JPH063703A - Nonlinear active element and its production - Google Patents

Nonlinear active element and its production

Info

Publication number
JPH063703A
JPH063703A JP16602692A JP16602692A JPH063703A JP H063703 A JPH063703 A JP H063703A JP 16602692 A JP16602692 A JP 16602692A JP 16602692 A JP16602692 A JP 16602692A JP H063703 A JPH063703 A JP H063703A
Authority
JP
Japan
Prior art keywords
insulating film
lower electrode
active element
forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16602692A
Other languages
Japanese (ja)
Inventor
Kenichi Takahara
研一 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP16602692A priority Critical patent/JPH063703A/en
Publication of JPH063703A publication Critical patent/JPH063703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To lower the capacity of a MIM element and to obtain a higher capacity and higher image quality by etching back a second insulating film on the flanks of a first insulating film bored with a hole with the min. design rule in the upper part of a lower electrode, thereby forming side walls. CONSTITUTION:A metallic thin film is formed on a transparent insulating substrate 101 and is patterned to form the lower electrode 102 of the MIM element; thereafter, the first insulating thin film 103 is laminated thereon. An aperture 104 is formed atop the lower electrode 102 and the second insulating film 105 is laminated. The insulating film 105 is thereafter etch back to form the side walls 106 on the flanks of the insulating film 103 and the oxide film 107 of the lower electrode 102 is thereafter formed. The metallic thin film is then laminated thereon and is patterned to a desired shape to form an upper electrode 108. Namely, the effective MIM element is formed in the area narrower than the min. design rule in the aperture part of the upper surface of the lower electrode 102.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置などに応
用が有効な、非線形能動素子及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear active element which is effectively applied to a liquid crystal display device and the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、画像表示装置として、CRT(C
athode Ray Tube)に代わり、フラット
パネルディスプレイなどの液晶表示装置に対する注目が
高まってきている。この液晶表示装置の素子としては、
3端子の薄膜トランジスタ(Thin Film Tr
ansister:TFT)や、2端子の薄膜ダイオ−
ド(Thin Film Diode:TFD)などが
考えられているが、製造工程の簡便さや、歩留まりの高
さなどからTFDに対する注目が高まっている。TFD
の一つである、金属−絶縁膜−金属(Metal−In
surater−Metal)からなる非線形能動素子
(MIM)に対する研究及び開発は以前から進められて
きた。図2に従来のMIM素子の構造を、製造工程毎の
素子断面図を用いて説明する。まず図2(a)に示すよ
うに、透明絶縁基板201上に金属薄膜をスパッタ法や
蒸着法などを用いて形成し、所望の形状にパターニング
してMIMの下部電極202とした後、前記金属薄膜の
酸化膜203を形成する。前記下部電極202となる金
属薄膜にはタンタルやアルミニウムなどが用いられ、ま
た前記酸化膜203は、陽極酸化法或いは熱酸化法を用
いて形成されることが多い。ついで、更に金属薄膜をや
はりスパッタ法や蒸着法を用いて形成し、所望の形状に
パターニングして上部電極204として図2(b)を得
て、非線形能動素子(MIM)が完成する。前記上部電
極204としては、タンタルやアルミニウム或いはクロ
ミウム等の金属薄膜が用いられる。
2. Description of the Related Art Recently, as an image display device, a CRT (C
In place of the Athode Ray Tube, liquid crystal display devices such as flat panel displays are receiving increasing attention. As elements of this liquid crystal display device,
3-terminal thin film transistor (Thin Film Tr)
TFT: thin film diode with two terminals.
Although a thin film diode (TFD) and the like are considered, TFD has been attracting attention due to the simplicity of the manufacturing process and the high yield. TFD
One of the metal-insulating film-metal (Metal-In
Research and development on a nonlinear active device (MIM) composed of a surfacer-metal have been advanced for some time. The structure of a conventional MIM element will be described with reference to FIG. 2 which is a sectional view of the element in each manufacturing process. First, as shown in FIG. 2A, a metal thin film is formed on a transparent insulating substrate 201 by a sputtering method or a vapor deposition method, and is patterned into a desired shape to form a lower electrode 202 of the MIM. A thin oxide film 203 is formed. Tantalum, aluminum, or the like is used for the metal thin film that becomes the lower electrode 202, and the oxide film 203 is often formed by an anodic oxidation method or a thermal oxidation method. Then, a metal thin film is further formed by using a sputtering method or a vapor deposition method, and is patterned into a desired shape to obtain the upper electrode 204 shown in FIG. 2B, and the nonlinear active element (MIM) is completed. As the upper electrode 204, a metal thin film of tantalum, aluminum, chromium or the like is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近年の
ように液晶ディスプレイの発達にともなって、MIM素
子にも大容量化及び高画質化が望まれている状況におい
て、前述のようなMIM素子では、その要求を満たすこ
とは困難になってきた。その理由の一つはMIM素子容
量の低下が難しいことである。図3にはMIM素子を用
いた液晶表示装置の等価回路図を示す。301はセグメ
ント電極、302はMIM素子の容量CMIM、303は
MIM素子の非線形抵抗RMIM、304は液晶層の容量
CLC、305は液晶層の抵抗RLC、306はコモン電極
である。図3に示されている通り、印加される外部電圧
はMIMの容量CMINと液晶の容量CLCとの容量の比に
より分割される。ここで、CMINが大きいとMIMにか
かる電圧が小さくなり、従って外部電圧が有効にMIM
に印加されないことが分かる。従って、MIM素子の容
量が大きいと、クロストークの原因にもなり、液晶表示
装置の大容量化、高画質化が困難である。
However, with the recent development of liquid crystal displays as in recent years, in the situation where the MIM element is also required to have a large capacity and high image quality, in the MIM element as described above, It has become difficult to meet that demand. One of the reasons is that it is difficult to reduce the capacitance of the MIM element. FIG. 3 shows an equivalent circuit diagram of a liquid crystal display device using MIM elements. Reference numeral 301 is a segment electrode, 302 is a capacitance CMIM of the MIM element, 303 is a nonlinear resistance RMIM of the MIM element, 304 is a capacitance CLC of the liquid crystal layer, 305 is a resistance RLC of the liquid crystal layer, and 306 is a common electrode. As shown in FIG. 3, the applied external voltage is divided by the ratio of the capacitance CMIN of the MIM and the capacitance CLC of the liquid crystal. Here, if CMIN is large, the voltage applied to MIM becomes small, so that the external voltage is effectively MIM.
It can be seen that it is not applied to. Therefore, if the capacity of the MIM element is large, it also causes crosstalk, and it is difficult to increase the capacity and image quality of the liquid crystal display device.

【0004】MIM素子の容量を低減する方法として、
特開昭60−172028に示されるような構造が考え
られている。この構造を図4に示す。401は透明絶縁
基板、402は下部電極、403は絶縁膜、404は前
記下部電極の酸化膜、405は上部電極である。ここに
示されている構造に依れば、実効的なMIM素子は下部
電極上面の開孔部で形成されているが、この面積は最小
のデザインルールで決定されている。すなはち、この方
法では、これ以上の容量低減は困難である。また、上部
電極の断線を考慮すると、前記絶縁膜開孔部にはテーパ
ーを付ける必要があるが、このテーパーを精度よく加工
する事は難しく、素子特性にもばらつきが出てくるとい
う、問題点がある。
As a method for reducing the capacity of the MIM element,
A structure as shown in JP-A-60-172028 has been considered. This structure is shown in FIG. Reference numeral 401 is a transparent insulating substrate, 402 is a lower electrode, 403 is an insulating film, 404 is an oxide film of the lower electrode, and 405 is an upper electrode. According to the structure shown here, the effective MIM element is formed by the opening portion on the upper surface of the lower electrode, but this area is determined by the minimum design rule. That is, it is difficult to further reduce the capacity with this method. Further, considering the disconnection of the upper electrode, it is necessary to taper the insulating film opening portion, but it is difficult to process this taper accurately and the element characteristics also vary. There is.

【0005】本発明はこの様な従来の技術の問題点を解
決するもので、その目的とするところは、MIM容量が
小さく高画質化が可能で、且つばらつきも小さい非線形
能動素子及びその製造方法を提供することにある。
The present invention solves the problems of the prior art as described above, and an object of the present invention is to provide a non-linear active element having a small MIM capacitance, high image quality, and a small variation, and a manufacturing method thereof. To provide.

【0006】[0006]

【課題を解決するための手段】本発明は、金属−絶縁膜
−金属(MIM)からなる非線形能動素子及びその製造
方法において、下部電極形成後第1の絶縁膜を積層しパ
ターニングした後、第2の絶縁膜を積層エッチバックを
施し、前記第1の絶縁膜側面に側壁(サイドウォール)
を形成し、前記下部電極上面の開孔部の、最小のデザイ
ンルールよりも狭い面積に於いて、実効的なMIM素子
を形成することを特徴とする。
The present invention provides a non-linear active element composed of metal-insulating film-metal (MIM) and a method of manufacturing the same, in which after forming a lower electrode, laminating and patterning a first insulating film, The second insulating film is laminated and etched back to form a side wall on the side surface of the first insulating film.
Is formed, and an effective MIM element is formed in an area of the opening of the upper surface of the lower electrode that is narrower than the minimum design rule.

【0007】[0007]

【作用】本発明の液晶表示装置の構造に依れば、金属−
絶縁膜−金属からなる非線形能動素子は、下部電極上面
の、最小のデザインルールよりも狭い、前記第1の絶縁
膜の側壁間において、実効的なMIM素子をなしてお
り、従来に比べMIM素子の容量を低減することが出
来、大容量化、高画質化が可能になる。
According to the structure of the liquid crystal display device of the present invention, the metal-
The non-linear active element made of insulating film-metal forms an effective MIM element between the sidewalls of the first insulating film, which is narrower than the minimum design rule on the upper surface of the lower electrode, and is a MIM element compared with the conventional one. It is possible to reduce the capacity, and it is possible to increase the capacity and image quality.

【0008】[0008]

【実施例】本発明の液晶表示装置の実施例の一例を、図
1に示した製造工程毎の素子断面図に依って詳しく説明
してゆく。まず図1(a)に示すように、透明絶縁基板
101上に金属薄膜を1000Å〜10000Å程度の
厚さで形成し、パターニングを行ってMIM素子の下部
電極102となした後、第1の絶縁薄膜103を200
0Å〜10000Å程度の厚さで積層し、前記下部電極
102上面に開孔部104を形成した後、第2の絶縁膜
105を積層する。前記透明絶縁基板101には石英基
板やアルカリガラスなどが用いられる。また、前記下部
電極102には、タンタルやアルミニウム等がスパッタ
法や蒸着法等により形成される。
EXAMPLE An example of the liquid crystal display device of the present invention will be described in detail with reference to the cross-sectional views of the elements in each manufacturing process shown in FIG. First, as shown in FIG. 1A, a metal thin film having a thickness of about 1000 Å to 10000 Å is formed on a transparent insulating substrate 101, and is patterned to form a lower electrode 102 of a MIM element. Thin film 103 to 200
The second insulating film 105 is laminated after the holes 104 are formed on the upper surface of the lower electrode 102 by laminating with a thickness of about 0Å to 10000Å. As the transparent insulating substrate 101, a quartz substrate or an alkali glass is used. Moreover, tantalum, aluminum, or the like is formed on the lower electrode 102 by a sputtering method, a vapor deposition method, or the like.

【0009】本実施例においては、タンタル薄膜をスパ
ッタ法により約5000Å程度堆積した後エッチングを
行い、下部電極102とした。また、前記第1の絶縁薄
膜103及び前記第2の絶縁膜105には二酸化硅素膜
や窒化硅素膜等が、常圧CVD法、減圧CVD法、プラ
ズマCVD法、ECRプラズマCVD法、スパッタ法な
どにより形成され、用いられる。本実施例においては、
前記第1の絶縁膜103として、窒化硅素膜をプラズマ
CVD法において約5000Å程度積層して使用した。
また、前記第2の絶縁膜105として二酸化硅素膜を常
圧CVD法により約5000Åの厚さに形成したものを
用いた。また、前記第1の絶縁膜の開孔部104の径は
一辺が2μmの正方形で形成した。その後、エッチバッ
ク法を用いて前記第2の絶縁膜105のエッチングを行
い、前記第1の絶縁膜103側面に側壁(サイドウォー
ル)106を形成した後、前記下部電極102の酸化膜
107を500Å〜2000Å程度の厚さで形成し、図
1(b)を得る。前記酸化膜107の形成には、陽極酸
化法や熱酸化法、プラズマ酸化法と言った方法が用いら
れるが、本実施例においては陽極酸化法を用い、約60
0Å程度の酸化タンタルを得ることが出来た。その後、
図1(c)に示すように、金属薄膜を積層し、所望の形
状にパターニングして上部電極108となし、金属−絶
縁膜−金属からなる非線形能動素子が完成する。
In this embodiment, a tantalum thin film is deposited by a sputtering method to a thickness of about 5000 Å and then etched to form a lower electrode 102. In addition, a silicon dioxide film, a silicon nitride film, or the like is used as the first insulating thin film 103 and the second insulating film 105, and an atmospheric pressure CVD method, a low pressure CVD method, a plasma CVD method, an ECR plasma CVD method, a sputtering method, or the like. Formed and used. In this embodiment,
As the first insulating film 103, a silicon nitride film was used by being stacked by about 5000 Å by plasma CVD method.
Further, as the second insulating film 105, a silicon dioxide film formed by atmospheric pressure CVD to a thickness of about 5000 Å was used. The diameter of the opening 104 of the first insulating film is a square having a side of 2 μm. After that, the second insulating film 105 is etched by using an etch back method to form a sidewall 106 on the side surface of the first insulating film 103, and then the oxide film 107 of the lower electrode 102 is 500 Å. It is formed with a thickness of about 2000 Å to obtain FIG. A method such as an anodic oxidation method, a thermal oxidization method, or a plasma oxidization method is used for forming the oxide film 107. In the present embodiment, the anodic oxidation method is used, and about 60
We were able to obtain about 0Å tantalum oxide. afterwards,
As shown in FIG. 1C, metal thin films are laminated and patterned into a desired shape to form the upper electrode 108, and a nonlinear active element composed of metal-insulating film-metal is completed.

【0010】本実施例において前記第1の絶縁膜の側壁
の長さは約4000Å程度であり、前記第1の絶縁膜の
側壁間の面積が、前記開孔部の面積の約3分の1程度と
狭くなり、従って側壁がない場合に比べて、MIM素子
の容量を2分の1〜3分の1程度に低減することが出来
た。
In this embodiment, the length of the side wall of the first insulating film is about 4000 Å, and the area between the side walls of the first insulating film is about one third of the area of the opening. Therefore, the capacitance of the MIM element can be reduced to about 1/2 to 1/3 as compared with the case where there is no side wall.

【0011】[0011]

【発明の効果】本発明の非線形能動素子の構造及びその
製造方法に依れば、下部電極上部に最小のデザインルー
ルで開孔した第1の絶縁膜の側面に、第2の絶縁膜をエ
ッチバックして側壁を形成することにより、従来よりも
MIM素子の容量を低減することが出来、それによって
大容量化やクロストークの低減が可能で、高画質化が可
能な非線形能動素子を形成できる。
According to the structure of the nonlinear active element and the method of manufacturing the same of the present invention, the second insulating film is etched on the side surface of the first insulating film which is opened in the upper part of the lower electrode by the minimum design rule. By forming the sidewalls by backing, the capacitance of the MIM element can be reduced as compared with the conventional one, thereby increasing the capacitance and crosstalk, and forming a non-linear active element capable of high image quality. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に示した非線形能動素子の製
造工程ごとの素子断面図。
FIG. 1 is an element cross-sectional view in each manufacturing process of a nonlinear active element shown in an embodiment of the present invention.

【図2】 従来の技術における非線形能動素子の製造工
程ごとの素子断面図。
FIG. 2 is an element cross-sectional view in each manufacturing process of a non-linear active element according to a conventional technique.

【図3】 MIM素子を用いた液晶表示装置の等価回路
図。
FIG. 3 is an equivalent circuit diagram of a liquid crystal display device using MIM elements.

【図4】 従来の技術における非線形能動素子の素子断
面図。
FIG. 4 is an element cross-sectional view of a non-linear active element in a conventional technique.

【符号の説明】[Explanation of symbols]

101,201,401・・・透明絶縁基板 102,202,402・・・下部電極 103,105,403・・・絶縁膜 104・・・開孔部 106・・・エッチバック法により形成された側壁 107,203,404・・・下部電極の酸化膜 108,204,405上部電極 301・・・セグメント電極 302・・・MIM素子の容量 303・・・MIM素子の抵抗 304・・・液晶層の容量 305・・・液晶層の抵抗 306・・・コモン電極 101, 201, 401 ... Transparent insulating substrate 102, 202, 402 ... Lower electrode 103, 105, 403 ... Insulating film 104 ... Opening portion 106 ... Side wall formed by etch back method 107, 203, 404 ... Oxide film of lower electrode 108, 204, 405 Upper electrode 301 ... Segment electrode 302 ... MIM element capacitance 303 ... MIM element resistance 304 ... Liquid crystal layer capacitance 305 ... Resistance of liquid crystal layer 306 ... Common electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属−絶縁膜−金属からなる非線形能動
素子において、下部電極上面に、前記下部電極の酸化膜
と異なる絶縁膜による側壁を有し、実効的な非線形能動
素子の面積が、前記側壁間に於いて最小のデザインルー
ルよりも小さく規定されていることを特徴とする非線形
能動素子。
1. A non-linear active element composed of a metal-insulating film-metal, wherein a sidewall of an insulating film different from an oxide film of the lower electrode is provided on an upper surface of the lower electrode, and an effective area of the non-linear active element is A non-linear active element characterized by being specified to be smaller than the minimum design rule between side walls.
【請求項2】 前記請求項1に記載の非線形能動素子に
おいて、前記絶縁膜の膜厚が、前記下部電極の酸化膜よ
りも厚い事を特長とする非線形能動素子。
2. The nonlinear active element according to claim 1, wherein the insulating film is thicker than the oxide film of the lower electrode.
【請求項3】 前記請求項1に記載の非線形能動素子に
おいて、前記絶縁膜の比誘電率が、前記下部電極の酸化
膜の比誘電率よりも小さい事を特長とする非線形能動素
子。
3. The nonlinear active element according to claim 1, wherein the relative dielectric constant of the insulating film is smaller than the relative dielectric constant of the oxide film of the lower electrode.
【請求項4】 下部金属電極を形成する工程と、前記下
部電極の酸化膜を形成する工程と、上部電極を形成する
工程とを含む、金属−絶縁膜−金属からなる非線形能動
素子の製造方法において、下部電極形成後全面に第1の
絶縁膜を形成する工程と、前記下部電極上面に開孔部を
形成する工程と、第2の絶縁膜を形成する工程と、前記
第2の絶縁膜をエッチバックする工程と、前記下部電極
の酸化膜を形成する工程と、上部電極を形成する工程と
を含むことを特徴とする、非線形能動素子の製造方法。
4. A method of manufacturing a non-linear active element composed of a metal-insulating film-metal, which includes a step of forming a lower metal electrode, a step of forming an oxide film of the lower electrode, and a step of forming an upper electrode. A step of forming a first insulating film on the entire surface after forming the lower electrode, a step of forming an opening on the upper surface of the lower electrode, a step of forming a second insulating film, and a step of forming the second insulating film. And a step of forming an oxide film of the lower electrode, and a step of forming an upper electrode, the method of manufacturing a nonlinear active element.
JP16602692A 1992-06-24 1992-06-24 Nonlinear active element and its production Pending JPH063703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16602692A JPH063703A (en) 1992-06-24 1992-06-24 Nonlinear active element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16602692A JPH063703A (en) 1992-06-24 1992-06-24 Nonlinear active element and its production

Publications (1)

Publication Number Publication Date
JPH063703A true JPH063703A (en) 1994-01-14

Family

ID=15823565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16602692A Pending JPH063703A (en) 1992-06-24 1992-06-24 Nonlinear active element and its production

Country Status (1)

Country Link
JP (1) JPH063703A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760883B1 (en) * 2005-03-07 2007-09-21 세이코 엡슨 가부시키가이샤 Electro-optical device, method of manufacturing the same, and electronic apparatus
US7352005B2 (en) 2005-04-11 2008-04-01 Seiko Epson Corporation Electro-optical device, manufacturing method thereof, and electronic apparatus
US7636134B2 (en) 2005-03-25 2009-12-22 Seiko Epson Corporation Electro-optical device, method of manufacturing the same, and electronic apparatus
US7952094B2 (en) 2005-04-11 2011-05-31 Seiko Epson Corporation Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
US9895505B2 (en) 2004-04-09 2018-02-20 Resmed Limited Nasal assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895505B2 (en) 2004-04-09 2018-02-20 Resmed Limited Nasal assembly
KR100760883B1 (en) * 2005-03-07 2007-09-21 세이코 엡슨 가부시키가이샤 Electro-optical device, method of manufacturing the same, and electronic apparatus
US7969518B2 (en) 2005-03-07 2011-06-28 Seiko Epson Corporation Electro-optical device, method of manufacturing the same, and electronic apparatus
US7636134B2 (en) 2005-03-25 2009-12-22 Seiko Epson Corporation Electro-optical device, method of manufacturing the same, and electronic apparatus
US7352005B2 (en) 2005-04-11 2008-04-01 Seiko Epson Corporation Electro-optical device, manufacturing method thereof, and electronic apparatus
US7952094B2 (en) 2005-04-11 2011-05-31 Seiko Epson Corporation Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus

Similar Documents

Publication Publication Date Title
US6235559B1 (en) Thin film transistor with carbonaceous gate dielectric
KR100241287B1 (en) A method for fabricating liquid crystal display device
JP2637079B2 (en) Method of fabricating a thin film field effect transistor in an active matrix liquid crystal display
GB2153589A (en) Thin film transistor
JP3309509B2 (en) Active matrix display device using thin film transistor and method of manufacturing the same
JPH03161938A (en) Manufacture of thin-film transistor
JPH06160902A (en) Liquid crystal display device
JPH0580650B2 (en)
JPH063703A (en) Nonlinear active element and its production
US5068699A (en) Thin film transistor for a plate display
KR100403931B1 (en) Thin film transistor
JPH05119331A (en) Active matrix substrate and its production
JPH06148658A (en) Wiring structure
JPS62235784A (en) Thin film transistor
JPH02177563A (en) Thin film transistor and manufacture thereof
JPH0244769A (en) Thin film transistor
JPS61188967A (en) Thin film transistor
JPH0456168A (en) Thin-film transistor and its manufacture
KR100302999B1 (en) Thin film transistor using double gate
US7545452B2 (en) TFD LCD device with high aperture ratio
JPH0697197A (en) Thin film transistor and manufacture thereof
JPH06132536A (en) Film transistor
JP2653572B2 (en) Active matrix substrate manufacturing method
JP2948436B2 (en) Thin film transistor and liquid crystal display device using the same
JPH0611736A (en) Liquid crystal display device and its production