JPH06347418A - Laser scanner and image forming method - Google Patents

Laser scanner and image forming method

Info

Publication number
JPH06347418A
JPH06347418A JP15808693A JP15808693A JPH06347418A JP H06347418 A JPH06347418 A JP H06347418A JP 15808693 A JP15808693 A JP 15808693A JP 15808693 A JP15808693 A JP 15808693A JP H06347418 A JPH06347418 A JP H06347418A
Authority
JP
Japan
Prior art keywords
image
light
laser
laser beam
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15808693A
Other languages
Japanese (ja)
Other versions
JP3142991B2 (en
Inventor
Kazuo Moriya
一男 守矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP15808693A priority Critical patent/JP3142991B2/en
Publication of JPH06347418A publication Critical patent/JPH06347418A/en
Application granted granted Critical
Publication of JP3142991B2 publication Critical patent/JP3142991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To carry out observation equivalent to a case in which an object to be inspected is irradiated with a laser beam having the uniform intensity distribution notwithstanding that laser beam intensity presents the gauss distribution by moving light flux along plural cross sections while radiating the laser beam, whose light intensity presents the gauss distribution in the radial direction of the light flux, to the object to be inspected. CONSTITUTION:A laser device 201 radiates a laser beam 203 whose light intensity presents the gauss distribution in the radial direction of light flux. The laser beam 203 is condensed by a condensing lens 207 so as to have a prescribed light flux radius in an illuminating part 205. A stage device 211 moves light flux of the laser beam in the illuminating part 205 along plural cross sections of an object 209 to be inspected having an interval almost equal to the radius. Scattered light from the illuminating part 205 forms an image by a microscope 215, and an image signal is outputted by a TV camera 217. When the illuminating part 205 is set in an initial position on a desired cross section of the object 209 to be inspected, a computer 213 takes in and stores a signal from the camera 217 while moving the device 211.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザトモグラフィ装
置等においてレーザ光を使用して被検物体の一定領域を
走査する装置およびその走査により画像を形成する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for scanning a certain area of an object to be inspected by using a laser beam in a laser tomography apparatus and a method for forming an image by the scanning.

【0002】[0002]

【従来の技術】従来、半導体ウエハ等の被検物体の欠陥
等を評価するためのレーザトモグラフィ装置において
は、被検物体の観察断面に沿ってレーザ光束を移動さ
せ、その散乱光を順次光電変換して内部欠陥等の断面画
像を得るようにしている(特開平1−151243号公
報)。そして、立体的な散乱画像を得るためには、レー
ザ光束により一定間隔でスライスするようにして、上述
のような断面画像の複数を立体画像を構成するに必要な
一定間隔で得るようにしている(特開昭62−1674
1号公報)。
2. Description of the Related Art Conventionally, in a laser tomography apparatus for evaluating a defect or the like of an object to be inspected such as a semiconductor wafer, a laser beam is moved along an observation cross section of the object to be inspected and the scattered light is sequentially photoelectrically converted. A cross-sectional image of an internal defect or the like is obtained by conversion (Japanese Patent Laid-Open No. 1-151243). Then, in order to obtain a three-dimensional scattered image, the laser beam is sliced at a constant interval so that a plurality of cross-sectional images as described above are obtained at a constant interval necessary to form a stereoscopic image. (JP-A-62-1674
No. 1).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この従
来技術においては、レーザ光の強度Iは、図4に示すよ
うに光束の半径方向に関しガウス分布を呈するため、同
一サイズの内部欠陥等が被検物体内に均一に存在して
も、図5に示すように、得られた断面画像上では、個々
の欠陥等を照明するレーザ光部分のレーザ光の中心から
の距離に応じて異なった強度で現れる。したがって、こ
の画像データに基づいて内部欠陥等の粒子サイズを計測
しようとすると、誤差を生じるという問題がある。ま
た、これを解消するため、図6に示すような矩形型の強
度分布を有するレーザ光を用いることも考えられるが、
そのようなレーザ光はすぐに発散してしまうため、断面
画像の形成には適していない。
However, in this prior art, since the intensity I of the laser light exhibits a Gaussian distribution in the radial direction of the light flux as shown in FIG. 4, internal defects of the same size are detected. Even if they exist uniformly in the object, as shown in FIG. 5, on the obtained cross-sectional image, with different intensities according to the distance from the center of the laser light of the laser light portion that illuminates individual defects and the like. appear. Therefore, there is a problem that an error occurs when trying to measure the particle size of internal defects or the like based on this image data. In order to solve this, it is possible to use a laser beam having a rectangular intensity distribution as shown in FIG.
Such a laser beam diverges immediately and is not suitable for forming a cross-sectional image.

【0004】本発明の目的は、この従来技術の問題点に
鑑み、レーザ光強度がガウス分布を呈するにもかかわら
ず、均一な強度分布を有するレーザ光で照明した場合と
同等の観察が行えるようにすることにある。
In view of the problems of the prior art, it is an object of the present invention to make it possible to perform the same observation as when illuminated with laser light having a uniform intensity distribution, even though the laser light intensity exhibits a Gaussian distribution. Is to

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
本発明のレーザ走査装置は、光強度が光束の半径方向に
ついてガウス分布を呈するレーザ光を照射する手段、お
よびこのレーザ光の光束をその半径にほぼ等しい間隔を
相互に有する複数断面に沿って被検物体中を移動させる
手段を具備することを特徴とする。また、本発明の画像
形成方法は、光強度が光束の半径方向についてガウス分
布を呈するレーザ光を被検物体に照射し、そのレーザ光
をその半径にほぼ等しい間隔を相互に有する複数断面に
沿って被検物体中を移動させながら、そのレーザ光によ
る散乱光を検出して複数断層像を得ることを特徴とす
る。画像の形成は、例えば、前記複数断層像のうち隣接
して連続する複数を重畳して1つの断面画像を形成する
ことを含む。また、前記複数の断層像のうち隣接して連
続する複数の画像において見出される、被検物体内のあ
る1つの欠陥部分についての像に基きその像の位置が特
定され得る。
In order to achieve this object, a laser scanning device of the present invention comprises means for irradiating a laser beam whose light intensity exhibits a Gaussian distribution in the radial direction of the beam, and a beam of this laser beam. It is characterized in that it is provided with means for moving the object to be inspected along a plurality of cross-sections having intervals substantially equal to the radius. Further, the image forming method of the present invention irradiates the object to be inspected with laser light whose light intensity exhibits a Gaussian distribution in the radial direction of the light flux, and the laser light is irradiated along a plurality of cross sections having an interval substantially equal to the radius. While moving in the object to be inspected, scattered light due to the laser light is detected to obtain a plurality of tomographic images. Forming the image includes, for example, forming a single cross-sectional image by superimposing a plurality of adjacent to each other among the plurality of tomographic images. In addition, the position of an image can be specified on the basis of the image of a certain defective portion in the object to be detected, which is found in a plurality of adjacent and continuous images of the plurality of tomographic images.

【0006】[0006]

【作用】この構成において、光強度が光束の半径方向に
ついてガウス分布を呈するレーザ光を被検物体に照射
し、このレーザ光の光束をその半径にほぼ等しい間隔を
相互に有する被検物体の複数断面に沿って移動させる
と、各断面を照射するレーザ光の、光束および該複数断
面に直角なZ方向の光強度Iの分布は、図1に示すよう
に、各断面においては曲線103で示されるようにガウ
ス分布を有するが、各断面について重畳した場合は曲線
101で示されるように台形状となり、その上底に対応
する部分Cでは光強度が一定となる。したがって、少な
くともこの部分Cに対しては、各断面における散乱強度
を重ね合わせると、均一な照明光強度による観察が行わ
れる。したがって、光強度が大きくて光束の細いレーザ
光が広い範囲の画像形成に支障なく適用され、検出感度
の向上が図られる。
In this structure, the object to be inspected is irradiated with laser light whose light intensity exhibits a Gaussian distribution in the radial direction of the light beam, and a plurality of the object to be inspected having the light beams of the laser light mutually at intervals substantially equal to the radius thereof. When moved along the cross section, the distribution of the light flux I and the light intensity I in the Z direction perpendicular to the plurality of cross sections of the laser light irradiating each cross section is shown by a curve 103 in each cross section as shown in FIG. Although it has a Gaussian distribution as shown in the above, when it is overlapped for each cross section, it becomes trapezoidal as shown by the curve 101, and the light intensity becomes constant in the portion C corresponding to the upper bottom thereof. Therefore, at least with respect to this portion C, when the scattering intensities in each cross section are overlapped, observation with uniform illumination light intensity is performed. Therefore, the laser light having a high light intensity and a small luminous flux can be applied to the image formation in a wide range without any trouble, and the detection sensitivity can be improved.

【0007】以下、他の作用効果等も含め、実施例を用
いて詳細に説明する。
In the following, the other effects and the like will be described in detail using examples.

【0008】[0008]

【実施例】図2は本発明の一実施例に係る半導体ウエハ
等の内部欠陥を評価するためのレーザトモグラフィ装置
の構成を示す模式図である。同図に示すように、この装
置におけるレーザ走査装置は、光強度が光束の半径方向
についてガウス分布を呈するレーザ光を照射するレーザ
装置201およびこれが発するレーザ光203を集光し
て照明部分205において所定の光束半径aを有するよ
うに集光する集光レンズ207、ならびに照明部分20
5におけるレーザ光の光束をその半径aにほぼ等しい間
隔を相互に有する被検物体209の複数断面に沿って移
動させるためのステージ装置211、およびステージ装
置211を制御するコンピュータ213を備える。前記
光束半径aはこの場合、3〜10μmの範囲のいずれか
に設定される。また、照明部分205は集光点前後の±
100〜500μmの範囲であるが、その範囲は光束径
aがほぼ一定となるように選択される。
FIG. 2 is a schematic diagram showing the configuration of a laser tomography apparatus for evaluating internal defects in a semiconductor wafer or the like according to an embodiment of the present invention. As shown in the figure, the laser scanning device in this device is configured such that a laser device 201 for irradiating a laser beam whose light intensity exhibits a Gaussian distribution in the radial direction of the luminous flux and a laser beam 203 emitted by the laser device 201 are condensed and illuminated at an illumination portion 205. A condenser lens 207 that condenses light having a predetermined luminous flux radius a, and an illumination portion 20.
5 is provided with a stage device 211 for moving the light flux of the laser light along a plurality of cross sections of the object 209 to be inspected having a distance substantially equal to its radius a, and a computer 213 for controlling the stage device 211. In this case, the luminous flux radius a is set to any of the ranges of 3 to 10 μm. In addition, the illumination part 205 is ±
The range is 100 to 500 μm, and the range is selected so that the luminous flux diameter a is substantially constant.

【0009】215はレーザ光203による照明部分2
05からの散乱光に基き散乱像を結像する顕微鏡、21
7は顕微鏡215が結像する像を光電変換して映像信号
を出力するTVカメラ、219はTVカメラ217が出
力する映像信号を取り込み、A/D変換等の所定の画像
処理を施してコンピュータ213の記憶装置に蓄積する
画像処理装置、221は画像処理装置219が処理した
画像を表示する表示装置である。コンピュータ213は
画像処理装置219の動作も制御する。
Reference numeral 215 denotes an illumination portion 2 by the laser light 203.
A microscope for forming a scattered image based on scattered light from 05, 21
Reference numeral 7 denotes a TV camera that photoelectrically converts the image formed by the microscope 215 and outputs a video signal. Reference numeral 219 captures the video signal output by the TV camera 217, performs predetermined image processing such as A / D conversion, and performs computer 213. The image processing device 221 that stores the image in the storage device is a display device that displays the image processed by the image processing device 219. The computer 213 also controls the operation of the image processing device 219.

【0010】この構成において、不図示の位置決め手段
により照明部分205を被検物体209の所望の観察断
面上の初期位置に位置決めすると、コンピュータ213
はステージ装置211をx方向に移動させながら、画像
処理装置219により照明部分205からの散乱光に基
くTVカメラ217の出力を取り込み、画像データを記
憶装置に記憶してゆく。こうして1つの観察断面につい
て画像データの取込みが終了すると、次に、ステージ装
置211により被検物体209を前記半径aだけz方向
に移動させて次の観察断面の初期位置に照明部分205
を位置させてから、今度は逆方向のx方向に被検物体2
09を移動させながら同様にして画像データの取込みを
行う。
In this configuration, when the illuminating portion 205 is positioned at the initial position on the desired observation section of the object to be inspected 209 by the positioning means (not shown), the computer 213
While moving the stage device 211 in the x direction, the image processing device 219 captures the output of the TV camera 217 based on the scattered light from the illumination portion 205 and stores the image data in the storage device. When the acquisition of the image data for one observation section is completed in this way, the object 209 to be inspected is then moved in the z direction by the radius a by the stage device 211, and the illumination portion 205 is moved to the initial position of the next observation section.
Position, then the object to be measured 2 in the opposite x direction.
Image data is captured in the same manner while moving 09.

【0011】このようにして、複数の観察断面について
画像データの取込みを終了すると、画像処理装置219
を介し、各観察断面の画像データをx,y座標を対応さ
せてz方向に重ね合わせ、表示装置221上に表示する
ことができる。このようにして得られる重畳された画像
データは、ほぼ前記半径aに観察断面の数を掛けただけ
の厚みを有する範囲に含まれる散乱像の積分された断面
画像ということができる。
When the image data acquisition for a plurality of observation sections is completed in this way, the image processing device 219
The image data of each observation section can be displayed on the display device 221 by superimposing them in the z direction by associating the x and y coordinates with each other. The superimposed image data obtained in this manner can be said to be a cross-sectional image obtained by integrating the scatter image included in a range having a thickness approximately equal to the radius a multiplied by the number of observation cross-sections.

【0012】これによれば、図1に示す上底部分に対応
するかなり広い範囲Cにおいては照明光の重畳された強
度は均一であるため、その範囲からの散乱光に基く断面
画像のデータから得られるある欠陥粒子からの散乱強度
はその粒子のサイズを示すことになる。照明光の強度を
一定とすれば、粒子の半径とそこからの散乱強度は一定
の関係にあるからである。ただし、両側の光束径程度の
範囲Sに対応する画像データについては観察断面が1枚
のみの場合と同様の誤差の問題を生じる。しかし、観察
断面の数を多くすることによって、この誤差を相対的に
小さくすることができる。また、観察断面の数を多くす
れば、粒子密度が小さくまばらにしか存在しないような
粒子を検出する際の検出効率も向上させることができ
る。さらに、例えば、ある粒子が相互に隣接する4つの
連続した観察断面の画像データ内に検出された場合、図
3に示すように、各観察断面のz座標について各観察断
面における粒子の強度を示す点を結ぶガウス曲線の頂点
位置z0 としてその粒子のz座標を求めることができ
る。
According to this, in the considerably wide range C corresponding to the upper bottom portion shown in FIG. 1, since the superimposed intensity of the illumination light is uniform, from the data of the cross-sectional image based on the scattered light from that range, The resulting scattering intensity from a given defect particle will indicate the size of that particle. This is because if the intensity of the illumination light is constant, the radius of the particle and the intensity of scattering from it have a constant relationship. However, with respect to the image data corresponding to the range S of the light flux diameters on both sides, the same error problem as in the case where there is only one observation cross section occurs. However, this error can be made relatively small by increasing the number of observation cross sections. Further, if the number of observation cross sections is increased, the detection efficiency in detecting particles having a low particle density and existing only sparsely can be improved. Furthermore, for example, when a certain particle is detected in the image data of four continuous observation sections adjacent to each other, as shown in FIG. 3, the intensity of the particle in each observation section is shown for the z coordinate of each observation section. The z-coordinate of the particle can be obtained as the vertex position z 0 of the Gaussian curve connecting the points.

【0013】なお、ここでは、光電変換により散乱画像
を得ているが、これに限らず、感光材料等を用いて散乱
画像を得るようにしても良い。その場合、各観察断面の
散乱画像を重畳させて露光することにより、1つの重畳
された断面画像を得ることができる。また、観察断面の
画像データをより多くの観察断面について取り込み、重
畳せずに、そのまま、均一な照明光強度による3次元の
散乱画像データとして種々の解析に用いるようにしても
良い。また、各観察断面における走査方向は、x方向に
限らず、y方向にも行なって、より大きな観察断面を走
査するようにしても良い。また、集光されたレーザ光に
限らず平行光を用いて走査するようにしても良い。ま
た、被検物体を移動させる代わりにレーザ光の方を移動
させるようにしても良い。また、レーザトモグラフィに
限らず種々の観察装置の照明用に、本発明のレーザ走査
装置を適用することができる。
Although the scattered image is obtained by photoelectric conversion here, the invention is not limited to this, and the scattered image may be obtained using a photosensitive material or the like. In that case, one superimposed cross-sectional image can be obtained by overlapping and exposing the scattered images of each observation cross-section. Further, the image data of the observation cross section may be captured for a larger number of observation cross sections, and may be directly used for various analyzes as three-dimensional scattered image data with uniform illumination light intensity without being superimposed. Further, the scanning direction in each observation cross section is not limited to the x direction, but may be performed in the y direction to scan a larger observation cross section. Further, the scanning may be performed using parallel light instead of the focused laser light. Further, instead of moving the object to be inspected, the laser beam may be moved. Further, the laser scanning device of the present invention can be applied not only to laser tomography but also to illumination of various observation devices.

【0014】[0014]

【発明の効果】本発明によれば、光束の細いレーザ光に
よって被検物体を照明することができるため、レーザ光
の光強度を大きくし、検出感度を高めることができる。
また、被検物体をより広い範囲にわたって照明すること
ができる。したがって、被検物体の欠陥密度を測定する
場合には、測定できる欠陥密度の下限を低くすることが
できる。
According to the present invention, since the object to be inspected can be illuminated with the laser beam having a narrow luminous flux, the light intensity of the laser beam can be increased and the detection sensitivity can be enhanced.
Further, the object to be inspected can be illuminated over a wider range. Therefore, when measuring the defect density of the test object, the lower limit of the measurable defect density can be lowered.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のレーザ走査装置で複数断面を走査す
る場合の光束および該複数断面に直角な方向Zの光強度
Iの分布の様子を示すグラフである。
FIG. 1 is a graph showing a distribution of a light flux and a light intensity I in a direction Z perpendicular to the plurality of cross sections when the laser scanning device of the present invention scans the plurality of cross sections.

【図2】 本発明の一実施例に係る半導体ウエハ等の内
部欠陥を評価するためのレーザトモグラフィ装置の構成
を示す模式図である。
FIG. 2 is a schematic diagram showing a configuration of a laser tomography apparatus for evaluating an internal defect of a semiconductor wafer or the like according to an embodiment of the present invention.

【図3】 図2の装置において粒子位置を求める原理を
示すグラフである。
FIG. 3 is a graph showing a principle of determining a particle position in the apparatus of FIG.

【図4】 レーザ光の強度Iが光束の半径方向に関しガ
ウス分布を呈する様子を示すグラフである。
FIG. 4 is a graph showing how the intensity I of laser light exhibits a Gaussian distribution in the radial direction of a light beam.

【図5】 従来の装置において得られる断面画像を示す
模式図である。
FIG. 5 is a schematic diagram showing a cross-sectional image obtained by a conventional device.

【図6】 矩形型の強度分布を有するレーザ光の強度分
布を示すグラフである。
FIG. 6 is a graph showing an intensity distribution of laser light having a rectangular intensity distribution.

【符号の説明】[Explanation of symbols]

201:レーザ装置、203:レーザ光、205:照明
部分、207:集光レンズ、209:被検物体、21
1:ステージ装置、213:コンピュータ、215:顕
微鏡、217:TVカメラ、219:画像処理装置、2
21:表示装置。
Reference numeral 201: laser device, 203: laser light, 205: illuminated portion, 207: condenser lens, 209: object to be inspected, 21
1: Stage device, 213: Computer, 215: Microscope, 217: TV camera, 219: Image processing device, 2
21: Display device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光強度が光束の半径方向についてガウス
分布を呈するレーザ光を照射する手段、およびこのレー
ザ光の光束をその半径にほぼ等しい間隔を相互に有する
複数断面に沿って被検物体中を移動させる手段を具備す
ることを特徴とするレーザ走査装置。
1. A means for irradiating a laser beam whose light intensity exhibits a Gaussian distribution in the radial direction of the luminous flux, and a plurality of cross sections having the luminous flux of the laser beam mutually at intervals substantially equal to the radius of the object to be inspected. A laser scanning device comprising means for moving the laser.
【請求項2】 光強度が光束の半径方向についてガウス
分布を呈するレーザ光を被検物体に照射し、そのレーザ
光を被検物体中で走査し欠陥による散乱光を検出して画
像を形成する方法において、このレーザ光の光束の半径
にほぼ等しい間隔を相互に有する被検物体中の複数断層
像を得ることを特徴とする画像形成方法。
2. An object is irradiated with laser light whose light intensity exhibits a Gaussian distribution in the radial direction of the light beam, and the laser light is scanned in the object to detect scattered light due to defects to form an image. In the method, an image forming method is characterized in that a plurality of tomographic images in an object to be inspected are mutually provided with intervals substantially equal to a radius of a light flux of the laser light.
【請求項3】 画像の形成は、前記複数断層像のうち隣
接して連続する複数を重畳して1つの断面画像を形成す
ることを含むことを特徴とする請求項2記載の画像形成
方法。
3. The image forming method according to claim 2, wherein forming the image includes forming a single sectional image by superimposing a plurality of adjacent to each other among the plurality of tomographic images.
【請求項4】 前記複数断層像のうちの隣接して連続す
る複数の画像において見出される、被検物体内のある1
つの欠陥部分についての像に基きその像の位置が特定さ
れることを特徴とする請求項2記載の画像形成方法。
4. A certain one in the object to be detected, which is found in a plurality of adjacent and continuous images of the plurality of tomographic images.
The image forming method according to claim 2, wherein the position of the image is specified based on the image of one defect portion.
JP15808693A 1993-06-04 1993-06-04 Laser scanning device and image forming method Expired - Fee Related JP3142991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15808693A JP3142991B2 (en) 1993-06-04 1993-06-04 Laser scanning device and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15808693A JP3142991B2 (en) 1993-06-04 1993-06-04 Laser scanning device and image forming method

Publications (2)

Publication Number Publication Date
JPH06347418A true JPH06347418A (en) 1994-12-22
JP3142991B2 JP3142991B2 (en) 2001-03-07

Family

ID=15663998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15808693A Expired - Fee Related JP3142991B2 (en) 1993-06-04 1993-06-04 Laser scanning device and image forming method

Country Status (1)

Country Link
JP (1) JP3142991B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208356B2 (en) 2009-12-28 2012-06-26 Hitachi High-Technologies Corporation Optical checking method and apparatus for defects in magnetic disks
WO2012090371A1 (en) * 2010-12-27 2012-07-05 株式会社 日立ハイテクノロジーズ Examination device
CN106442539A (en) * 2016-08-31 2017-02-22 王钦裕 Method for measuring surface defect of workpiece by use of image information
WO2017190507A1 (en) * 2016-05-06 2017-11-09 中国科学院物理研究所 Detection method for scratch on surface of semi-conductor polished wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208356B2 (en) 2009-12-28 2012-06-26 Hitachi High-Technologies Corporation Optical checking method and apparatus for defects in magnetic disks
WO2012090371A1 (en) * 2010-12-27 2012-07-05 株式会社 日立ハイテクノロジーズ Examination device
JP2012137348A (en) * 2010-12-27 2012-07-19 Hitachi High-Technologies Corp Inspection device
US9602780B2 (en) 2010-12-27 2017-03-21 Hitachi High-Technologies Corporation Apparatus for inspecting defect with time/spatial division optical system
WO2017190507A1 (en) * 2016-05-06 2017-11-09 中国科学院物理研究所 Detection method for scratch on surface of semi-conductor polished wafer
CN106442539A (en) * 2016-08-31 2017-02-22 王钦裕 Method for measuring surface defect of workpiece by use of image information
CN106442539B (en) * 2016-08-31 2019-04-12 杭州潇楠科技有限公司 Utilize the method for image information measurement Surface Flaw

Also Published As

Publication number Publication date
JP3142991B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JP3323537B2 (en) Microstructure evaluation device and microstructure evaluation method
JP3258385B2 (en) Optical board inspection system
JP3566589B2 (en) Defect inspection apparatus and method
US5125741A (en) Method and apparatus for inspecting surface conditions
JP3904581B2 (en) Defect inspection apparatus and method
US6553323B1 (en) Method and its apparatus for inspecting a specimen
JPS63261144A (en) Optical web monitor
JP2012174896A (en) Inspection device and defect inspection method
JP2947513B1 (en) Pattern inspection equipment
JP3981696B2 (en) Defect inspection apparatus and method
JP3904565B2 (en) Defect inspection apparatus and method
JPH05264468A (en) Method and apparatus for detecting internal
JP6559601B2 (en) Detection apparatus and detection method
JP3142991B2 (en) Laser scanning device and image forming method
JP5114808B2 (en) Inspection apparatus and defect inspection method
JP3089079B2 (en) Circuit pattern defect inspection method
JP2004093211A (en) Nondestructive inspection system
JP3421522B2 (en) Pattern inspection apparatus, pattern inspection apparatus using electron beam, and method therefor
JPH1183465A (en) Surface inspecting method and device therefor
JPH07159333A (en) Apparatus and method for inspection of appearance
JP4036712B2 (en) Nondestructive inspection equipment
JP2000195458A (en) Electron microscope and inspection method
JP4002139B2 (en) Nondestructive inspection equipment
JP5074058B2 (en) Foreign matter inspection method and foreign matter inspection device
JP2004347410A (en) Method and device for testing nuclear fuel pellet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees