JPH06349701A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPH06349701A
JPH06349701A JP5141016A JP14101693A JPH06349701A JP H06349701 A JPH06349701 A JP H06349701A JP 5141016 A JP5141016 A JP 5141016A JP 14101693 A JP14101693 A JP 14101693A JP H06349701 A JPH06349701 A JP H06349701A
Authority
JP
Japan
Prior art keywords
illumination
light
spatial coherence
reticle
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5141016A
Other languages
Japanese (ja)
Other versions
JP3265503B2 (en
Inventor
Toshiji Nakajima
利治 中島
Masato Hamaya
正人 濱谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP14101693A priority Critical patent/JP3265503B2/en
Priority to US08/255,927 priority patent/US5534970A/en
Priority to KR1019940013279A priority patent/KR100296779B1/en
Publication of JPH06349701A publication Critical patent/JPH06349701A/en
Priority to US09/112,380 priority patent/USRE37309E1/en
Priority to KR1019990038118A priority patent/KR100311432B1/en
Application granted granted Critical
Publication of JP3265503B2 publication Critical patent/JP3265503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce illuminance irregularity due to speckle pattern when using light with a high spatial coherence as exposure light by the slit scan exposure system. CONSTITUTION:A reticle R is scanned in a scanning direction SR for a lighting region 15. a wafer W is scanned in a scanning direction SW for an exposure region 16 which is conjugate to the lighting region 15, and then the pattern of the reticle R is exposed on the wafer W successively. The spatial coherence of laser beam LB0 discharged from an excimer laser light source 1 is high in horizontal direction (H direction), its horizontal direction is made to be conjugate to the scanning direction SR of the lighting region 15 and the direction where the spatial coherence higher becomes the scanning direction SR.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば露光光で矩形又
は円弧状等の照明領域を照明し、その照明領域に対して
マスク及び感光基板を同期して走査することにより、マ
スク上のパターンを逐次感光基板上に露光する所謂スリ
ットスキャン露光方式の露光装置に関し、特に空間コヒ
ーレンスの高い光を露光光として用いる場合に適用して
好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention illuminates a rectangular or arcuate illumination area with exposure light, and scans the mask and the photosensitive substrate in synchronization with the illumination area to form a pattern on the mask. The present invention relates to an exposure apparatus of a so-called slit scan exposure system that sequentially exposes a photosensitive substrate onto a photosensitive substrate, and is particularly suitable for application when light having high spatial coherence is used as exposure light.

【0002】[0002]

【従来の技術】従来より、半導体素子、液晶表示素子又
は薄膜磁気ヘッド等をフォトリソグラフィー技術を用い
て製造する際に、フォトマスク又はレチクル(以下、
「レチクル」と総称する)のパターンを投影光学系を介
して、フォトレジスト等が塗布された基板(ウエハ又は
ガラスプレート等)上に露光する投影露光装置が使用さ
れている。斯かる投影露光装置では、露光光を短波長化
して解像度を向上させるために、KrFエキシマレーザ
若しくはArFエキシマレーザのようなエキシマレーザ
光、又はアルゴンレーザの高調波のような紫外域のレー
ザ光が露光光として使用されるようになって来ている。
2. Description of the Related Art Conventionally, when a semiconductor element, a liquid crystal display element, a thin film magnetic head or the like is manufactured by using a photolithography technique, a photomask or a reticle (hereinafter, referred to as
A projection exposure apparatus is used to expose a pattern (collectively referred to as “reticle”) on a substrate (wafer, glass plate, or the like) coated with a photoresist or the like via a projection optical system. In such a projection exposure apparatus, in order to shorten the wavelength of exposure light and improve resolution, excimer laser light such as KrF excimer laser or ArF excimer laser, or ultraviolet laser light such as a harmonic of an argon laser is used. It has come to be used as exposure light.

【0003】ところが、レーザ光は空間コヒーレンス
(可干渉性)が高く、照明光学系を通過する間にスペッ
クルパターンと呼ばれる干渉縞が生じ、これがレチクル
及び基板上での照度むらになるという問題がある。そこ
で、従来の通常のステッパーのような一括露光方式の投
影露光装置で、レーザ光を露光光として使用する場合に
は、スペックルパターンによる照度むらを減少させるた
めに、照明光学系中のフライアイレンズ(オプティカル
・インテグレータ)の前に振動ミラーを配置していた。
そして、1度の露光の間に、そのオプティカル・インテ
グレータに入射するレーザ光をその振動ミラーで走査す
ることによって、レチクル及び基板上に生じるスペック
ルパターン(干渉縞)の位相を変えながら露光を行い、
基板上の各ショット領域内の全面での露光量が均一にな
るようにしていた。この場合、一回の露光の間に、干渉
縞の位相が2π変化するように振動ミラーを振ることに
より、基板上の露光量の分布のコントラストが最小にな
る。
However, laser light has high spatial coherence (coherence), and interference fringes called speckle patterns are generated while passing through the illumination optical system, which causes uneven illuminance on the reticle and the substrate. is there. Therefore, when a laser light is used as the exposure light in a conventional projection exposure apparatus of the batch exposure type such as a normal stepper, in order to reduce the illuminance unevenness due to the speckle pattern, the fly eye in the illumination optical system is reduced. A vibrating mirror was placed in front of the lens (optical integrator).
Then, during one exposure, by scanning the laser light incident on the optical integrator with the vibrating mirror, the exposure is performed while changing the phase of the speckle pattern (interference fringe) generated on the reticle and the substrate. ,
The exposure amount on the entire surface of each shot area on the substrate is made uniform. In this case, the contrast of the distribution of the exposure amount on the substrate is minimized by swinging the vibrating mirror so that the phase of the interference fringes changes by 2π during one exposure.

【0004】[0004]

【発明が解決しようとする課題】最近は、半導体素子の
1個のチップサイズが大型化する傾向にあり、投影露光
装置においては、レチクル上のより大きな面積のパター
ンを基板上に露光する大面積化が求められている。斯か
る被転写パターンの大面積化及び投影光学系の露光フィ
ールドの制限に応えるために、例えば矩形、円弧状又は
6角形等の照明領域(これを「スリット状の照明領域」
という)に対してレチクル及び感光性の基板を同期して
走査することにより、レチクル上のパターンを逐次基板
上に露光する所謂スリットスキャン露光方式の投影露光
装置が開発されている。このようなスリットスキャン露
光方式の投影露光装置でも、露光光としてレーザ光のよ
うな空間コヒーレンスの高い光を使用する場合には、ス
ペックルパターンによる照度むらを低減させる必要があ
る。
Recently, the size of one chip of a semiconductor element tends to increase, and in a projection exposure apparatus, a large area for exposing a pattern of a larger area on a reticle onto a substrate. Is required. In order to meet such a large area of the transferred pattern and the limitation of the exposure field of the projection optical system, for example, a rectangular, arcuate, or hexagonal illumination area (this is referred to as a “slit-shaped illumination area”).
That is, a so-called slit scan exposure type projection exposure apparatus has been developed in which the pattern on the reticle is sequentially exposed on the substrate by scanning the reticle and the photosensitive substrate in synchronization. Even in such a slit scan exposure type projection exposure apparatus, when light with high spatial coherence such as laser light is used as the exposure light, it is necessary to reduce the illuminance unevenness due to the speckle pattern.

【0005】しかしながら、スリットスキャン露光方式
では、レチクル及び基板が走査されているためスッペク
ルパターンの出現する位相が時間変化する。従って先
ず、レチクル及び基板の走査方向が問題となる。次に一
括露光方式のときに用いた振動ミラーを併用する場合、
その走査方向並びにレチクル及び基板の走査速度に合わ
せて振動ミラーをどのように制御するかが問題になる。
However, in the slit scan exposure method, since the reticle and the substrate are scanned, the phase in which the speckle pattern appears changes with time. Therefore, first, the scanning direction of the reticle and the substrate becomes a problem. Next, when using the vibration mirror used in the batch exposure method together,
A problem is how to control the vibrating mirror according to the scanning direction and the scanning speeds of the reticle and the substrate.

【0006】例えば、図7(a)〜(d)はスリット状
の照明領域51に対してX方向(走査方向SR)にレチ
クルRを走査する状態を示し、図7(a)の状態から図
7(d)の状態にかけて、次第にレチクルRのパターン
領域PAが相対的に照明領域51により走査される。従
って、レチクルRのパターン領域PAではX方向に対し
ては実質的に走査が行われているが、X方向に垂直なY
方向(非走査方向)に対しては静止状態であるため、走
査方向と非走査方向とでスペックルパターンの影響が異
なっている。
For example, FIGS. 7A to 7D show a state in which the reticle R is scanned in the X direction (scanning direction SR) with respect to the slit-shaped illumination region 51. From the state of FIG. 7D, the pattern area PA of the reticle R is gradually scanned by the illumination area 51 relatively. Therefore, the pattern area PA of the reticle R is substantially scanned in the X direction, but is scanned in the Y direction perpendicular to the X direction.
Since it is stationary in the direction (non-scanning direction), the influence of the speckle pattern is different in the scanning direction and the non-scanning direction.

【0007】本発明は斯かる点に鑑み、スリットスキャ
ン露光方式の露光装置で空間コヒーレンスの高い光を露
光光として使用する場合に、スペックルパターンによる
照度むらをできるだけ小さくすることを目的とする。
In view of the above-mentioned problems, it is an object of the present invention to minimize the illuminance unevenness due to the speckle pattern when using light with high spatial coherence as exposure light in an exposure apparatus of slit scan exposure system.

【0008】[0008]

【課題を解決するための手段】本発明による第1の露光
装置は、例えば図1及び図2に示すように、所定の空間
コヒーレンスを有する照明光(LB0)を発生する光源
(1)と、その照明光で所定形状の照明領域(15)を
照明する照明光学系(2〜14)と、照明領域(15)
に対して相対的に転写用のパターンが形成されたマスク
(R)及び感光性の基板(W)を同期して走査する相対
走査手段(32,34,35,RST,WST)とを有
し、マスク(R)のパターンを逐次基板(W)上に露光
する露光装置において、照明光(LB0)の空間コヒーレ
ンスの高い方向(方向H)を所定形状の照明領域(1
5)とマスク(R)との相対的な走査方向(方向SR)
と同一にしたものである。
A first exposure apparatus according to the present invention includes a light source (1) for generating illumination light (LB 0 ) having a predetermined spatial coherence, as shown in FIGS. 1 and 2, for example. An illumination optical system (2 to 14) that illuminates an illumination area (15) having a predetermined shape with the illumination light, and an illumination area (15)
A relative scanning means (32, 34, 35, RST, WST) for synchronously scanning the mask (R) having a transfer pattern formed thereon and the photosensitive substrate (W). , An exposure apparatus that sequentially exposes a pattern of a mask (R) onto a substrate (W), an illumination region (1) having a predetermined shape in a direction (direction H) in which the spatial coherence of illumination light (LB 0 ) is high.
5) Relative scanning direction between mask (R) and mask (direction SR)
It is the same as.

【0009】また、本発明による第2の露光装置は、例
えば図1及び図2に示すように、所定の空間コヒーレン
スを有するパルス光(LB0)を発生するパルス光源
(1)と、そのパルス光で所定形状の照明領域(15)
を照明する照明光学系(2〜14)と、照明領域(1
5)に対して相対的に転写用のパターンが形成されたマ
スク(R)及び感光性の基板(W)を同期して走査する
相対走査手段(32,34,35,RST,WST)と
を有し、マスク(R)のパターンを逐次基板(W)上に
露光する露光装置において、所定形状の照明領域(1
5)とマスク(R)との相対的な走査速度と、照明領域
(15)でのそのパルス光のスペックルパターンのその
相対的な走査方向(方向SR)のピッチとに応じて、照
明領域(15)でのそのパルス光のスペックルパターン
の位相をそのパルス光毎に変化させる位相可変手段
(8,9)を設けたものである。
The second exposure apparatus according to the present invention is, for example, as shown in FIGS. 1 and 2, a pulse light source (1) for generating pulsed light (LB 0 ) having a predetermined spatial coherence and its pulsed light source. Illumination area of a given shape with light (15)
And an illumination optical system (2 to 14) for illuminating
5) Relative scanning means (32, 34, 35, RST, WST) for synchronously scanning the mask (R) on which the transfer pattern is formed and the photosensitive substrate (W). In an exposure apparatus that has a pattern of a mask (R) and sequentially exposes it onto a substrate (W), an illumination area (1
5) according to the relative scanning speed between the mask (R) and the pitch of the speckle pattern of the pulsed light in the illumination area (15) in the relative scanning direction (direction SR). The phase varying means (8, 9) for changing the phase of the speckle pattern of the pulsed light in (15) is provided for each pulsed light.

【0010】この場合、そのパルス光の空間コヒーレン
スを検出する空間コヒーレンス検出手段(17,18)
と、このように検出されたそのパルス光の空間コヒーレ
ンスに応じて位相可変手段(8,9)の動作を制御する
制御手段(32)とを設けることが望ましい。
In this case, spatial coherence detecting means (17, 18) for detecting the spatial coherence of the pulsed light
It is desirable to provide a control means (32) for controlling the operation of the phase varying means (8, 9) according to the spatial coherence of the pulsed light thus detected.

【0011】[0011]

【作用】斯かる本発明の第1の露光装置によれば、予め
照明光(LB0)の光束に垂直な面内で空間コヒーレンス
(可干渉性の程度)の高い方向を計測しておき、所定形
状の照明領域(15)においてマスク(R)との相対的
な走査の方向(SR方向)に、その空間コヒーレンスの
高い方向を合わせている。従って、例えば図4に示すよ
うに、照明領域(15)上に形成される照明光によるス
ペックルパターンの走査方向(SR方向)の照度分布
は、分布曲線40のように所定ピッチで比較的大きい振
幅で変動する。また、その照明領域(15)上のスペッ
クルパターンの非走査方向(Y方向)の照度分布は、分
布曲線41のように比較的平坦である。この場合、走査
方向ではマスク(R)上の各点の照度分布は、それぞれ
分布曲線40のように変化して、実質的に振動ミラーで
走査した場合と同様になるため、照度むらは少ない。ま
た、非走査方向ではもともと照度むらは少ないため、マ
スク(R)及び基板(W)の全面で照度むらが少なくな
る。
According to the first exposure apparatus of the present invention, the direction of high spatial coherence (degree of coherence) is measured in advance in the plane perpendicular to the luminous flux of the illumination light (LB 0 ), The direction of high spatial coherence is aligned with the scanning direction (SR direction) relative to the mask (R) in the illumination region (15) of a predetermined shape. Therefore, for example, as shown in FIG. 4, the illuminance distribution in the scanning direction (SR direction) of the speckle pattern formed by the illumination light formed on the illumination region (15) is relatively large at a predetermined pitch as shown by the distribution curve 40. It fluctuates with the amplitude. Further, the illuminance distribution in the non-scanning direction (Y direction) of the speckle pattern on the illumination area (15) is relatively flat like a distribution curve 41. In this case, the illuminance distribution at each point on the mask (R) in the scanning direction changes like the distribution curve 40 and becomes substantially the same as when scanning with the vibrating mirror, so that the illuminance unevenness is small. Further, since the illuminance unevenness is originally small in the non-scanning direction, the illuminance unevenness is reduced over the entire surface of the mask (R) and the substrate (W).

【0012】また、本発明の第2の露光装置によれば、
照明光としてパルス光が使用されている。パルス光が例
えば遠紫外域のエキシマレーザ光(波長が例えば248
nm)である場合、光学系での色収差を消すことが容易
ではないため、パルス光源(1)では回折格子及びスリ
ット等を使用することによりスペクトル線幅を狭帯化し
たパルス光を発生する。そのため、図1において、光源
(1)から射出されるパルス光(LB0)は、水平方向
(H方向)で空間コヒーレンスが高く且つビーム幅が狭
くなっているが、垂直方向(V方向)では空間コヒーレ
ンスが低く且つビーム幅が広くなっている。従って、本
発明では光源(1)から射出されるパルス光(LB0)の
水平方向を、マスク(R)上のスリット状の照明領域
(15)の走査方向に設定する。
According to the second exposure apparatus of the present invention,
Pulsed light is used as the illumination light. Excimer laser light whose wavelength is far-ultraviolet (wavelength is, for example, 248)
Since it is not easy to eliminate the chromatic aberration in the optical system, the pulse light source (1) generates pulsed light having a narrow spectral line width by using a diffraction grating and a slit. Therefore, in FIG. 1, the pulsed light (LB 0 ) emitted from the light source (1) has high spatial coherence and a narrow beam width in the horizontal direction (H direction), but in the vertical direction (V direction). The spatial coherence is low and the beam width is wide. Therefore, in the present invention, the horizontal direction of the pulsed light (LB 0 ) emitted from the light source (1) is set to the scanning direction of the slit-shaped illumination area (15) on the mask (R).

【0013】この場合、そのパルス光(LB0)の水平方
向の幅と垂直方向の幅との比は、一般に通常のスリット
状の照明領域(15)の走査方向の幅と非走査方向の幅
との比よりも小さいため、例えば図3に示すような、2
枚のシリンドリカルレンズ38及び39を用いて、その
パルス光(LB0)の水平方向の幅を広げる必要がある。
このとき、入射するパルス光(LB0)の拡がり角を
θ1 、前段のシリンドリカルレンズ38の焦点距離をf
1 、後段のシリンドリカルレンズ39の焦点距離をf2
とすると、シリンドリカルレンズ39から射出されるパ
ルス光(LB)の拡がり角θ2 は、次のようになる。
In this case, the ratio of the width of the pulsed light (LB 0 ) in the horizontal direction to the width in the vertical direction is generally the width of the normal slit-shaped illumination area (15) in the scanning direction and the width in the non-scanning direction. Since it is smaller than the ratio of
It is necessary to widen the width of the pulsed light (LB 0 ) in the horizontal direction by using the single cylindrical lenses 38 and 39.
At this time, the divergence angle of the incident pulsed light (LB 0 ) is θ 1 , and the focal length of the preceding cylindrical lens 38 is f
1 , the focal length of the cylindrical lens 39 at the rear stage is f 2
Then, the spread angle θ 2 of the pulsed light (LB) emitted from the cylindrical lens 39 is as follows.

【0014】θ2 =(f1 /f2 )θ1 (1) 従って、水平方向のビーム幅を拡げるために、f1 <f
2 とすると、次のようになり、射出されるパルス光(L
B)の拡がり角θ2 は小さくなる。 θ1 >θ2 (2) 従って、ビーム幅を水平方向に拡げると、図4に示すよ
うに照明領域(15)の走査方向(SR方向)での空間
コヒーレンスは更に高くなる。そのため、走査方向には
コントラストの高いスペックルパターンが形成される。
これに対して非走査方向のスペックルパターンのコント
ラストは低いため、非走査方向では照度むらは少ない。
Θ 2 = (f 1 / f 2 ) θ 1 (1) Therefore, in order to expand the horizontal beam width, f 1 <f
If the value is 2 , the output is as follows, and the emitted pulsed light (L
The divergence angle θ 2 in B) becomes smaller. θ 1 > θ 2 (2) Therefore, when the beam width is expanded in the horizontal direction, the spatial coherence in the scanning direction (SR direction) of the illumination region (15) becomes higher as shown in FIG. Therefore, a speckle pattern with high contrast is formed in the scanning direction.
On the contrary, since the contrast of the speckle pattern in the non-scanning direction is low, the illuminance unevenness is small in the non-scanning direction.

【0015】その照明領域(15)の走査方向の照度分
布は例えば図5(a)の分布曲線40のようになる。マ
スク及び基板の走査方向をこの方向に選べば、走査によ
る位相ずれによって図5(b)のように様々な位相の波
の畳重になるので、積算効果によってスペックルの軽減
が見込まれる。但し、何等かの制御を行わない場合、走
査速度によっては、パルス発光のタイミングとスペック
ルパターンの位相がほぼ一致する形になり、マスク
(R)上の或る照射点では、例えば図5(a)の位置4
0C,40F,…の順に露光が行われ、別の照射点では
位置40B,40E,…の順に露光が行われて、積算効
果が見込めず、照度むらが軽減されない可能性もある。
これを避けるために、図5(a)の位置40C,40
F,40Iで、パルス発光が行われるような走査速度の
ときは、振動ミラーを走査させて、位置40Fで発光す
るときはδA、位置40Iで発光するときはδBだけ横
ずれさせるような走査制御をする。
The illuminance distribution in the scanning direction of the illumination area (15) is, for example, a distribution curve 40 in FIG. 5 (a). If the scanning direction of the mask and the substrate is selected in this direction, the phase shift due to the scanning causes the waves to be overlapped with each other in various phases as shown in FIG. 5B, so that speckle can be expected to be reduced by the integration effect. However, if some control is not performed, the timing of pulse emission and the phase of the speckle pattern are substantially in agreement with each other depending on the scanning speed, and at a certain irradiation point on the mask (R), for example, as shown in FIG. Position 4 in a)
The exposure is performed in the order of 0C, 40F, ... And the exposure is performed in the order of positions 40B, 40E, ... at another irradiation point, so that the integration effect cannot be expected and the illuminance unevenness may not be reduced.
In order to avoid this, the positions 40C and 40 in FIG.
When the scanning speed is such that pulsed light emission is performed at F and 40I, scanning control is performed such that the vibrating mirror is scanned and laterally displaced by δA when light is emitted at position 40F and by δB when light is emitted at position 40I. To do.

【0016】これによりマスク(R)上の各照射点は、
図5(b)の分布曲線40,42,43という、パルス
数に応じて等分されて、異なる位相のスッペクルパター
ンをもつ照度で露光されるため、積算露光量は平均化さ
れ、マスク(R)上の走査方向での照度むらは低減され
る。即ち、マスク(R)上の任意の照射点において、
n,mを整数として、パルス発光毎に分布曲線40上の
走査方向の位相が0,2mπ+(2π/n),4mπ+
(4π/n),6mπ+(6π/n),・・・,2(n
−1)mπ+2(n−1)π/n,・・・となるよう
に、位相可変手段(8,9)の動作を制御することによ
り、走査方向の照度むらが低減される。
As a result, each irradiation point on the mask (R) is
The distribution curves 40, 42, and 43 in FIG. 5B, which are equally divided according to the number of pulses, are exposed with illuminance having speckle patterns of different phases, so the integrated exposure amounts are averaged, and the mask ( Irregularity unevenness in the scanning direction on R) is reduced. That is, at any irradiation point on the mask (R),
The phase in the scanning direction on the distribution curve 40 is 0,2mπ + (2π / n), 4mπ + for each pulse emission, where n and m are integers.
(4π / n), 6mπ + (6π / n), ..., 2 (n
By controlling the operation of the phase varying means (8, 9) so that −1) mπ + 2 (n−1) π / n, ..., Irregularity unevenness in the scanning direction is reduced.

【0017】また、そのパルス光の空間コヒーレンスを
検出する空間コヒーレンス検出手段(17,18)と、
このように検出されたそのパルス光の空間コヒーレンス
に応じて位相可変手段(8,9)の動作を制御する制御
手段(32)とを設けた場合には、検出された空間コヒ
ーレンスに応じて、マスク(R)及び基板(W)上での
スペックルパターンに起因する照度むらが最小になるよ
うに、位相可変手段(8,9)の動作を制御する。
Further, spatial coherence detecting means (17, 18) for detecting the spatial coherence of the pulsed light,
When the control means (32) for controlling the operation of the phase varying means (8, 9) according to the spatial coherence of the pulsed light thus detected is provided, according to the detected spatial coherence, The operation of the phase varying means (8, 9) is controlled so that the illuminance unevenness due to the speckle pattern on the mask (R) and the substrate (W) is minimized.

【0018】[0018]

【実施例】以下、本発明による露光装置の一実施例につ
き図面を参照して説明する。本実施例は、露光光の光源
としてパルス発振型のレーザ光源を使用したスリットス
キャン露光方式の投影露光装置に本発明を適用したもの
である。図1は本例の投影露光装置の光学系を示し、こ
の図1において、エキシマレーザ光源1から射出された
遠紫外域(波長は例えば248nm)のレーザビームL
0 は、紫外用反射ミラーM1,M2,M3及びM4を
介してシリンドリカルレンズを含むビーム整形光学系2
に入射する。エキシマレーザ光源1から射出されたレー
ザビームLB0 の断面形状は、水平方向(H方向)の幅
が垂直方向(V方向)の幅よりかなり狭い細長い矩形で
あり、ビーム整形光学系2では、レーザビームLB0
水平方向の幅を拡げ、後述のスリット状の照明領域15
の縦横比とほぼ同じ縦横比の断面形状のレーザビームL
Bを射出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an exposure apparatus according to the present invention will be described below with reference to the drawings. The present embodiment is an application of the present invention to a slit scan exposure type projection exposure apparatus using a pulse oscillation type laser light source as a light source of exposure light. FIG. 1 shows an optical system of the projection exposure apparatus of this example. In FIG. 1, a laser beam L in the far ultraviolet region (wavelength is 248 nm, for example) emitted from an excimer laser light source 1 is shown.
B 0 is a beam shaping optical system 2 including a cylindrical lens via the ultraviolet reflection mirrors M1, M2, M3 and M4.
Incident on. The cross-sectional shape of the laser beam LB 0 emitted from the excimer laser light source 1 is an elongated rectangle whose width in the horizontal direction (H direction) is considerably narrower than that in the vertical direction (V direction). The width of the beam LB 0 in the horizontal direction is expanded, and a slit-shaped illumination region 15 described later is formed.
A laser beam L having a cross-sectional shape with an aspect ratio substantially the same as that of
Eject B.

【0019】図3は、ビーム整形光学系2の構成を示
し、この図3に示すように、入射するレーザビームLB
0 は、焦点距離f1 のシリンドリカルレンズ38及び焦
点距離f2(f2 >f1)のシリンドリカルレンズ39を経
て、断面形状の水平方向の幅がf2/f1 倍に拡大され
る。入射するレーザビームLB0 の拡がり角をθ1
すると、射出されるレーザビームLBの拡がり角θ
2 は、拡がり角θ1 のf1/f2に減少している。一般
に、光束の空間コヒーレンスは拡がり角が小さい程高い
ため、射出されるレーザビームLBの水平方向(H方
向)の空間コヒーレンスは、入射するレーザビームLB
0 よりも高められている。
FIG. 3 shows the structure of the beam shaping optical system 2. As shown in FIG. 3, the incident laser beam LB is used.
0 passes through the cylindrical lens 38 having the focal length f 1 and the cylindrical lens 39 having the focal length f 2 (f 2 > f 1 ), and the width in the horizontal direction of the sectional shape is expanded to f 2 / f 1 times. When the divergence angle of the incident laser beam LB 0 is θ 1 , the divergence angle θ of the emitted laser beam LB is
2 is decreased to f 1 / f 2 of the divergence angle theta 1. Generally, the smaller the divergence angle is, the higher the spatial coherence of the light beam is. Therefore, the spatial coherence in the horizontal direction (H direction) of the emitted laser beam LB is equal to that of the incident laser beam LB.
It is higher than 0 .

【0020】図1に戻り、ビーム整形光学系2から射出
されたレーザビームLBは、紫外用反射ミラーM5で折
り曲げられてビームエクスパンダー(又はズームレン
ズ)3に入射し、所定の断面寸法にまで断面形状が拡大
される。ビームエクスパンダー3から射出された平行な
レーザビームLBは、偏光手段としての水晶プリズム4
に入射し、2つの直交する偏光成分に分離される。この
ように分離された2つの偏光成分は、光路補正用の石英
ガラスプリズム5に入射し、ビームの進行方向が補正さ
れる。その後、2つの偏光成分のレーザビームは、1段
目のフライアイレンズ6及びリレーレンズ7を経て、振
動ミラー8で折り曲げられる。振動ミラー8は駆動装置
9により、水平面上の所定の角度範囲内でレーザビーム
を適切な制御方法で走査する。
Returning to FIG. 1, the laser beam LB emitted from the beam shaping optical system 2 is bent by the ultraviolet reflection mirror M5 and enters the beam expander (or zoom lens) 3 to reach a predetermined cross-sectional size. The cross-sectional shape is enlarged. The parallel laser beam LB emitted from the beam expander 3 is a crystal prism 4 as a polarization means.
And is split into two orthogonal polarization components. The two polarization components thus separated enter the quartz glass prism 5 for optical path correction, and the traveling direction of the beam is corrected. After that, the laser beams of the two polarization components pass through the first-stage fly-eye lens 6 and the relay lens 7, and are then bent by the vibrating mirror 8. The oscillating mirror 8 scans the laser beam with a suitable control method within a predetermined angle range on a horizontal plane by a driving device 9.

【0021】振動ミラー8で走査されるレーザビーム
が、リレーレンズ10を経て2段目のフライアイレンズ
11に入射し、その射出側の焦点面に多数の3次光源
(スポット光)が結像され、これら多数の3次光源から
のレーザビームが、更に集光レンズ12によって集光さ
れミラー13で曲り折げられて、メインコンデンサーレ
ンズ14に入射する。多数の3次光源からのレーザビー
ムはメインコンデンサーレンズ14によって、レチクル
R上の短辺方向の幅がDの長方形の照明領域15に重量
して照射される。その照明領域15内のパターン像が投
影光学系PLを介してウエハW上の長方形の露光領域1
6内に結像投影される。
The laser beam scanned by the oscillating mirror 8 enters the second stage fly-eye lens 11 through the relay lens 10, and a large number of tertiary light sources (spot lights) are imaged on the focal plane on the exit side. The laser beams from the large number of tertiary light sources are further condensed by the condenser lens 12, are bent by the mirror 13, and enter the main condenser lens 14. The laser beams from a large number of tertiary light sources are applied by the main condenser lens 14 to the rectangular illumination region 15 having a width D in the short side direction on the reticle R in a weighted manner. The pattern image in the illumination area 15 is a rectangular exposure area 1 on the wafer W via the projection optical system PL.
The image is projected in the area 6.

【0022】この場合、投影光学系PLの光軸に平行に
Z軸を取り、その光軸に垂直なXY平面内のX軸を長方
形の照明領域15の短辺方向に取る。そして、本例で
は、投影光学系PLの投影倍率をβとして、照明領域1
5に対してレチクルRをX方向(これを「走査方向S
R」とする)に速度Vで走査するのと同期して、ウエハ
Wを−X方向(これを「走査方向SW」とする)に速度
β・Vで走査することにより、レチクルRのパターン領
域PA内の回路パターン像が逐次ウエハWのショット領
域に投影露光される。
In this case, the Z axis is taken parallel to the optical axis of the projection optical system PL, and the X axis in the XY plane perpendicular to the optical axis is taken in the short side direction of the rectangular illumination area 15. In this example, the projection magnification of the projection optical system PL is β, and the illumination area 1
5 with the reticle R in the X direction
(R)) at a speed of V and in synchronism with the scanning of the wafer W at a speed of .beta..V in the -X direction (referred to as "scanning direction SW"). The circuit pattern image in the PA is successively projected and exposed on the shot area of the wafer W.

【0023】図1において、エキシマレーザ光の空間コ
ヒーレンスを調べるために、集光レンズL1を紫外用反
射ミラーM5の後ろに設置し、紫外用反射ミラーM5で
の漏れ光を集光レンズL1の後側焦点位置に集光させ、
その焦点位置に設置したCCDよりなる2次元撮像素子
17で2次元的に分布する漏れ光を受光する。そして、
2次元撮像素子17からの撮像信号を画像処理系18で
処理することで、レーザビームの発散角を測定するよう
にした。レーザビームの発散角は空間コヒーレンスに対
して反比例の関係にあるため、その測定した発散角によ
り、照明領域15上での走査方向SR及び非走査方向の
空間コヒーレンスを算出することができる。
In FIG. 1, in order to examine the spatial coherence of the excimer laser light, a condenser lens L1 is installed behind the ultraviolet reflection mirror M5, and leakage light from the ultraviolet reflection mirror M5 is collected after the condenser lens L1. Focus on the side focal position,
Two-dimensionally distributed leak light is received by a two-dimensional image pickup device 17 formed of a CCD installed at the focal position. And
The divergence angle of the laser beam is measured by processing the image pickup signal from the two-dimensional image pickup device 17 by the image processing system 18. Since the divergence angle of the laser beam is inversely proportional to the spatial coherence, the measured divergence angle can calculate the spatial coherence in the scanning direction SR and the non-scanning direction on the illumination region 15.

【0024】図2は、図1の投影露光装置の制御系を示
し、この図2において、エキシマレーザ光源1内には、
レーザ発振の媒体となるガスや発振トリガ用の電極を封
入したレーザチューブ21、共振器を構成する所定の反
射率(100%未満)を持ったフロントミラー22、そ
の共振器のリアミラー23、波長選択用の開口板29、
波長選択及び波長狭帯化用のプリズム24、及び反射型
回折格子25等が、光学素子として設けられている。更
に、エキシマレーザ光源1には、レーザチューブ21内
の電極に高電圧を印加して発振を行わせるための発振制
御部26、発振されるレーザビームの絶対波長を常に一
定にするために、回折格子25の傾斜角を調整する波長
調整駆動部27、及びリアミラー23の傾きを調整する
ための駆動部28等が設けられている。
FIG. 2 shows a control system of the projection exposure apparatus shown in FIG. 1. In FIG.
A laser tube 21 enclosing a gas serving as a medium for laser oscillation and an electrode for oscillation trigger, a front mirror 22 having a predetermined reflectance (less than 100%) constituting a resonator, a rear mirror 23 of the resonator, and wavelength selection. Aperture plate 29 for
A prism 24 for wavelength selection and wavelength narrowing, a reflective diffraction grating 25, and the like are provided as optical elements. Further, in the excimer laser light source 1, an oscillation control unit 26 for applying a high voltage to the electrodes in the laser tube 21 to cause oscillation, and in order to keep the absolute wavelength of the oscillated laser beam constant, A wavelength adjustment drive unit 27 for adjusting the inclination angle of the grating 25, a drive unit 28 for adjusting the inclination of the rear mirror 23, and the like are provided.

【0025】また、フロントミラー22から射出された
レーザビームの一部を、ビームスプリッター30を介し
て波長検出器(分光器等)3に導き、波長検出器31で
レーザビームの波長を検出し、検出した波長を波長調整
駆動部27に伝達する。波長調整駆動部27は、波長検
出器31で検出された波長に応じて、予め定められた絶
対波長との差が規格内になるように回折格子25の傾斜
角を変化させる。また、2次元撮像素子17からの撮像
信号を画像処理系18で処理して検知されるビーム発散
角に応じた信号(具体的には、2次元撮像素子17上に
作られたビームスポットの大きさに応じた信号)は、エ
キシマレーザ光源1のリアミラー23の駆動部28へフ
ィードバックされると共に、装置全体の動作を制御する
主制御装置32へも送られる。駆動部28は予め定めら
れた値に対して実測されたビームの発散角の値が、許容
範囲以上に外れているときは、リアミラー23の傾斜角
を変化させる。
Further, a part of the laser beam emitted from the front mirror 22 is guided to a wavelength detector (spectrometer, etc.) 3 through a beam splitter 30, and a wavelength detector 31 detects the wavelength of the laser beam. The detected wavelength is transmitted to the wavelength adjustment drive unit 27. The wavelength adjustment drive unit 27 changes the tilt angle of the diffraction grating 25 according to the wavelength detected by the wavelength detector 31 so that the difference from a predetermined absolute wavelength is within the standard. Further, a signal corresponding to the beam divergence angle detected by processing the image pickup signal from the two-dimensional image pickup device 17 by the image processing system 18 (specifically, the size of the beam spot formed on the two-dimensional image pickup device 17). The signal corresponding to this is fed back to the drive unit 28 of the rear mirror 23 of the excimer laser light source 1, and is also sent to the main controller 32 that controls the operation of the entire apparatus. The drive unit 28 changes the tilt angle of the rear mirror 23 when the value of the beam divergence angle actually measured with respect to a predetermined value is out of the allowable range.

【0026】また、図1のレチクルRの位置決め及び走
査は図2のレチクルステージRSTによって行われ、ウ
エハWの位置決め及び走査は図2のウエハステージWS
Tによって行われる。レチクルステージRSTは、1チ
ップのパターンが描かれたレチクルRの照射範囲を順次
変えるために、レチクルRの走査を行う。ウエハステー
ジWSTは、ウエハW上の複数のショット領域の夫々に
対してレチクルRのパターン像が露光されるように、X
方向及びY方向にステップ・アンド・リピート方式でウ
エハWを移動させる機能と、レチクルRの照射範囲に応
じてレチクルRの走査に同期してウエハWを走査する機
能とを合わせ持つ。
Positioning and scanning of the reticle R of FIG. 1 is performed by the reticle stage RST of FIG. 2, and positioning and scanning of the wafer W is performed of the wafer stage WS of FIG.
Performed by T. Reticle stage RST scans reticle R in order to sequentially change the irradiation range of reticle R on which a one-chip pattern is drawn. Wafer stage WST performs X-ray exposure so that each of the plurality of shot areas on wafer W is exposed with the pattern image of reticle R.
It has both the function of moving the wafer W by the step-and-repeat method in the Y direction and the Y direction, and the function of scanning the wafer W in synchronization with the scanning of the reticle R according to the irradiation range of the reticle R.

【0027】主制御装置32は、発振制御部26を介し
てエキシマレーザ光源1の発振を制御し、ウエハステー
ジ制御系34及びレチクルステージ制御系35を介して
それぞれウエハステージWST及びレチクルステージR
STの動作を制御する。そして、主制御装置32は、駆
動装置9を介して振動ミラー8の振動の振幅及び周期等
を制御する。また、主制御装置32には、入力装置とし
てのキーボード36、座標入力装置(所謂マウス)37
や出力装置としての表示部(CRTディスプレイ、メー
タ等)33等が接続されている。キーボード36及び座
標入力装置37は、或るウエハの露光処理にあたって1
ショット領域当り何パルスで露光するかを予め指定する
ことの他に、種々のシーケンス設定やパラメータ設定の
ために使われる。
Main controller 32 controls the oscillation of excimer laser light source 1 via oscillation controller 26, and wafer stage WST and reticle stage R via wafer stage control system 34 and reticle stage control system 35, respectively.
Controls ST operation. Then, the main controller 32 controls the amplitude and cycle of the vibration of the vibrating mirror 8 via the driving device 9. Further, the main controller 32 includes a keyboard 36 as an input device and a coordinate input device (so-called mouse) 37.
A display unit (CRT display, meter, etc.) 33 as an output device is connected. The keyboard 36 and the coordinate input device 37 are used for exposure processing of a wafer.
It is used for various sequence settings and parameter settings in addition to specifying in advance how many pulses are to be exposed per shot area.

【0028】また、主制御装置32は、予備発振中のエ
キシマレーザ光源1からのレーザビームのビーム発散角
の情報を画像処理系18から受け取り、スループットを
下げないで、スペックルパターンを最も小さくするよう
に最適化された発振周波数、及びウエハW上の1つのシ
ョット領域に照射されるレーザビームのパルス数を決定
して、発振制御部26に指令を発する。並行して主制御
装置32は、振動ミラー8の振動周期、振幅、及び位相
を決定して駆動装置9に指令を発すると共に、レチクル
ステージ制御系35およびウエハステージ制御系34に
は、最適な走査速度を決定して指令を出す。
Further, the main controller 32 receives the information of the beam divergence angle of the laser beam from the excimer laser light source 1 during pre-oscillation from the image processing system 18 to minimize the speckle pattern without lowering the throughput. The oscillation frequency optimized as described above and the pulse number of the laser beam with which one shot area on the wafer W is irradiated are determined, and a command is issued to the oscillation control unit 26. In parallel, main controller 32 determines the vibration cycle, amplitude, and phase of vibrating mirror 8 and issues a command to driving device 9, while reticle stage control system 35 and wafer stage control system 34 perform optimum scanning. Determine the speed and issue a command.

【0029】次に、本例でレチクルR及びウエハW上の
照度むらを低減させるための構成につき説明する。先
ず、本例では、図1においてエキシマレーザ光源1から
射出されるレーザビームLB0 の空間コヒーレンスは水
平方向(H方向)に高くなっている。そこで、そのレー
ザビームLB0 の空間コヒーレンスの高い方向が照明領
域15の短辺方向、即ち走査方向SRになるように、照
明光学系を構成する。これにより、レチクルR上の照明
領域15上に形成されるレーザビームのスペックルパタ
ーンは、走査方向SRのコントラストが高く、非走査方
向(Y方向)のコントラストが低くなっている。
Next, a configuration for reducing the illuminance unevenness on the reticle R and the wafer W in this example will be described. First, in this example, the spatial coherence of the laser beam LB 0 emitted from the excimer laser light source 1 in FIG. 1 is high in the horizontal direction (H direction). Therefore, the illumination optical system is configured such that the direction in which the spatial coherence of the laser beam LB 0 is high is the short side direction of the illumination region 15, that is, the scanning direction SR. As a result, the speckle pattern of the laser beam formed on the illumination area 15 on the reticle R has high contrast in the scanning direction SR and low contrast in the non-scanning direction (Y direction).

【0030】図1のレチクルR上及びウエハW上に生成
されるスペックルパターンには、フライアイレンズ6及
び11のレンズエレメントの配列に対応した周期的な成
分が含まれており、この干渉パターンのコントラスト
は、レチクルR上のX方向に高くなる。本例では、スペ
ックルパターンのコントラストを低減させるために、レ
ーザビームLBを、偏光手段としての水晶プリズム4に
より所定の角度をなす2つの偏光成分のレーザビームに
分離してレチクルRを照明している。その2つの偏光成
分の内の、第1の偏光成分のレーザビームによる照明領
域15の走査方向(X方向)の照度分布I(X)(相対
値)は、図6(a)の分布曲線40のように、所定ピッ
チで周期的に変化している。これに対して、第2の偏光
成分のレーザビームによる照度分布I(X)は、分布曲
線44で示すように分布曲線40に対してX方向に半ピ
ッチだけずれている。これにより全体の照度分布I
(X)は、図6(b)の分布曲線45となり、照度分布
の変動の振幅は低減される。
The speckle pattern generated on the reticle R and the wafer W in FIG. 1 contains a periodic component corresponding to the arrangement of the lens elements of the fly-eye lenses 6 and 11, and this interference pattern Contrast becomes higher in the X direction on the reticle R. In this example, in order to reduce the contrast of the speckle pattern, the laser beam LB is separated into two laser beams of two polarization components forming a predetermined angle by the crystal prism 4 as the polarization means, and the reticle R is illuminated. There is. Of the two polarization components, the illuminance distribution I (X) (relative value) in the scanning direction (X direction) of the illumination region 15 by the laser beam of the first polarization component is the distribution curve 40 in FIG. As described above, it periodically changes at a predetermined pitch. On the other hand, the illuminance distribution I (X) by the laser beam of the second polarization component is displaced from the distribution curve 40 by a half pitch in the X direction as shown by the distribution curve 44. As a result, the overall illuminance distribution I
(X) becomes the distribution curve 45 of FIG. 6 (b), and the amplitude of the fluctuation of the illuminance distribution is reduced.

【0031】図4は本例のレチクルR上の照明領域15
の照度分布を示し、レチクルR上には図4(a)に示す
ように走査方向SR(X方向)の幅Dの照明領域15が
形成されている。そして、照明領域15のX方向の照度
分布I(X)は、図4(b)の分布曲線40のように所
定ピッチで比較的大きな振幅で変化し、照明領域15の
Y方向の照度分布I(Y)は、図4(c)の分布曲線4
1のようにほぼ平坦である。従って、非走査方向である
Y方向での照度むらは小さくなっている。また、本例で
は、X方向での照度むらを、照明領域15に対するレチ
クルRの走査及び図1の振動ミラー8によるレーザビー
ムの走査により解消する。
FIG. 4 shows an illumination area 15 on the reticle R of this example.
4A, an illumination region 15 having a width D in the scanning direction SR (X direction) is formed on the reticle R as shown in FIG. The illuminance distribution I (X) in the X direction of the illumination area 15 changes with a relatively large amplitude at a predetermined pitch as shown by the distribution curve 40 in FIG. (Y) is the distribution curve 4 of FIG.
1 is almost flat. Therefore, the illuminance unevenness in the Y direction, which is the non-scanning direction, is small. Further, in this example, the uneven illuminance in the X direction is eliminated by scanning the reticle R on the illumination area 15 and scanning the laser beam by the vibrating mirror 8 in FIG.

【0032】図5(a)は、その照明領域15での1パ
ルス光当りの走査方向(X方向)の照度分布I(X)に
対応する分布曲線40を示し、原点からX座標がDまで
の領域が図4(a)の照明領域15の内部である。ま
た、照明領域15に対してレチクルRがX方向に走査さ
れると、レチクルR上の各照射点が図5(a)(図5
(b)も同様)のX軸に沿って移動していくものとす
る。
FIG. 5A shows a distribution curve 40 corresponding to the illuminance distribution I (X) in the scanning direction (X direction) per pulsed light in the illumination area 15, from the origin to the X coordinate of D. The area of is the inside of the illumination area 15 of FIG. Further, when the reticle R is scanned in the X direction with respect to the illumination area 15, each irradiation point on the reticle R is shown in FIG.
The same applies to (b)).

【0033】本例では、パルス発光が行われ、分布曲線
40のピッチをPX,1パルスのエネルギー密度及びレ
ジスト感度から求められる必要パルス数をnとすると
き、n回のパルス発光で、0,PX/n,2PX/n,
・・・,(n−1)PX/nの各位置にピークを持つ分
布曲線が得られるような走査速度(0,PX/n,2P
X/n,・・・,(n−1)PX/nの順にピークをも
つ分布曲線が出現する必要はない。n回のパルス発光
で、各々の位置にピークを持つ分布曲線が全て得られれ
ばよい。また、nが充分に大きくて、ピッチPXをn/
2,n/3,・・・等分した位置にピークを持つ分布曲
線が得られればよい場合もある。)が、予め決定されて
いる速度(照射領域Dを必要パルス数nで割ってレーザ
ーの発振周波数fを掛けた値V=(D/n)f)と一致
する場合、図1の振動ミラー8を走査させるまでもな
く、レチクルR上及びウエハW上での照度むらは最も効
率よく軽減される。
In this example, pulse emission is performed, and when the pitch of the distribution curve 40 is PX and the required number of pulses obtained from the energy density of one pulse and the resist sensitivity is n, 0, 0, PX / n, 2PX / n,
..., scanning speed (0, PX / n, 2P) such that a distribution curve having a peak at each position of (n-1) PX / n is obtained.
A distribution curve having peaks in the order of X / n, ..., (n-1) PX / n need not appear. It suffices to obtain all distribution curves having peaks at each position by n times of pulse emission. Further, n is sufficiently large and the pitch PX is n /
2, n / 3, ... In some cases, a distribution curve having peaks at equally divided positions may be obtained. ) Coincides with a predetermined speed (a value V = (D / n) f obtained by dividing the irradiation area D by the required pulse number n and multiplying by the oscillation frequency f of the laser), the vibrating mirror 8 in FIG. The unevenness of illuminance on the reticle R and the wafer W can be most efficiently reduced without scanning.

【0034】例えば、必要パルス数が3の場合には、1
パルス毎にレチクルRはX方向にD/3だけ移動する。
従って、図5(a)に示すように、レチクルR上の或る
照射点(X=0)では、間隔D/3の位置40A,40
E,40I,…の順に露光が行われ、X方向の露光量分
布を見ると、図5(b)の分布曲線40,42,43の
パルスの重ね合わせとなるため、積算露光量の光量むら
は、極めて小さくなる。レチクルRが1パルス毎に移動
する距離は、照明領域15の走査方向の幅Dの整数分の
1に予め設定されている。
For example, when the required number of pulses is 3, 1
The reticle R moves in the X direction by D / 3 for each pulse.
Therefore, as shown in FIG. 5A, at a certain irradiation point (X = 0) on the reticle R, the positions 40A and 40 at the interval D / 3 are set.
The exposure is performed in the order of E, 40I, ..., When the exposure amount distribution in the X direction is seen, the pulses of the distribution curves 40, 42, 43 in FIG. Becomes extremely small. The distance that the reticle R moves for each pulse is set in advance to an integral fraction of the width D of the illumination area 15 in the scanning direction.

【0035】但し、レチクルR及びウエハWの走査速度
は後述のようにウエハW上での適正露光量等により決定
されるため、必ずしも前記の条件が満足されない場合が
ある。このような場合には、図1の振動ミラー8を走査
して、0,PX/n,2PX/n,・・・,(n−1)
PX/nの位置にピークをもつ分布曲線が得られるよう
にする必要がある。
However, since the scanning speeds of the reticle R and the wafer W are determined by the proper exposure amount on the wafer W and the like as described later, the above conditions may not always be satisfied. In such a case, the oscillating mirror 8 of FIG. 1 is scanned and 0, PX / n, 2PX / n, ..., (n-1)
It is necessary to obtain a distribution curve having a peak at the position of PX / n.

【0036】具体的に必要パルス数が4の場合には、1
パルス毎にレチクルRは、X方向にD/4だけ移動す
る。従って、図5(a)に示すようにレチクルR上の或
る照射点(X=0)では、間隔がD/4の位置40A,
40D,40G,40K・・・の順に露光が行われ、別
の或る点、X=0の位置からD/6だけ離れた点では、
位置40C,40F,40I,40Lの順に露光が行わ
れるため、X方向の積算露光量の分布は、分布曲線40
の重ね合わせとなり、光量むらの軽減は全くされない。
そこで振動ミラー8を走査させる。例えば、位置40F
での露光のときはPX/4,位置40IのときはPX/
2,位置40Lのときは3PX/4だけ振動ミラー8の
走査によって位相を変えると、図5(c)のように異な
る4種類の位相の波の重畳となり、照度むらが極めて小
さくなる。図5(c)で、分布曲線46,47,48
は、分布曲線40から振動ミラー8によってそれぞれ位
相をPX/4,PX/2,3PX/4だけ変えたもので
ある。
Specifically, when the required number of pulses is 4, 1
For each pulse, the reticle R moves in the X direction by D / 4. Therefore, at a certain irradiation point (X = 0) on the reticle R as shown in FIG.
Exposure is performed in the order of 40D, 40G, 40K ... At another certain point, that is, a point separated by D / 6 from the position of X = 0,
Since the exposure is performed in the order of the positions 40C, 40F, 40I, and 40L, the distribution of the integrated exposure amount in the X direction is the distribution curve 40.
The light intensity unevenness is not reduced at all.
Then, the vibrating mirror 8 is scanned. For example, position 40F
PX / 4 for exposure at 4 and PX / for position 40I
When the position is 2 and the position is 40L, if the phase is changed by scanning the vibrating mirror 8 by 3PX / 4, waves of four different phases are superposed as shown in FIG. In FIG. 5C, the distribution curves 46, 47, 48
Are obtained by changing the phase from the distribution curve 40 by the vibrating mirror 8 by PX / 4, PX / 2, and 3PX / 4, respectively.

【0037】次に、レチクルR及びウエハWの走査速度
につき説明する。先ずウエハWの走査速度は、ウエハW
に与える適正露光量(これはウエハW上に塗布されてい
るレジストの感度により定まる)と、パルス毎のエネル
ギー量とによって決定される。エキシマレーザ光源1の
ような光源の場合、パルス毎に放出されるエネルギー量
が異なるので、照明光学系の中で減光して、パルス数を
増やして露光することによって、その積算効果でウエハ
Wに与える露光量のばらつきが少なくなるように、パル
ス毎のエネルギー量は決定される。
Next, the scanning speed of the reticle R and the wafer W will be described. First, the scanning speed of the wafer W is
Exposure amount (determined by the sensitivity of the resist coated on the wafer W) and the amount of energy for each pulse. In the case of a light source such as the excimer laser light source 1, the amount of energy emitted for each pulse is different, so by dimming in the illumination optical system and increasing the number of pulses for exposure, the wafer W has an integrated effect. The amount of energy for each pulse is determined so that the variation in the amount of exposure given to the laser is reduced.

【0038】ウエハに与える適正露光量をE、パルス毎
のエネルギー量(平均エネルギー量)をEP とすると、
露光パルス数はE/EP で表され、レチクルR上で一度
に照明される範囲の走査方向の長さ(即ち照明領域15
の走査方向の幅)はDであるため、1パルス毎のレチク
ルRの移動量は(EP /E)Dとなり、エキシマレーザ
光源1の発振周波数がf[Hz]のとき、レチクルRの
走査速度Vは、次式の値に設定される。
Let E be the proper amount of exposure given to the wafer and E P be the energy amount for each pulse (average energy amount).
The number of exposure pulses is represented by E / E P , and the length in the scanning direction of the range illuminated at one time on the reticle R (that is, the illumination area 15
The width of the reticle R for each pulse is (E P / E) D, and when the oscillation frequency of the excimer laser light source 1 is f [Hz], the reticle R is scanned. The speed V is set to the value of the following equation.

【0039】V=(EP /E)f・D (3) なお、上述実施例では照明領域15の非走査方向(図4
のY方向)へのスペックルパターンの走査は行っていな
かったが、非走査方向の照度むらをより軽減するために
は、例えば図1において振動ミラー8を垂直方向へ振る
ことにより、非走査方向へもスペックルパターンの走査
を行うことが望ましい。
V = (E P / E) f · D (3) In the above embodiment, the non-scanning direction of the illumination area 15 (see FIG. 4).
Although the speckle pattern was not scanned in the Y direction), in order to further reduce the unevenness in illuminance in the non-scanning direction, for example, by shaking the vibrating mirror 8 in the vertical direction in FIG. It is desirable to scan the speckle pattern on the bottom as well.

【0040】また、図4において、走査方向SR(X方
向)と非走査方向(Y方向)との両方にスペックルパタ
ーンを振動させるためには、X方向とY方向とに交差す
る方向にスペックルパターンを振動させても良い。
Further, in FIG. 4, in order to vibrate the speckle pattern in both the scanning direction SR (X direction) and the non-scanning direction (Y direction), the speckle pattern is vibrated in a direction intersecting the X direction and the Y direction. The pattern may be vibrated.

【0041】なお、空間コヒーレンスが高い方向とスキ
ャン方向とを一致させる方法には次のような手法もあ
る。 露光装置本体側でレチクル、ウエハをX、Y両方向に
スキャン可能に構成しておけば、本体とレーザ光源とを
接続させた後であっても、コヒーレンスが高い方向をス
キャン方向とするだけでよい。このとき、この決定され
たスキャン方向がレチクル上の照明領域の短手方向とな
るように、例えばレチクルブラインドで照明領域の形状
を設定する必要がある。 レーザ光源からのレーザ光の空間コヒーレンスの高い
方向が、スキャン方向と一致するように露光装置の照明
光学系に入射するレーザビームのコヒーレンスの高い方
向を、例えば複数枚のミラーによって調整すれば良い。
但しフライアイレンズ等の調整を行う必要があることも
ある。一般的にはコヒーレンスの高い方向を考慮して装
置を組むことが望ましい。
As a method of matching the direction in which the spatial coherence is high with the scanning direction, there is the following method. If the reticle and the wafer can be scanned in both the X and Y directions on the exposure apparatus main body side, even after the main body and the laser light source are connected, it suffices to set the scan direction to the direction with high coherence. . At this time, it is necessary to set the shape of the illumination area by, for example, a reticle blind so that the determined scanning direction is the lateral direction of the illumination area on the reticle. The direction of high coherence of the laser beam incident on the illumination optical system of the exposure apparatus may be adjusted by, for example, a plurality of mirrors so that the direction of high spatial coherence of the laser light from the laser light source matches the scanning direction.
However, it may be necessary to adjust the fly-eye lens or the like. Generally, it is desirable to assemble the device considering the direction of high coherence.

【0042】なお、本発明は上述実施例に限定されず、
例えば露光光としてYAGレーザーの高調波よりなるレ
ーザ光を用いる場合や、露光光として水銀ランプのi線
のような連続光を使用する場合など、本発明の要旨を逸
脱しない範囲で種々の構成を取り得ることは勿論であ
る。
The present invention is not limited to the above embodiment,
For example, when using laser light that is a harmonic of a YAG laser as the exposure light, or when using continuous light such as the i-line of a mercury lamp as the exposure light, various configurations are possible without departing from the scope of the present invention. Of course, it is possible.

【0043】[0043]

【発明の効果】本発明の第1の露光装置によれば、スッ
ペクルパターンの干渉縞のコントラストの高い方向が走
査方向に一致し、その走査方向の照度むらは照明領域と
マスク(基板)との相対的な走査で軽減されるため、ス
ペックルパターンによる照度むらが小さくなる利点があ
る。
According to the first exposure apparatus of the present invention, the direction in which the interference fringes of the speckle pattern have a high contrast coincides with the scanning direction, and the illuminance unevenness in the scanning direction between the illumination area and the mask (substrate). Since it is reduced by the relative scanning of, there is an advantage that the illuminance unevenness due to the speckle pattern is reduced.

【0044】また、第2の露光装置によれば、照明領域
とマスクとの相対的な走査速度と、その照明領域でのパ
ルス光のスペックルパターンの相対的な走査方向のピッ
チとに応じて、照明領域でのパルス光のスペックルパタ
ーンの位相をパルス光毎に変化させることができるた
め、スペックルパターンによる照度むらを小さくできる
利点がある。
Further, according to the second exposure apparatus, according to the relative scanning speed between the illumination area and the mask, and the relative scanning direction pitch of the speckle pattern of the pulsed light in the illumination area. Since the phase of the speckle pattern of the pulsed light in the illumination area can be changed for each pulsed light, there is an advantage that uneven illuminance due to the speckle pattern can be reduced.

【0045】また、パルス光の空間コヒーレンスを検出
する空間コヒーレンス検出手段と、このように検出され
たパルス光の空間コヒーレンスに応じて位相可変手段の
動作を制御する制御手段とを設けた場合には、特にスペ
ックルパターンによる照度むらを小さくできる。
Further, when the spatial coherence detecting means for detecting the spatial coherence of the pulsed light and the control means for controlling the operation of the phase varying means according to the spatial coherence of the pulsed light thus detected are provided, Especially, the unevenness of illuminance due to the speckle pattern can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の投影露光装置を示す斜視図
である。
FIG. 1 is a perspective view showing a projection exposure apparatus according to an embodiment of the present invention.

【図2】実施例の投影露光装置の制御系を示すブロック
図である。
FIG. 2 is a block diagram showing a control system of the projection exposure apparatus of the embodiment.

【図3】図1のビーム整形光学系2の一例を示す構成図
である。
3 is a configuration diagram showing an example of a beam shaping optical system 2 in FIG.

【図4】レチクルR上の照明領域15の照度分布を示す
斜視図である。
4 is a perspective view showing an illuminance distribution of an illumination area 15 on a reticle R. FIG.

【図5】(a)はレチクルR上の照明領域15の走査方
向の照度分布を示す図、(b)及び(c)はそれぞれス
ペックルパターンを振動させる場合の照明領域15の走
査方向の照度分布を示す図である。
5A is a diagram showing an illuminance distribution in a scanning direction of an illumination region 15 on a reticle R, and FIGS. 5B and 5C are illuminances in a scanning direction of the illumination region 15 when a speckle pattern is vibrated. It is a figure which shows distribution.

【図6】(a)は2方向からのレーザビームで照明領域
15を照明する場合の照明領域15の2つの照度分布を
示す図、(b)は図6(a)の2つの照度分布の和の照
度分布を示す図である。
6A is a diagram showing two illuminance distributions of the illumination region 15 when the illumination region 15 is illuminated with laser beams from two directions, and FIG. 6B is a diagram showing two illuminance distributions of FIG. 6A. It is a figure which shows the illuminance distribution of sum.

【図7】スリット状の照明領域に対するレチクルの走査
の様子を示す図である。
FIG. 7 is a diagram showing how a reticle is scanned with respect to a slit-shaped illumination area.

【符号の説明】[Explanation of symbols]

1 エキシマレーザ光源 6,7 フライアイレンズ 8 振動ミラー 15 照明領域 17 2次元撮像素子 18 画像処理系 R レチクル PL 投影光学系 W ウエハ RST レチクルステージ WST ウエハステージ 1 Excimer laser light source 6,7 Fly-eye lens 8 Vibration mirror 15 Illumination area 17 Two-dimensional image sensor 18 Image processing system R Reticle PL Projection optical system W Wafer RST Reticle stage WST Wafer stage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の空間コヒーレンスを有する照明光
を発生する光源と、前記照明光で所定形状の照明領域を
照明する照明光学系と、前記照明領域に対して相対的に
転写用のパターンが形成されたマスク及び感光性の基板
を同期して走査する相対走査手段とを有し、前記マスク
のパターンを逐次前記基板上に露光する露光装置におい
て、 前記照明光の空間コヒーレンスの高い方向を前記所定形
状の照明領域と前記マスクとの相対的な走査方向と同一
にしたことを特徴とする露光装置。
1. A light source for generating illumination light having a predetermined spatial coherence, an illumination optical system for illuminating an illumination area having a predetermined shape with the illumination light, and a transfer pattern relatively to the illumination area. In the exposure apparatus, which has a formed mask and a relative scanning unit that synchronously scans the photosensitive substrate, and sequentially exposes the pattern of the mask on the substrate, the direction in which the spatial coherence of the illumination light is high is An exposure apparatus, wherein an illumination area having a predetermined shape and a relative scanning direction of the mask are the same.
【請求項2】 所定の空間コヒーレンスを有するパルス
光を発生するパルス光源と、前記パルス光で所定形状の
照明領域を照明する照明光学系と、前記照明領域に対し
て相対的に転写用のパターンが形成されたマスク及び感
光性の基板を同期して走査する相対走査手段とを有し、
前記マスクのパターンを逐次前記基板上に露光する露光
装置において、 前記所定形状の照明領域と前記マスクとの相対的な走査
速度と、前記照明領域での前記パルス光のスペックルパ
ターンの前記相対的な走査方向のピッチとに応じて、前
記照明領域での前記パルス光のスペックルパターンの位
相を前記パルス光毎に変化させる位相可変手段を設けた
ことを特徴とする露光装置。
2. A pulse light source that generates pulsed light having a predetermined spatial coherence, an illumination optical system that illuminates an illumination area having a predetermined shape with the pulsed light, and a transfer pattern relative to the illumination area. And a relative scanning means for synchronously scanning the formed mask and the photosensitive substrate,
In an exposure apparatus that sequentially exposes the pattern of the mask onto the substrate, the relative scanning speed of the illumination region of the predetermined shape and the mask, and the relative speckle pattern of the pulsed light in the illumination region. The exposure apparatus is provided with a phase varying means for changing the phase of the speckle pattern of the pulsed light in the illumination area for each pulsed light in accordance with the pitch in the scanning direction.
【請求項3】 前記パルス光の空間コヒーレンスを検出
する空間コヒーレンス検出手段と、該検出された前記パ
ルス光の空間コヒーレンスに応じて前記位相可変手段の
動作を制御する制御手段と、を設けたことを特徴とする
請求項2記載の露光装置。
3. Spatial coherence detecting means for detecting the spatial coherence of the pulsed light, and control means for controlling the operation of the phase varying means in accordance with the detected spatial coherence of the pulsed light are provided. The exposure apparatus according to claim 2, wherein:
JP14101693A 1993-06-11 1993-06-11 Exposure method and apparatus Expired - Lifetime JP3265503B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14101693A JP3265503B2 (en) 1993-06-11 1993-06-11 Exposure method and apparatus
US08/255,927 US5534970A (en) 1993-06-11 1994-06-07 Scanning exposure apparatus
KR1019940013279A KR100296779B1 (en) 1993-06-11 1994-06-11 Scanning-type exposure apparatus and device manufacturing method using the apparatus
US09/112,380 USRE37309E1 (en) 1993-06-11 1998-07-09 Scanning exposure apparatus
KR1019990038118A KR100311432B1 (en) 1993-06-11 1999-09-08 Scanning exposure method, scanning type exposure apparatus, and method of fabricating a device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14101693A JP3265503B2 (en) 1993-06-11 1993-06-11 Exposure method and apparatus

Publications (2)

Publication Number Publication Date
JPH06349701A true JPH06349701A (en) 1994-12-22
JP3265503B2 JP3265503B2 (en) 2002-03-11

Family

ID=15282240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14101693A Expired - Lifetime JP3265503B2 (en) 1993-06-11 1993-06-11 Exposure method and apparatus

Country Status (1)

Country Link
JP (1) JP3265503B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189444A (en) * 1996-11-25 1998-07-21 Svg Lithography Syst Inc Illumination system for use in scanning photolithographic apparatus
JP2002151391A (en) * 2000-11-10 2002-05-24 Canon Inc Scanning type exposure apparatus and method for manufacturing device
USRE38465E1 (en) 1994-12-14 2004-03-16 Nikon Corporation Exposure apparatus
US6788391B2 (en) 2001-06-13 2004-09-07 Canon Kabushiki Kaisha Illumination device, exposure apparatus and exposure method
US7154583B2 (en) 2003-02-19 2006-12-26 Nikon Corporation Movement method, exposure method and exposure apparatus, and device manufacturing method
JP2008160109A (en) * 2006-12-21 2008-07-10 Asml Netherlands Bv Lithographic apparatus and method
JP2008277618A (en) * 2007-05-01 2008-11-13 Gigaphoton Inc Discharge exciting laser device for exposure
EP1995769A1 (en) 2003-08-07 2008-11-26 Nikon Corporation Exposure method and exposure apparatus, stage unit, and device manufacturing method
EP2267759A2 (en) 2004-02-02 2010-12-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
JP2011040738A (en) * 2009-07-30 2011-02-24 Asml Netherlands Bv Lithographic apparatus and monitoring method
US7941232B2 (en) 2004-06-29 2011-05-10 Nikon Corporation Control method, control system, and program
JP2012103327A (en) * 2010-11-08 2012-05-31 Funai Electric Co Ltd Image display apparatus
JP2012151495A (en) * 2012-03-23 2012-08-09 Gigaphoton Inc Discharge pumped laser device for exposure use
EP2560192A2 (en) 2003-02-17 2013-02-20 Nikon Corporation Stage device, exposure apparatus, and method of manufacturing devices
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US8982320B2 (en) 2004-08-19 2015-03-17 Nikon Corporation Alignment information display method and its program, alignment method, exposure method, device production process, display system, display device, and program and measurement/inspection system
WO2015107976A1 (en) * 2014-01-16 2015-07-23 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9804508B2 (en) 2004-10-01 2017-10-31 Nikon Corporation Linear motor, stage apparatus, and exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38465E1 (en) 1994-12-14 2004-03-16 Nikon Corporation Exposure apparatus
JPH10189444A (en) * 1996-11-25 1998-07-21 Svg Lithography Syst Inc Illumination system for use in scanning photolithographic apparatus
JP2002151391A (en) * 2000-11-10 2002-05-24 Canon Inc Scanning type exposure apparatus and method for manufacturing device
US6788391B2 (en) 2001-06-13 2004-09-07 Canon Kabushiki Kaisha Illumination device, exposure apparatus and exposure method
EP3401947A1 (en) 2003-02-17 2018-11-14 Nikon Corporation Exposure apparatus, and method of manufacturing devices
EP2560192A2 (en) 2003-02-17 2013-02-20 Nikon Corporation Stage device, exposure apparatus, and method of manufacturing devices
EP3038138A1 (en) 2003-02-17 2016-06-29 Nikon Corporation Exposure apparatus, and method of manufacturing devices
US7154583B2 (en) 2003-02-19 2006-12-26 Nikon Corporation Movement method, exposure method and exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
EP2278401A2 (en) 2003-06-19 2011-01-26 Nikon Corporation Exposure apparatus and device manufacturing method
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
EP1995769A1 (en) 2003-08-07 2008-11-26 Nikon Corporation Exposure method and exposure apparatus, stage unit, and device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
EP2287893A2 (en) 2004-02-02 2011-02-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2267759A2 (en) 2004-02-02 2010-12-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
EP2284866A2 (en) 2004-02-02 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2287894A2 (en) 2004-02-02 2011-02-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2980834A1 (en) 2004-02-02 2016-02-03 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
EP3139401A1 (en) 2004-02-02 2017-03-08 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2960927A2 (en) 2004-02-02 2015-12-30 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
EP2998982A1 (en) 2004-02-02 2016-03-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7941232B2 (en) 2004-06-29 2011-05-10 Nikon Corporation Control method, control system, and program
US8982320B2 (en) 2004-08-19 2015-03-17 Nikon Corporation Alignment information display method and its program, alignment method, exposure method, device production process, display system, display device, and program and measurement/inspection system
US9804508B2 (en) 2004-10-01 2017-10-31 Nikon Corporation Linear motor, stage apparatus, and exposure apparatus
US10459350B2 (en) 2004-10-01 2019-10-29 Nikon Corporation Linear motor, stage apparatus, and exposure apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
JP2008160109A (en) * 2006-12-21 2008-07-10 Asml Netherlands Bv Lithographic apparatus and method
JP2008277618A (en) * 2007-05-01 2008-11-13 Gigaphoton Inc Discharge exciting laser device for exposure
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2011040738A (en) * 2009-07-30 2011-02-24 Asml Netherlands Bv Lithographic apparatus and monitoring method
JP2012103327A (en) * 2010-11-08 2012-05-31 Funai Electric Co Ltd Image display apparatus
JP2012151495A (en) * 2012-03-23 2012-08-09 Gigaphoton Inc Discharge pumped laser device for exposure use
WO2015107976A1 (en) * 2014-01-16 2015-07-23 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP2018173663A (en) * 2014-01-16 2018-11-08 株式会社ニコン Exposure apparatus, exposure method and method for manufacturing device
JPWO2015107976A1 (en) * 2014-01-16 2017-03-23 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method

Also Published As

Publication number Publication date
JP3265503B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
JP3265503B2 (en) Exposure method and apparatus
KR100296779B1 (en) Scanning-type exposure apparatus and device manufacturing method using the apparatus
JP3235078B2 (en) Scanning exposure method, exposure control device, scanning type exposure device, and device manufacturing method
US6704090B2 (en) Exposure method and exposure apparatus
US20170090300A1 (en) Controller for optical device, exposure method and apparatus, and method for manufacturing device
US5831716A (en) Slit-scanning type light exposure apparatus
US6496247B2 (en) Exposure apparatus and exposure method
JPH0567558A (en) Exposure method
JP2000021742A (en) Method of exposure and exposure equipment
JP4392879B2 (en) Projection exposure apparatus and device manufacturing method
US20030103196A1 (en) Exposure method and exposure apparatus
JP2002033272A (en) Method and device for exposure and device manufacturing method
JP3387073B2 (en) Scanning exposure equipment
JP3230101B2 (en) Projection exposure apparatus and method, and element manufacturing method
JP2985089B2 (en) Exposure control apparatus, exposure apparatus and method
JP3348928B2 (en) Scanning exposure method, scanning type exposure apparatus, and exposure amount control apparatus
JP2000133563A (en) Exposure method and aligner
JP3396037B2 (en) Exposure method and method for forming semiconductor element
JP3244075B2 (en) Scanning exposure method and device manufacturing method
JP3296484B2 (en) Scanning exposure method, scanning type exposure apparatus, and device manufacturing method
JP2606797B2 (en) Illumination device and illumination method using the same
JP3344476B2 (en) Scanning exposure method and device manufacturing method using the method
JPH09260260A (en) Projection aligner
JP2000036457A (en) Exposure control method and aligner thereof
JPH11317363A (en) Method of scanning exposure and manufacture of device using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 12

EXPY Cancellation because of completion of term