JPH0634469B2 - Method for manufacturing electromagnetic shield housing - Google Patents

Method for manufacturing electromagnetic shield housing

Info

Publication number
JPH0634469B2
JPH0634469B2 JP61165176A JP16517686A JPH0634469B2 JP H0634469 B2 JPH0634469 B2 JP H0634469B2 JP 61165176 A JP61165176 A JP 61165176A JP 16517686 A JP16517686 A JP 16517686A JP H0634469 B2 JPH0634469 B2 JP H0634469B2
Authority
JP
Japan
Prior art keywords
synthetic resin
alloy
housing
punch
superplastic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61165176A
Other languages
Japanese (ja)
Other versions
JPS6320898A (en
Inventor
南 木村
仁志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orient Watch Co Ltd
Original Assignee
Orient Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orient Watch Co Ltd filed Critical Orient Watch Co Ltd
Priority to JP61165176A priority Critical patent/JPH0634469B2/en
Publication of JPS6320898A publication Critical patent/JPS6320898A/en
Publication of JPH0634469B2 publication Critical patent/JPH0634469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (技術分野) 本発明は、電子機器のケース等に適した電磁シールド機
能を備えた筺体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a housing having an electromagnetic shield function suitable for a case of electronic equipment and the like.

(従来技術) プラスチック材を用いて成形した電子機器用の筺体にお
いては、外部周辺機器からの電磁波が筺体内に、もしく
は筺体内の電子機器からの電磁波が外部周辺機器に透過
して、外部周辺機器もしくは筺体内の電子機器を誤動作
させるという問題がある。このため、プラスチック材を
用いたこの種の筺体には、その裏面に導電性塗料を塗布
したり、溶射や真空蒸着により金属膜を形成したり、ア
ルミ箔を貼着したりあるいはプラスチック材中に導電性
フィラーを混入させる等してシールド性を付与するよう
にしている(日経エレクトロニクス、1982 7-19(No.2
95)pp.145-158)。
(Prior Art) In a housing for an electronic device formed by using a plastic material, an electromagnetic wave from an external peripheral device enters the housing or an electromagnetic wave from an electronic device in the housing transmits to the external peripheral device to There is a problem that the device or the electronic device in the housing malfunctions. For this reason, this type of housing using a plastic material is coated with a conductive paint on its back surface, a metal film is formed by thermal spraying or vacuum deposition, an aluminum foil is attached, or a plastic material is used. Shielding is provided by mixing conductive filler (Nikkei Electronics, 1982 7-19 (No. 2
95) pp.145-158).

ところが、上記した導電性塗料によるものは所要のシー
ルド性能を付与する関係上、厚塗りを必要とするために
使用中に剥れ易く、溶射によるものはプラスチック材と
溶射金属との密着強度が弱くて衝撃時に剥離し易く、真
空蒸着では金属膜の成形に多大の時間を要するほかバッ
チ処理であるため作業性が悪く、またアルミ箔によるも
のは手作業によるため、量産性に乏しいほか細部のシー
ルド性が不完全になる等の問題を抱えている。さらに、
導電性フィラーを混入したプラスチック材を用いたもの
は、シールド性を向上させるためフィラーを増量する
と、プラスチック材本来の強度が低下するほか、筺体表
面の絶縁性能も低下するといった問題を有している。
However, since the above-mentioned conductive paint imparts the required shielding performance, it requires a thick coating, so it easily peels off during use, and the one by thermal spraying has a weak adhesion strength between the plastic material and the sprayed metal. It is easy to peel off at the time of impact, and it takes a lot of time to form a metal film in vacuum deposition, and the workability is bad because it is a batch process.Because the aluminum foil is manual, it is poor in mass productivity and shields the details. It has problems such as incomplete sex. further,
The one using the plastic material mixed with the conductive filler has a problem that if the amount of the filler is increased to improve the shielding property, the original strength of the plastic material is reduced and the insulation performance of the housing surface is also reduced. .

このような問題を解消するために、超塑性金属板と合金
樹脂板を一体にした複合板を使用して、これを熱成形し
て筺体を製造する技術が提案されている(特開昭59-178
799 号公報)。
In order to solve such a problem, a technique has been proposed in which a composite plate in which a superplastic metal plate and an alloy resin plate are integrated is used, and this is thermoformed to manufacture a housing (Japanese Patent Laid-Open No. 59-59). -178
No. 799).

このような手法によれば、合成樹脂材の成形と同時にシ
ールド板の成形も可能となるため、製造工程の簡素化を
維持しつつ強度の高い筺体を製造することができるとい
う長所が有るものの、板材の深絞が必要となるため肩部
等の角部の延びが不均一になり易く、ひび割れが生じる
とう問題がある。
According to such a method, since it is possible to form the shield plate at the same time as forming the synthetic resin material, there is an advantage that a high-strength housing can be manufactured while maintaining the simplification of the manufacturing process. Since the deep drawing of the plate material is required, the corners such as the shoulders are likely to be unevenly extended, and there is a problem that cracks are generated.

(目的) 本発明はこのような問題に鑑みてなされたものであっ
て、その目的とするところは局部的な変形が生じること
のない、高分子樹脂板材と超塑性合金との複合板材を用
いた電磁シールド筺体の製造方法を提案することにあ
る。
(Purpose) The present invention has been made in view of such a problem, and its object is to use a composite plate material of a polymer resin plate material and a superplastic alloy that does not cause local deformation. It is to propose the manufacturing method of the electromagnetic shield housing.

以上に本発明の詳細を図示の実施例に基づいて説明す
る。
The details of the present invention are described above based on the illustrated embodiments.

第1図は本発明の電磁波シールド筺体の一実施例を示
し、図中符号1は後述する製造方法により一体成形した
電磁波シールド筺体で、このシールド筺体1は熱成形温
度Tgが80℃乃至 280℃のABS樹脂、ポリカーボネ
イト、ポリサルホン、ポリアミド、変成PPO、ポリア
ミドイミド、ポリエチレン、ポリプロピレン、ポリ塩化
ビニール等の薄い熱可塑性合成樹脂2と、この熱可塑性
合成樹脂2の熱成形温度Tg領域において超塑性を出現
するZnをベースとするZn−Al系合金、例えば、ア
ルミニュームを4乃至5重量%を含むZn−4〜5%A
l、Zn−40%Al、Zn−50%Al系合金やZn
−AL共折系合金の他にZn−21.5%Al−0.5%Cu
−0.01%Mgの四元系合金等の薄い超塑性合金3との積
層体4により構成されている。
FIG. 1 shows an embodiment of an electromagnetic wave shield housing of the present invention. In the figure, reference numeral 1 is an electromagnetic wave shield housing integrally molded by a manufacturing method described later, and this shield housing 1 has a thermoforming temperature Tg of 80 ° C. to 280 ° C. ABS resin, Polycarbonate, Polysulfone, Polyamide, Modified PPO, Polyamideimide, Polyethylene, Polypropylene, Polyvinyl chloride and other thin thermoplastic resin 2 and superplasticity in the thermoforming temperature Tg region of this thermoplastic synthetic resin 2 Zn-based Zn-Al based alloy, for example, Zn-4-5% A containing 4-5% by weight of aluminum
1, Zn-40% Al, Zn-50% Al-based alloy and Zn
In addition to -AL co-folding alloy, Zn-21.5% Al-0.5% Cu
It is composed of a laminated body 4 with a thin superplastic alloy 3 such as a quaternary alloy of -0.01% Mg.

第2図(a)(b)はその製造方法を示したもので、上記し
た熱可塑性合成樹脂2と超塑性合金3との積層体4を、
合成樹脂2が下になるようにしてヒータを内蔵したダイ
5の上に載せ(第2図(a))、その上から同じくヒー
タ8を内蔵した押え板7により固定支持するとともに、
ヒータ6及び8により積層体4及びそのフランジ部を熱
可塑性合成樹脂2の熱成形温度領域まで加熱する。これ
により、熱可塑性合成樹脂材2は熱成形可能状態になる
一方、超塑性合金3は変形抵抗が低下して超塑性状態、
つまり極めて大きな伸びを示す状態になるから、ヒータ
を内蔵しないポンチ9を超塑性合金3の板厚に応じた速
度で加工させつつ、その変形応力を一定のレベルに維持
するような荷重を加えると、熱可塑性合成樹脂材2及び
超塑性合金3は共にポンチ9により絞り込まれながら変
形する(第2図(b))。
FIGS. 2 (a) and 2 (b) show the manufacturing method thereof, in which the laminate 4 of the thermoplastic synthetic resin 2 and the superplastic alloy 3 is
The synthetic resin 2 is placed on the die 5 having a heater therein (FIG. 2 (a)) so that the synthetic resin 2 is on the lower side.
The heaters 6 and 8 heat the laminated body 4 and its flange portion to the thermoforming temperature range of the thermoplastic synthetic resin 2. As a result, the thermoplastic synthetic resin material 2 is in a thermoformable state, while the superplastic alloy 3 has a reduced deformation resistance and is in a superplastic state.
In other words, since a very large elongation is exhibited, if a punch 9 having no built-in heater is processed at a speed according to the plate thickness of the superplastic alloy 3 and a load is applied to maintain the deformation stress at a constant level. The thermoplastic synthetic resin material 2 and the superplastic alloy 3 are both deformed while being narrowed down by the punch 9 (FIG. 2 (b)).

ところで、この成形過程中ポンチ9の肩部10に当接し
た部分の超塑性合金3は、特開昭51−32475号公
報において指摘されるように、局部的に大きな変形作用
を受けてその部分に裂断等が発生し易くなるが、上述し
たようにこのポンチ9にはヒータが内蔵されておらず、
成形当初において室温に放置されているので、この部分
の超塑性合金3の温度はポンチ9との接触により他の部
分の温度より低くなって変形抵抗が増加し、加うる熱可
塑性合成樹脂材2による抵抗を受けるため、ポンチ9の
肩部10による応力は分散されることになって局部的な
変形が抑制され、全体に均一な変形が進んで所定の筺体
1が成形される。
By the way, the superplastic alloy 3 in the portion contacting the shoulder portion 10 of the punch 9 during this forming process is locally subjected to a large deformation action, as pointed out in Japanese Patent Laid-Open No. 32475/51. However, as described above, the punch 9 does not have a built-in heater,
Since it is left at room temperature at the beginning of molding, the temperature of the superplastic alloy 3 in this portion becomes lower than the temperature in other portions due to the contact with the punch 9, and the deformation resistance increases. As a result, the stress caused by the shoulder portion 10 of the punch 9 is dispersed, local deformation is suppressed, and uniform deformation progresses throughout, so that the predetermined housing 1 is molded.

なお、この成形に当たって、合成樹脂材2の熱成形温度
領域において流動性を示す合成樹脂接着剤によって接着
した積層体4を用いれば、成形時に流動化した接着剤に
より熱可塑性合成樹脂材2と超塑性合金3は剥離するこ
となく、両方向の多少のズレをもって成形時の応力を吸
収し、より優れた成形性が得られる。
In this molding, if the laminated body 4 adhered with a synthetic resin adhesive that exhibits fluidity in the thermoforming temperature range of the synthetic resin material 2 is used, the thermoplastic synthetic resin material 2 and the thermoplastic synthetic resin material 2 are superposed by the adhesive fluidized during molding. The plastic alloy 3 does not peel off, absorbs the stress at the time of molding with some deviation in both directions, and more excellent moldability can be obtained.

また、上述した実施例は1枚の熱可塑性樹脂材と1枚の
超塑性合金とからるものであるが、超塑性合金の両面に
熱可塑性合金合成樹脂材を積層して3枚構成のものとす
ることもでき、超塑性合金として超塑性発現温度 120℃
乃至 180℃の錫系の合金Sn−9.8%Zn(共晶)を
使用することもできる。
In addition, although the above-described embodiment is composed of one thermoplastic resin material and one superplastic alloy, the thermoplastic alloy synthetic resin material is laminated on both sides of the superplastic alloy to form three sheets. It is also possible to use a superplastic alloy with a superplasticity development temperature of 120 ° C.
It is also possible to use a tin-based alloy Sn-9.8% Zn (eutectic) having a temperature of 180 ° C to 180 ° C.

[実施例1] 厚さ1mmのポリカーボネイト板と厚さ0.1mmのZn−
21.5%Al−0.5%Cu−0.01%Mgの超塑性合金板
による50×80mmの積層体を用い、この積層体とフラ
ンジ部をダイ5と押え板7との間でポリカーボネイトの
成形温度 160℃に加熱し、この状態で成形時室温にある
ポンチ9を毎分2mm速度で下降させ、積層体を成形した
ところ、クラック、ピンホール等を生じることなく30
×50×9mmの筺体を成形することことができた。
[Example 1] A polycarbonate plate having a thickness of 1 mm and Zn- having a thickness of 0.1 mm
A laminated body of 50 × 80 mm made of a superplastic alloy plate of 21.5% Al-0.5% Cu-0.01% Mg was used, and this laminated body and the flange portion were formed between the die 5 and the holding plate 7 at a polycarbonate molding temperature. When the laminate was molded by heating to ℃ and lowering the punch 9 at room temperature during molding in this state at a speed of 2 mm per minute, cracks and pinholes were not generated.
It was possible to mold a housing of x50x9 mm.

[実施例2] 厚さ1mmのポリカーボネイト板(タキロン(商品名)PC
1600)と、厚さ0.1mmのZn−21.5%Al−0.5%
Cu−0.01%Mgの超塑性合金板との間に、軟化温度 1
10℃のホットメルト接着剤(東亜合成(株)111H)を
介在させ、 130℃の加熱下で1kgf/cm2の荷重を加えて
積層体4を形成し、次いでこの積層体を 160℃に加熱し
た上、常温に放置されたポンチにより最大1500kgfの荷
重を加えつつ毎分100mmの速度で成形したところ、クラ
ック等の裂断を生じることなく25×40×9mmのフラ
ンジ付き筺体が成形できた。
[Example 2] 1 mm thick polycarbonate plate (Taquilon (trade name) PC
1600) and a thickness of 0.1 mm Zn-21.5% Al-0.5%
Cu-0.01% Mg superplastic alloy plate, softening temperature 1
A hot melt adhesive of 10 ° C (111H of Toagosei Co., Ltd.) was interposed, and a load of 1 kgf / cm 2 was applied under heating at 130 ° C to form a laminate 4, and then this laminate was heated to 160 ° C. In addition, when a punch left at room temperature was used and a maximum load of 1500 kgf was applied and molding was performed at a speed of 100 mm / min, a 25 × 40 × 9 mm flanged housing could be formed without cracking or the like.

[実施例3] 実施例2と同一の積層体を 160℃に加熱するとともに8
0℃の温度に維持したポンチを毎分100mmの速さで下降
させて成形したところ、クラック等を生じることなく実
施例2で得られらたものと同一の筺体を成形することが
できた。
[Example 3] While heating the same laminate as in Example 2 to 160 ° C,
When the punch maintained at a temperature of 0 ° C. was lowered at a speed of 100 mm / min for molding, the same casing as that obtained in Example 2 could be molded without causing cracks or the like.

また、実施例2、3により成形した筺体から20×50
mmの積層体を切出し、アドバンテスト社製の電磁波発生
器スペアナIR4172と測定器TD17301を用いて測定し
たところ、いずれも電界モードで 200乃至 1000MHZの周
波数範囲で60dB以上のシールド性能が得られた。
Moreover, 20 × 50 from the casing molded in Examples 2 and 3.
When a laminated body of mm was cut out and measured using an electromagnetic wave generator spectrum analyzer IR4172 manufactured by Advantest Co. and a measuring instrument TD17301, both of them showed a shielding performance of 60 dB or more in an electric field mode in a frequency range of 200 to 1000 MHz.

(効果) 以上説明したように本発明においては、板状の熱可塑性
合成樹脂と、熱可塑性合成樹脂の熱成形可能温度領域で
超塑性を発現する超塑性合金との積層体をダイ上で熱成
形可能温度領域に加熱する工程と、超塑性合金が超塑性
を発現しない温度に維持されたポンチとにより超塑性合
金側をポンチに接しさせて深絞りする工程とを備えたの
で、深絞工程ではポンチによる冷却作用により、熱成形
単独よりも積層体の変形抵抗を部分的に増加させること
ができ、したがって深絞加工時に超塑性合金に局所的な
力が掛ってもこれを分散させることができるから、ひび
割れを防止することができる。
(Effect) As described above, in the present invention, a laminate of a plate-shaped thermoplastic synthetic resin and a superplastic alloy that exhibits superplasticity in the thermoformable temperature range of the thermoplastic synthetic resin is heated on the die. Since it has a step of heating to a formable temperature region and a step of deep drawing by bringing the superplastic alloy side into contact with the punch by a punch maintained at a temperature at which the superplastic alloy does not exhibit superplasticity, a deep drawing step However, the punching cooling effect can partially increase the deformation resistance of the laminate compared to thermoforming alone, so that even if a local force is applied to the superplastic alloy during deep drawing, it can be dispersed. As a result, cracking can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の製造方法により製作された電磁シー
ルド筺体を一部切断して示す斜視図、第2図(a)
(b)は、それぞれ本発明の電磁シールド筺体の製造方
法を示す図である。 1……筺体、2……熱可塑性合成樹脂材 3……熱塑性合金、4……積層体 5……ダイ、6、8……ヒータ 7……押え板、9……ポンチ
1 is a perspective view showing a partially cutaway view of an electromagnetic shield housing manufactured by the manufacturing method of the present invention, and FIG. 2 (a).
(B) is a figure which shows the manufacturing method of the electromagnetic-shielding housing of this invention, respectively. 1 ... Enclosure, 2 ... Thermoplastic synthetic resin material, 3 ... Thermoplastic alloy, 4 ... Laminated body, 5 ... Die, 6, 8 ... Heater, 7 ... Holding plate, 9 ... Punch

フロントページの続き (56)参考文献 特開 昭60−120596(JP,A) 特開 昭59−178799(JP,A) 特開 昭55−82499(JP,A) 特開 昭62−65499(JP,A) 特公 昭54−29308(JP,B2) 特公 昭54−29306(JP,B2) 特公 昭55−43394(JP,B2)Continuation of the front page (56) Reference JP-A-60-120596 (JP, A) JP-A-59-178799 (JP, A) JP-A-55-82499 (JP, A) JP-A-62-65499 (JP , A) JP 54-29308 (JP, B2) JP 54-29306 (JP, B2) JP 55-43394 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】板状の熱可塑性合成樹脂と、前記熱可塑性
合成樹脂の熱成形可能温度領域で超塑性をを発現する超
塑性合金との積層体をダイ上で前記熱成形可能温度領域
に加熱する工程と、前記超塑性合金が超塑性を発現しな
い温度に維持されたポンチとにより前記超塑性合金側を
前記ポンチに接しさせて深絞りする工程とからなる電磁
シールド筐体の製造方法。
1. A laminate of a plate-shaped thermoplastic synthetic resin and a superplastic alloy that exhibits superplasticity in the thermoformable temperature range of the thermoplastic synthetic resin is provided on the die in the thermoformable temperature range. A method of manufacturing an electromagnetic shield casing, comprising: a step of heating; and a step of bringing the superplastic alloy side into contact with the punch and deep-drawing with a punch maintained at a temperature at which the superplastic alloy does not exhibit superplasticity.
JP61165176A 1986-07-14 1986-07-14 Method for manufacturing electromagnetic shield housing Expired - Lifetime JPH0634469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61165176A JPH0634469B2 (en) 1986-07-14 1986-07-14 Method for manufacturing electromagnetic shield housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61165176A JPH0634469B2 (en) 1986-07-14 1986-07-14 Method for manufacturing electromagnetic shield housing

Publications (2)

Publication Number Publication Date
JPS6320898A JPS6320898A (en) 1988-01-28
JPH0634469B2 true JPH0634469B2 (en) 1994-05-02

Family

ID=15807296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61165176A Expired - Lifetime JPH0634469B2 (en) 1986-07-14 1986-07-14 Method for manufacturing electromagnetic shield housing

Country Status (1)

Country Link
JP (1) JPH0634469B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582499A (en) * 1978-12-15 1980-06-21 Sharp Kk Radio wave shielding plate
JPH0634475B2 (en) * 1983-03-29 1994-05-02 三菱化成株式会社 Manufacturing method of housing or its member excellent in electromagnetic wave shielding
JPS60120596A (en) * 1983-12-02 1985-06-28 三菱化学株式会社 Electromagnetic shielding housing or method of producing member therefor
JPH0799796B2 (en) * 1985-09-18 1995-10-25 電気化学工業株式会社 Composite plate for electromagnetic wave shielding

Also Published As

Publication number Publication date
JPS6320898A (en) 1988-01-28

Similar Documents

Publication Publication Date Title
JP6673396B2 (en) Battery packaging material
JP5954515B1 (en) Battery packaging materials
JPH06270325A (en) Metal-polypropylene-metal laminates and method for making shaped sheet article of such laminates
EP4262332A1 (en) Electromagnetic shielding material
JPS62179911A (en) Manufacture of electromagnetic wave shielding molded part
JPWO2017179636A1 (en) Battery packaging material, manufacturing method thereof, and battery
JPH10242733A (en) Exterior component incorporating antenna for vehicle
JPH0634469B2 (en) Method for manufacturing electromagnetic shield housing
JPH06334377A (en) Electronic equipment case body
US6302991B1 (en) Method of producing a lead frame with composite film attached, and use of the lead frame
HU222659B1 (en) Method of fabricating a support provided with shielding against interfering radiation, and shielding material
JPS62184823A (en) Manufacture of electromagnetic wave shielding molded product
JPH05269787A (en) Production of housing of electronic machinery
KR102500600B1 (en) Method for manufacturing water-cooling plate used in battery for electric vehicle and cooling plate manufactured thereby
JPH05261823A (en) Shell casing
JPH0244552Y2 (en)
JPS61205110A (en) Manufacture of electromagnetic wave shielding molded article
JPH0634475B2 (en) Manufacturing method of housing or its member excellent in electromagnetic wave shielding
JPH09267339A (en) Manufacture of resin molding containing metal layer
JPH08148873A (en) Case body for electronic equipment
JPH0330318B2 (en)
JPH11240069A (en) Manufacture of acrylic resin sheet with protective film
JPH11221876A (en) Sandwich type resin composite damping aluminium panel excellent in warm moldability
JPS62220527A (en) Production of laminate of metallic foil and polyfilm by bonding
JPS5965500A (en) Composite board for electromagnetically shielding with exce llent moldability