JPH06338651A - Wavelength conversion light source within external resonator - Google Patents

Wavelength conversion light source within external resonator

Info

Publication number
JPH06338651A
JPH06338651A JP12897093A JP12897093A JPH06338651A JP H06338651 A JPH06338651 A JP H06338651A JP 12897093 A JP12897093 A JP 12897093A JP 12897093 A JP12897093 A JP 12897093A JP H06338651 A JPH06338651 A JP H06338651A
Authority
JP
Japan
Prior art keywords
resonator
light
semiconductor laser
wavelength
error signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12897093A
Other languages
Japanese (ja)
Inventor
Naoki Sugiyama
尚樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP12897093A priority Critical patent/JPH06338651A/en
Publication of JPH06338651A publication Critical patent/JPH06338651A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize light feedback by a method wherein distortion of a phase modulation signal, which is included in an external resonator transmitted light signal, is used as an error signal and the current of a semiconductor laser is controlled in such a way that this error signal is made to nil. CONSTITUTION:A light feedback stabilizing circuit FS detects an error signal for controlling the single oscillation wavelength of a semiconductor laser LD from a detection signal of resonator transmitted light, which is received by a photodetector PD, of a fundamental wave and control the current of the LD in such a way that the output of this error signal is made to zero. By returning one part of resonance light in a ring resonator ER to the laser LD, the laser LD is turned to a mode wavelength of the resonator ER in the vicinity very close to the mode wavelength and oscillates. In order to make this coincide with the mode wavelength of the resonator ER, adjustment of the phase of the returning light is necessary. This is performed in such a way that an installed mirror MM is moved and the length between the laser LD and the resonator ER is changed. A controller P1 is used for controlling this mirror MM.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基本波を出力する半導
体レーザ(以下、単にLDという)とは独立して設けら
れた外部の共振器内に基本波を共振させ、その結果生じ
る大きなパワーを用いて、パラメトリックオシレータや
第2高調波発生などにより基本波と異なる波長を得るよ
うにした外部共振器内波長変換光源に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention resonates a fundamental wave in an external resonator provided independently of a semiconductor laser (hereinafter, simply referred to as an LD) that outputs a fundamental wave, resulting in a large power. The present invention relates to a wavelength conversion light source in an external resonator in which a wavelength different from that of a fundamental wave is obtained by using a parametric oscillator or generation of a second harmonic.

【0002】[0002]

【従来の技術】図5は従来の外部共振器内波長変換(第
2高調波発生)光源の一例を示す構成図である。この図
5に示す装置は、基本波となるLD光をリング型共振器
に注入して共振させ、その内部に生じた大きなパワーに
より、高効率で第2高調波を得ている。
2. Description of the Related Art FIG. 5 is a diagram showing an example of a conventional light source for wavelength conversion (second harmonic generation) in an external resonator. The device shown in FIG. 5 injects the LD light, which is the fundamental wave, into the ring resonator to cause resonance, and highly efficiently obtains the second harmonic by the large power generated inside.

【0003】しかし、共振させるためには、LDの単独
発振波長λLDと共振器の波長λCAVを一致させる必要が
あるため、共振器での共振光をわずかにLDに戻すよう
な構成をとれば、LDを自動的に共振器の波長λCAV
同調発振させることができる光帰還を使用している。な
お、リング型共振器では、ミラーでの微かな散乱光によ
り逆回りの共振光が生じる。この一部がLDへの戻り光
となる。この光帰還同調発振は、ファブリペロー型LD
のように、広い線幅のレーザを大きなQ値の共振器に高
効率で結合でき、また、同調発振レンジが広がるなどの
利点を備えている。
However, in order to resonate, it is necessary to match the single oscillation wavelength λ LD of the LD with the wavelength λ CAV of the resonator. Therefore, it is possible to adopt a configuration in which the resonant light in the resonator is slightly returned to the LD. For example, it uses optical feedback that can automatically tune the LD at the wavelength λ CAV of the resonator. In the ring type resonator, a counterclockwise resonance light is generated due to a slight scattered light from the mirror. Part of this becomes the return light to the LD. This optical feedback tuning oscillation is a Fabry-Perot LD
As described above, a laser having a wide line width can be coupled to a resonator having a large Q value with high efficiency, and the tuning oscillation range is widened.

【0004】しかし、光帰還を起こさせるには、LDの
単独発振波長λLDを共振器の波長λ CAV の数100MH
z(0.0005nm程度)近傍に近づける必要があ
り、これを再現性よく起こさせるには、LDと共振器の
温度制御が必要となり、光源として大型化してしまう。
さらに、LDには数mK°という厳しい温度安定性が要
求され、LDや温度センサの経時変化にも注意をはらう
必要がある。
However, in order to cause optical feedback, the LD
Single oscillation wavelength λLDThe wavelength of the resonator λ CAVNumber of 100MH
It is necessary to bring it close to z (about 0.0005 nm).
In order to cause this with good reproducibility, LD and resonator
Temperature control is required, and the light source becomes large.
Furthermore, LD must have a strict temperature stability of several mK °.
And pay attention to changes over time in LDs and temperature sensors
There is a need.

【0005】[0005]

【発明が解決しようとする課題】従来は、LDの単独発
振波長λLDを共振器の波長λCAV のロックレンジ近傍
(光帰還の生じる範囲)になるように、LD温度・電
流、共振器温度の条件だしを行い、その後、絶対値制御
にて再現性、安定性を得ていた。
Conventionally, the LD temperature / current and the resonator temperature are set so that the LD single-oscillation wavelength λ LD is close to the lock range of the resonator wavelength λ CAV (range where optical feedback occurs). Then, the reproducibility and stability were obtained by absolute value control.

【0006】本発明では、共振器の透過信号を用いて、
LDの温度もしくは電流を制御し、常に、LDの単独発
振波長λLDと共振器の波長λCAV を一致させるように保
つことで、光帰還を安定化した小型で安定な外部共振器
内波長変換光源を提供することを目的としたものであ
る。
In the present invention, the transmission signal of the resonator is used to
By controlling the temperature or current of the LD and keeping the LD's single-oscillation wavelength λ LD and the resonator's wavelength λ CAV always the same, a compact and stable external resonator wavelength conversion that stabilizes the optical feedback. The purpose is to provide a light source.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、基本波を出力する半導体レーザと、
この半導体レーザの出力光が入力される外部共振器と、
この外部共振器内に配置された波長変換素子と、前記外
部共振器の透過光を検出する光検出器と、前記透過光に
現れる戻り光の位相を可変するミラーと、前記戻り光の
位相を最適化制御するための変調器とロックインアンプ
と制御器からなる外部共振器内波長変換光源において、
前記光検出器で検出される前記外部共振器の透過光信号
に含まれる位相変調信号の歪みを誤差信号として、この
誤差信号が零になるように前記半導体レーザの温度もし
くは電流を制御することにより光帰還を安定化する手段
を備えた構成としたことを特徴とする。
The structure of the present invention for solving the above-mentioned problems is a semiconductor laser which outputs a fundamental wave,
An external resonator to which the output light of this semiconductor laser is input,
A wavelength conversion element arranged in the external resonator, a photodetector for detecting transmitted light of the external resonator, a mirror for varying the phase of return light appearing in the transmitted light, and a phase of the return light In an external cavity wavelength conversion light source consisting of a modulator for optimization control, a lock-in amplifier, and a controller,
By controlling the temperature or current of the semiconductor laser such that the distortion of the phase modulation signal included in the transmitted light signal of the external resonator detected by the photodetector is used as an error signal and the error signal becomes zero. It is characterized in that it is provided with a means for stabilizing the optical feedback.

【0008】[0008]

【作用】本発明では、光帰還によるLDの外部共振器同
調発振を安定化するために、戻り光の位相制御と共に、
LDの単独発振波長λLDを共振器モードの変化に追従さ
せるよう制御することで、ロックレンジ外れを防いでい
る。誤差信号には、共振器透過信号に含まれる位相変調
信号の歪を利用しており、共振器やLDの厳しい温度制
御が必要でなくなり、装置としての小型化、安定化をは
かっている。
In the present invention, in order to stabilize the external resonator tuning oscillation of the LD by optical feedback, the phase of the returning light is controlled and
Locking out of the lock range is prevented by controlling the LD single-oscillation wavelength λ LD so as to follow changes in the resonator mode. Distortion of the phase modulation signal included in the resonator transmission signal is used as the error signal, and strict temperature control of the resonator and LD is not required, and the device is downsized and stabilized.

【0009】[0009]

【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明の外部共振器内波長変換光源の一実施例を示
す構成図である。図1において、LDは基本波を出力す
る半導体レーザであり、波長は約860nmである。こ
の光は、3枚のミラーで構成されるリング型共振器ER
へ、モードマッチレンズMLとPZTで微調可能な据え
付けミラーMMを通して入射する。モードマッチレンズ
MLは、半導体レーザLDの光を高効率でリング型共振
器ERに共振させるためのモードマッチングをとるため
のレンズである。Cは波長変換素子であり、基本波から
第2高調波430nmを発生するための非線形光学結晶
(例えば、KNbO3 )である。リング型共振器ERを
構成するミラーは、基本波(約860nm)に対して高
反射率であると共に、第2高調波光(430nm)に対
して高透過に設計されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a wavelength conversion light source in an external resonator of the present invention. In FIG. 1, LD is a semiconductor laser that outputs a fundamental wave and has a wavelength of about 860 nm. This light is a ring type resonator ER composed of three mirrors.
Enters through a stationary mirror MM that can be finely adjusted by the mode match lens ML and PZT. The mode matching lens ML is a lens for performing mode matching for causing the light of the semiconductor laser LD to resonate in the ring resonator ER with high efficiency. C is a wavelength conversion element, which is a nonlinear optical crystal (for example, KNbO 3 ) for generating the second harmonic wave of 430 nm from the fundamental wave. The mirror constituting the ring resonator ER has a high reflectance for the fundamental wave (about 860 nm) and a high transmission for the second harmonic light (430 nm).

【0010】また、戻り光の位相を最適化するために、
据え付けミラーMMを変調器OSCで変調し、基本波の
共振器透過光を光検出器PDで受け、ロックインアンプ
LIAで誤差信号を得るようにしている。この誤差信号
を用いて、共振器内パワーが最大となるように据え付け
ミラーMMを制御器PIを介して調整する。
In order to optimize the phase of the returning light,
The stationary mirror MM is modulated by the modulator OSC, the resonator transmitted light of the fundamental wave is received by the photodetector PD, and the error signal is obtained by the lock-in amplifier LIA. Using this error signal, the stationary mirror MM is adjusted via the controller PI so that the intracavity power is maximized.

【0011】光帰還安定化回路FSは、基本波の共振器
透過光を光検出器PDで受けた検出信号から、半導体レ
ーザLDの単独発振波長制御のための誤差信号を検出
し、LD駆動回路を制御している。この光帰還安定化回
路FSは、図2(ハ)に示す(Vp −Vq )を検出し、
誤差信号としている。この誤差信号出力(Vp −Vq
が、零になるように、LD電流を制御するものである。
The optical feedback stabilizing circuit FS detects an error signal for controlling the single oscillation wavelength of the semiconductor laser LD from the detection signal received by the photodetector PD of the resonator transmitted light of the fundamental wave, and the LD drive circuit. Are in control. This optical feedback stabilization circuit FS detects (V p −V q ) shown in FIG.
It is used as an error signal. The error signal output (V p -V q)
However, the LD current is controlled so as to become zero.

【0012】このような構成において、半導体レーザL
Dをリング型共振器ERに共振させ、リング型共振器E
R内部に入力の数〜数十倍の光パワー(λ=860n
m)を閉じ込め、非線形光学結晶Cにより高効率の波長
変換を行う。共振するためには、 λLD(半導体レーザLDの単独発振波長)=λER(リン
グ型共振器ERのモード波長) という条件が必要であるが、そのために光帰還を使用す
る。リング型共振器ERでの共振光を一部、半導体レー
ザLDへ戻すことで、半導体レーザLDは、リング型共
振器ERのモード波長λERの極近傍で同調発振する。こ
れをリング型共振器ERのモード波長λERに一致させる
ためには、戻り光の位相調整が必要であり、これは、据
え付けミラーMMを動かし、半導体レーザLD〜リング
型共振器ER間の距離を変化させて行う。この据え付け
ミラーMMの制御のために、変調器OSC,ロックイン
アンプLIA,制御器PIを使用している。
In such a structure, the semiconductor laser L
D is made to resonate with the ring resonator ER, and the ring resonator E
The optical power of several to several tens of times the input power inside R (λ = 860n
m) is confined, and the nonlinear optical crystal C performs highly efficient wavelength conversion. In order to resonate, the condition that λ LD (single oscillation wavelength of semiconductor laser LD) = λ ER (mode wavelength of ring resonator ER) is required, and optical feedback is used for that purpose. By returning a part of the resonance light in the ring resonator ER to the semiconductor laser LD, the semiconductor laser LD tunes and oscillates in the vicinity of the mode wavelength λ ER of the ring resonator ER. In order to match this with the mode wavelength λ ER of the ring resonator ER , it is necessary to adjust the phase of the return light, which moves the stationary mirror MM and the distance between the semiconductor laser LD and the ring resonator ER. And change it. A modulator OSC, a lock-in amplifier LIA, and a controller PI are used for controlling the stationary mirror MM.

【0013】ここで、据え付けミラーMMを図2(イ)
のように変調した場合、光検出器PDには、図3中に示
す〜の信号が、λOSC (同調発振波長)とリング型
共振器ERのモード波長λERの差に応じて生じる。これ
をロックインアンプLIAでロックイン検波すれば、図
4に示すように、誤差信号が得られ、これを持って据え
付けミラーMMを最適な位置へ制御する。
Here, the installation mirror MM is shown in FIG.
When modulated as described above, the signals 1 to 3 shown in FIG. 3 are generated in the photodetector PD according to the difference between λ OSC (tuning oscillation wavelength) and the mode wavelength λ ER of the ring resonator ER. When this is lock-in detected by the lock-in amplifier LIA, an error signal is obtained as shown in FIG. 4, and the error signal is controlled to control the mounting mirror MM to the optimum position.

【0014】しかし、この光帰還による同調発振が生じ
るには、半導体レーザLDの単独発振波長λLDは、リン
グ型共振器ERのモード波長λERに十分近い必要があ
り、このロックレンジ内にあれば同調発振し、上記の制
御により、リング型共振器ERのモード波長λERで発振
するが、半導体レーザLDやリング型共振器ERの温度
が変化し、半導体レーザLDの単独発振波長λLDがロッ
クレンジを外れると同調発振は停止し、半導体レーザL
Dは半導体レーザLDの単独発振波長λLDで発振する。
However, in order to cause the tuned oscillation due to the optical feedback, the single oscillation wavelength λ LD of the semiconductor laser LD needs to be sufficiently close to the mode wavelength λ ER of the ring resonator ER, which is within this lock range. For example, tuned oscillation occurs, and by the above control, oscillation occurs at the mode wavelength λ ER of the ring resonator ER, but the temperature of the semiconductor laser LD and the ring resonator ER changes, and the single oscillation wavelength λ LD of the semiconductor laser LD When it goes out of the lock range, the tuning oscillation stops and the semiconductor laser L
D oscillates at the single oscillation wavelength λ LD of the semiconductor laser LD.

【0015】ここでは、半導体レーザLDの単独発振波
長λLDをリング型共振器ERのモード波長λERに追従す
るように制御することで、ロックレンジ外れを防止し、
光帰還を安定化する。
Here, by controlling the single oscillation wavelength λ LD of the semiconductor laser LD so as to follow the mode wavelength λ ER of the ring resonator ER, the lock range deviation is prevented,
Stabilize optical feedback.

【0016】戻り光位相制御により、光検出器PDに
は、図2(ロ)に示すような2fの周波数の信号が生じ
ているが、これは、λLD≠λERの時には、図2(ハ)に
示すように歪みを持つ。この歪みは、λLD≠λERの場合
には、同調発振波長の変化が戻り光位相の変化に対し、
飽和するために生じる。
Due to the return light phase control, a signal having a frequency of 2f as shown in FIG. 2B is generated in the photodetector PD, which is generated when λ LD ≠ λ ER . It has distortion as shown in (c). In the case of λ LD ≠ λ ER , this distortion is due to the change in tuning oscillation wavelength with respect to the change in return optical phase.
It occurs because of saturation.

【0017】ここでは、図2(ハ)中の(Vp −Vq
を誤差信号として、半導体レーザLDの電流を制御する
ことで、λLD=λERを保ち、光帰還を安定化した。この
誤差信号(Vp −Vq )は、(λLD−λER)の符号に一
致し、負→0→正に変化する。また、誤差信号(Vp
q )の検出回路は、具体的には、図4に示すような回
路構成であり、図2(イ)に示すMM変調信号の正のピ
ークと負のピークのタイミングでPD信号をサンプルホ
ールドし、次の差動アンプで誤差信号(Vp −Vq )を
出力する。
Here, (V p −V q ) in FIG.
Is used as an error signal to control the current of the semiconductor laser LD, thereby maintaining λ LD = λ ER and stabilizing the optical feedback. This error signal (V p −V q ) matches the sign of (λ LD −λ ER ) and changes from negative → 0 → positive. In addition, the error signal (V p
Specifically, the detection circuit of V q ) has a circuit configuration as shown in FIG. 4, and samples and holds the PD signal at the timing of the positive peak and the negative peak of the MM modulation signal shown in FIG. Then, the error signal (V p −V q ) is output by the next differential amplifier.

【0018】このように、従来からλLDのロックレンジ
外れによる光帰還同調発振の停止は大きな問題であり、
一般的には、精密な温度調節をLDおよび共振器に行っ
ていたが、完全に安定させるのは困難であった。また、
精密な温度調節のため、装置は大型化していたが、本発
明では、共振器の変化に対し、LDの単独発振波長λ LD
を追従させるもので、光帰還を完全に安定化できる。ま
た、光帰還安定回路以外の特別な回路なども必要なく、
デバイスの小型化・簡略化がはかれる。
As described above, λLDRock range
Stopping optical feedback tuning oscillation due to disconnection is a big problem,
Generally, precise temperature control is performed on the LD and the resonator.
However, it was difficult to stabilize it completely. Also,
The device was upsized due to precise temperature control, but
In the clear, the LD's single-oscillation wavelength λ LD
The optical feedback can be completely stabilized. Well
Also, there is no need for special circuits other than the optical feedback stabilization circuit,
The device can be miniaturized and simplified.

【0019】[0019]

【発明の効果】以上、実施例と共に具体的に説明したよ
うに、本発明によれば、共振器の透過信号を用いて、L
Dの温度もしくは電流を制御し、常に、LDの単独発振
波長λ LDと共振器の波長λERを一致させるように保つこ
とで、光帰還を安定化した小型で安定な外部共振器内波
長変換光源を実現できる。
The effects of the present invention have been specifically described above together with the embodiments.
As described above, according to the present invention, by using the transmission signal of the resonator, L
LD's temperature or current is controlled, and LD's single oscillation is always
Wavelength λ LDAnd the wavelength of the resonator λERKeep it to match
And, a small and stable external cavity wave with stabilized optical feedback.
A long conversion light source can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の外部共振器内波長変換光源の一実施例
を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a wavelength conversion light source in an external resonator of the present invention.

【図2】図1装置の光検出器で検出される信号を示す図
である。
FIG. 2 is a diagram showing signals detected by a photodetector of the apparatus shown in FIG.

【図3】半導体レーザLDの単独発振波長λLDと光検出
器信号を示す図である。
3 is a diagram showing a single oscillation wavelength lambda LD and photodetector signal of the semiconductor laser LD.

【図4】安定化信号検出回路の具体例を示す図である。FIG. 4 is a diagram showing a specific example of a stabilized signal detection circuit.

【図5】従来の外部共振器内波長変換光源の一例を示す
構成図である。
FIG. 5 is a configuration diagram showing an example of a conventional wavelength conversion light source in an external resonator.

【符号の説明】[Explanation of symbols]

LD 半導体レーザ ER 外部共振器 C 波長変換素子 PD 光検出器 MM 据え付けミラー OSC 変調器 LIA ロックインアンプ PI 制御器 FS 光帰還安定化回路 LD Semiconductor laser ER External cavity C Wavelength conversion element PD Photodetector MM Fixed mirror OSC modulator LIA Lock-in amplifier PI controller FS Optical feedback stabilization circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基本波を出力する半導体レーザと、この
半導体レーザの出力光が入力される外部共振器と、この
外部共振器内に配置された波長変換素子と、前記外部共
振器の透過光を検出する光検出器と、前記透過光に現れ
る戻り光の位相を可変するミラーと、前記戻り光の位相
を最適化制御するための変調器とロックインアンプと制
御器からなる外部共振器内波長変換光源において、 前記光検出器で検出される前記外部共振器の透過光信号
に含まれる位相変調信号の歪みを誤差信号として、この
誤差信号が零になるように前記半導体レーザの温度もし
くは電流を制御することにより光帰還を安定化する手段
を備えた構成としたことを特徴とする外部共振器内波長
変換光源。
1. A semiconductor laser that outputs a fundamental wave, an external resonator into which the output light of this semiconductor laser is input, a wavelength conversion element arranged in this external resonator, and transmitted light of the external resonator. An external resonator including a photodetector for detecting the light, a mirror for varying the phase of the return light appearing in the transmitted light, a modulator for optimizing the phase of the return light, a lock-in amplifier, and a controller. In the wavelength conversion light source, the distortion of the phase modulation signal included in the transmitted light signal of the external resonator detected by the photodetector is used as an error signal, and the temperature or current of the semiconductor laser is adjusted so that the error signal becomes zero. A wavelength conversion light source in an external resonator, characterized in that it is configured to have means for stabilizing optical feedback by controlling the.
JP12897093A 1993-05-31 1993-05-31 Wavelength conversion light source within external resonator Pending JPH06338651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12897093A JPH06338651A (en) 1993-05-31 1993-05-31 Wavelength conversion light source within external resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12897093A JPH06338651A (en) 1993-05-31 1993-05-31 Wavelength conversion light source within external resonator

Publications (1)

Publication Number Publication Date
JPH06338651A true JPH06338651A (en) 1994-12-06

Family

ID=14997916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12897093A Pending JPH06338651A (en) 1993-05-31 1993-05-31 Wavelength conversion light source within external resonator

Country Status (1)

Country Link
JP (1) JPH06338651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032765A1 (en) * 1995-04-13 1996-10-17 Atx Telecom Systems, Inc. Technique for locking an external cavity large-area laser diode to a passive optical cavity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032765A1 (en) * 1995-04-13 1996-10-17 Atx Telecom Systems, Inc. Technique for locking an external cavity large-area laser diode to a passive optical cavity

Similar Documents

Publication Publication Date Title
US5367531A (en) Laser light beam generating apparatus
US20080002746A1 (en) Optical transmitters
US5412676A (en) Method and apparatus for the determination of the relative frequency offset between an input optical signal and a resonance frequency of an optical cavity
US20120320449A1 (en) Stabilizing rf oscillator based on optical resonator
JPH0653593A (en) Apparatus for generating laser beam
JPH07244306A (en) Optical wavelength conversion device
JP3350607B2 (en) Laser device
JP2672902B2 (en) Non-linear optical effect wavelength conversion laser
JPH07254744A (en) Laser light generator
JP2849233B2 (en) Optical wavelength converter with bulk resonator structure
CN116706665A (en) Fiber laser frequency stabilization system and method
US4932030A (en) Frequency stabilization of long wavelength semiconductor laser via optogalvanic effect
JPH06338651A (en) Wavelength conversion light source within external resonator
CN219163902U (en) Frequency multiplication laser based on low-definition short cavity
Bode et al. Continuously-tunable doubly resonant optical parametric oscillator
JPH088480A (en) Laser device
JP3219118B2 (en) Wavelength converter in external resonator
JPH0372686A (en) Semiconductor laser device
CN113078552B (en) Frequency stabilizing device of single-frequency laser based on intracavity self-reference
CN116154603A (en) Frequency multiplication laser based on low-definition short cavity
JPH06175175A (en) Second higher harmonic generator
RU2210847C1 (en) Radiation frequency stabilized laser
Matsko et al. Kerr Frequency Comb Stabilization and Locking
JPS63957B2 (en)
JPH06140709A (en) Stabilized frequency light source