSiO2を秤量して得られた
粉末を、アルミナルツボに入れて1200℃の温度で1時間
放置し、急冷してガラス化した後200 メッシュの篩を通
過するように粉砕して還元防止剤を準備した。
In addition, LiCO 3 , MgCO 3 , CaCO
The powder obtained by weighing 3 , SrCO 3 , BaCO 3 , B 2 O 3 and SiO 2 was put into an alumina crucible and left at a temperature of 1200 ° C. for 1 hour, then rapidly cooled and vitrified, and then a 200 mesh A reduction inhibitor was prepared by crushing so as to pass through a sieve.

次に第1表に示す割合となるように、酸化鉛系の複合酸
化物誘電体材料に還元防止剤を添加し、これにポリビニ
ルブチラール系のバインダーおよび有機溶媒を加えてボ
ールミルで24時間湿式混合した。
Next, a reduction inhibitor is added to the lead oxide-based composite oxide dielectric material so that the proportions shown in Table 1 are obtained, and a polyvinyl butyral-based binder and an organic solvent are added thereto, and wet mixing is performed in a ball mill for 24 hours. did.

このようにして得たスラリーをドクターブレード法によ
り50μmの厚さにグリーンシートに成形した。
The slurry thus obtained was formed into a green sheet with a thickness of 50 μm by the doctor blade method.

得られたグリーンシート上にCu電極ペーストをスクリー
ン印刷法で印刷し、乾燥後互いに対向電極となるように
積重ね、熱圧着により一体化した。
A Cu electrode paste was printed on the obtained green sheet by a screen printing method, and after being dried, they were stacked so as to be mutually opposite electrodes and integrated by thermocompression bonding.

この積層ブロックから個々のコンデンサユニットをブレ
ードで切り出した。
Individual capacitor units were cut out from this laminated block with a blade.

切り出したユニットの端面にCu電極ペーストを塗布し、
外部取出し電極とした。
Apply Cu electrode paste to the end surface of the cut unit,
It was used as an external extraction electrode.

このようにして得られた生ユニットをN2、H2およびH2
の混合ガスを用いて還元性雰囲気に調節した電気炉に入
れ、1000℃で3時間焼成した。
The raw unit thus obtained was treated with N 2 , H 2 and H 2 O.
The mixture was put into an electric furnace adjusted to a reducing atmosphere using the mixed gas of, and baked at 1000 ° C. for 3 hours.

この実施例で作成したチップ型積層コンデンサの寸法は
夫々次の通りである。
The dimensions of the chip type multilayer capacitors produced in this example are as follows.

外観寸法 : 幅 4.8 mm、長さ5.6 mm 厚み 1.2 mm 有効誘電体層厚さ(t) : 32μm 有効誘電体層数(N) : 17 一層当たりの対向電極面積(S): 21.5 mm2 また、1 KHz、IVの自動ブリッジで静電容量を測定し、
次式により誘電率(ε)を求めた。
External dimensions: Width 4.8 mm, length 5.6 mm Thickness 1.2 mm Effective dielectric layer thickness (t): 32 μm Effective dielectric layer number (N): 17 Counter electrode area per layer (S): 21.5 mm 2 Also, Measure the capacitance with an automatic bridge of 1 KHz, IV,
The dielectric constant (ε) was calculated by the following formula.

ε=(113 ×C×t)/(S×N) =8.3 ×10-3×C 絶縁抵抗は高絶縁計により50V を2分間印加した後の値
を測定した。
[epsilon] = (113 * C * t) / (S * N) = 8.3 * 10 < -3 > * C The insulation resistance was measured by a high insulation meter after applying 50 V for 2 minutes.

以上の結果を第1表に示した。The above results are shown in Table 1.

上表から、還元防止剤の成分であるLiO1/2+ROが1モ
ル%(特許請求の範囲記載のモル比では0.01に相当す
る)未満あるいは80モル%(同じく0.80に相当する)を
越えると、絶縁抵抗が1010Ωcm未満となり、非還元性が
実現されないことがわかる。
From the above table, if LiO 1/2 + RO which is a component of the reduction inhibitor is less than 1 mol% (corresponding to 0.01 in the molar ratio described in the claims) or exceeds 80 mol% (also corresponding to 0.80). , The insulation resistance is less than 10 10 Ωcm, which means that non-reducing property cannot be realized.

また、この還元防止剤の主成分である誘電体材料に添加
する割合が0.05重量%未満でも、絶縁抵抗が1010Ωcm未
満となって非還元性が実現されず、一方25.0重量%を越
えると、誘電率が4000未満となって誘電特性が著しく損
われることがわかる。
Moreover, even if the proportion added to the dielectric material which is the main component of this reduction inhibitor is less than 0.05% by weight, the insulation resistance is less than 10 10 Ωcm and the non-reducing property is not realized, while if it exceeds 25.0% by weight. It can be seen that the dielectric constant is less than 4000 and the dielectric properties are significantly impaired.

尚、上記した実施例では、Pb(Mg1/3Nb2/3)O3−Pb(Zn
1/3Nb2/3)O3−PbTiO3からなる酸化鉛を含む誘電体セラ
ミックス材料にこの発明の誘電体セラミックス用還元防
止剤を添加した例について説明したが、この他第2表に
示したような酸化鉛を含む誘電体セラミックス材料にこ
の発明の誘電体セラミックス用還元防止剤を添加するこ
とによって、還元雰囲気中で焼成しても絶縁抵抗の低下
が防止できる。
In the above-mentioned embodiment, Pb (Mg 1/3 Nb 2/3 ) O 3 -Pb (Zn
An example of adding the reduction inhibitor for dielectric ceramics of the present invention to a dielectric ceramic material containing lead oxide composed of 1/3 Nb 2/3 ) O 3 -PbTiO 3 has been described. By adding the reduction inhibitor for dielectric ceramics of the present invention to such a dielectric ceramic material containing lead oxide, a decrease in insulation resistance can be prevented even when firing in a reducing atmosphere.

一方、還元防止剤を添加していないものについては、絶
縁特性を損なわれたり、誘電体特性が著しく損われた。
On the other hand, in the case where the anti-reducing agent was not added, the insulating property was impaired or the dielectric property was remarkably impaired.

もちろん、この発明の誘電体セラミックス用還元防止剤
は上記に例示した酸化鉛を含む誘電体セラミックスに限
られるものではなく、そのほかの酸化鉛を含む誘電体セ
ラミックスにも有用である。
Of course, the reduction inhibitor for dielectric ceramics of the present invention is not limited to the above-exemplified dielectric ceramics containing lead oxide, and is also useful for other dielectric ceramics containing lead oxide.

<発明の効果> 以上詳述したように、この発明にかかる還元防止剤を酸
化鉛計の複合酸化物誘電体材料に添加することにより、
還元雰囲気中で焼成したときに絶縁抵抗が損われるのを
防止することができるのである。
<Effects of the Invention> As described in detail above, by adding the reduction inhibitor according to the present invention to the complex oxide dielectric material of the lead oxide meter,
It is possible to prevent the insulation resistance from being impaired when firing in a reducing atmosphere.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式 a(LiO1/2+RO)−(1-a)(BO3/2+SiO2) [但し、0.01≦a≦0.80(モル比),RはMg、Ca、Sr、
Baのうち少なくとも1種] の組成からなる酸化鉛系複合酸化物誘電体セラミックス
用還元防止剤
1. A general formula a (LiO 1/2 + RO)-(1-a) (BO 3/2 + SiO 2 ) [wherein 0.01 ≦ a ≦ 0.80 (molar ratio), R is Mg, Ca, Sr. ,
Of at least one of Ba] and a reduction inhibitor for lead oxide-based composite oxide dielectric ceramics
JP63242952A 1988-04-06 1988-09-27 Anti-reduction agent for dielectric ceramics Expired - Lifetime JPH0637321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242952A JPH0637321B2 (en) 1988-04-06 1988-09-27 Anti-reduction agent for dielectric ceramics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8606488 1988-04-06
JP63-86064 1988-04-06
JP63242952A JPH0637321B2 (en) 1988-04-06 1988-09-27 Anti-reduction agent for dielectric ceramics

Publications (2)

Publication Number Publication Date
JPH0230652A JPH0230652A (en) 1990-02-01
JPH0637321B2 true JPH0637321B2 (en) 1994-05-18

Family

ID=26427229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242952A Expired - Lifetime JPH0637321B2 (en) 1988-04-06 1988-09-27 Anti-reduction agent for dielectric ceramics

Country Status (1)

Country Link
JP (1) JPH0637321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000921A1 (en) * 1992-06-25 1994-01-06 Nippondenso Co., Ltd. Mobile object identification device

Also Published As

Publication number Publication date
JPH0230652A (en) 1990-02-01

Similar Documents

Publication Publication Date Title
KR100313234B1 (en) Dielectric Ceramic Composition and Laminated Ceramic Capacitor
KR100414331B1 (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
JPH02265229A (en) Laminated ceramic capacitor
JPH0821257B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
US8748329B2 (en) Dielectric ceramic composition and laminated ceramic electronic component
JP7262640B2 (en) ceramic capacitor
JPH0552602B2 (en)
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3246104B2 (en) Dielectric porcelain composition
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JPH0637321B2 (en) Anti-reduction agent for dielectric ceramics
EP0631996B1 (en) Dielectric ceramic composition
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JPH0828127B2 (en) Dielectric ceramic composition for temperature compensation
JP2669184B2 (en) Non-reducing dielectric porcelain composition
JP3246105B2 (en) Dielectric porcelain composition
JPH1174144A (en) Laminated ceramic capacitor
JPH0551127B2 (en)
JP3252552B2 (en) Dielectric porcelain composition
JP2518184B2 (en) Monolithic ceramic capacitors
JP2671422B2 (en) Non-reducing dielectric porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH0552603B2 (en)
JP2669185B2 (en) Non-reducing dielectric porcelain composition
JP3235344B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 15