JPH06336957A - Egr control device for diesel engine - Google Patents

Egr control device for diesel engine

Info

Publication number
JPH06336957A
JPH06336957A JP5129595A JP12959593A JPH06336957A JP H06336957 A JPH06336957 A JP H06336957A JP 5129595 A JP5129595 A JP 5129595A JP 12959593 A JP12959593 A JP 12959593A JP H06336957 A JPH06336957 A JP H06336957A
Authority
JP
Japan
Prior art keywords
egr
value
differential pressure
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5129595A
Other languages
Japanese (ja)
Inventor
Naoya Tsutsumoto
直哉 筒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5129595A priority Critical patent/JPH06336957A/en
Publication of JPH06336957A publication Critical patent/JPH06336957A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To prevent EGR control from being influenced by the lowering of EGR flow detecting accuracy in a low rotation area and a low EGR flow area by performing feedback control only when the actual value of pressure differ ence between an EGR passage and an intake passage exceeds the limit value, and switching it to open control when the actual value becomes the limit value or less. CONSTITUTION:A computing means 31 computes the differential pressure objective value DELTA Pt according to the detection value of an operating condition, and a computing means 32 computes the correction quantity to the control command value to an actuator 25 for an EGR valve so that the differential pressure objective value DELTAPt and the differential pressure actual value DELTAPs of a sensor 30 coincide with each other. According to the judged result of a control area judged by a judging means, a determining means 34 determines the control command value to the actuator 25 for the EGR valve respectively using the correction quantity in a feedback control area and according to the opening objective value of the EGR valve corresponding to the detection value of the operating condition in an open control area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はディーゼルエンジンの
EGR制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diesel engine EGR controller.

【0002】[0002]

【従来の技術】ディーゼルエンジンから排出されるNO
xを低減する目的で、排出ガスの一部を吸気中に還流し
て燃焼を抑制するEGR装置が採用される。
NO emitted from a diesel engine
For the purpose of reducing x, an EGR device that suppresses combustion by recirculating a part of exhaust gas into intake air is adopted.

【0003】排出ガスの還流量(EGR流量)の要求値
は運転条件により異なり、また運転条件によってはEG
Rがエンジンの出力性能を阻害することになるので、エ
ンジン出力性能と排気性能とがバランスするように、運
転条件に応じたEGR率(=EGR流量/吸入空気流
量)の目標値をあらかじめ定めておき、この目標値のマ
ップを参照することで現在の運転条件に合う目標EGR
率を求め、この目標EGR率を制御指令値に変換し、こ
れをEGR弁と吸気絞り弁用の各アクチュエータに与え
ることで、EGR弁と吸気絞り弁の開度を制御してい
る。
The required value of the exhaust gas recirculation amount (EGR flow rate) differs depending on the operating conditions, and depending on the operating conditions, the EG
Since R hinders the output performance of the engine, the target value of the EGR rate (= EGR flow rate / intake air flow rate) according to the operating conditions is set in advance so that the engine output performance and the exhaust performance are balanced. Then, by referring to this map of target values, the target EGR that matches the current operating conditions
The target EGR rate is converted into a control command value, which is applied to each actuator for the EGR valve and the intake throttle valve to control the opening degrees of the EGR valve and the intake throttle valve.

【0004】ところが、EGR弁用や吸気絞り弁用の各
アクチュエータの制御指令値に対する作動誤差あるいは
EGRガス中に含まれるカーボンのEGR弁への付着に
より、実際のEGR率が目標値からずれると、排気性能
が悪くなることがある。
However, if the actual EGR rate deviates from the target value due to an operation error with respect to the control command value of each actuator for the EGR valve or the intake throttle valve or adhesion of carbon contained in the EGR gas to the EGR valve, Exhaust performance may deteriorate.

【0005】このため、特開昭57−165656号公
報では、一定の走行距離毎に実際のEGR率を検出し、
これが目標値と一致するようにEGR弁用アクチュエー
タへの制御指令値をフィードバック制御している。吸入
空気流量およびEGR流量を検出するセンサを設けてお
き、これらセンサ検出値から実際のEGR率を求め、こ
れが目標値より大きいとEGR弁開度が小さくなる側
に、この逆に実際のEGR率が目標値より小さいときは
EGR弁が開かれる側にEGR弁用アクチュエータへの
制御指令値をそれぞれ補正するのである。
For this reason, in Japanese Patent Laid-Open No. 165656/1982, the actual EGR rate is detected for each constant traveling distance,
The control command value to the EGR valve actuator is feedback-controlled so that this coincides with the target value. A sensor for detecting the intake air flow rate and the EGR flow rate is provided, the actual EGR rate is calculated from these sensor values, and if this is larger than the target value, the EGR valve opening becomes smaller, and vice versa. When is smaller than the target value, the control command value to the EGR valve actuator is corrected to the side where the EGR valve is opened.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記の装置
ではEGR流量を検出するため、EGR通路の途中で通
路が2つに分岐され、その一方の分岐通路にベンチュリ
部が設けてあり、この前後差圧を差圧トランスデューサ
で取り出すようになっている。ベンチュリ部の流量はベ
ンチュリ部の流路面積と前後差圧とから定まるので、こ
の関係を利用して前後差圧をEGR流量に変換するので
ある。
By the way, in order to detect the EGR flow rate in the above device, the passage is branched into two in the middle of the EGR passage, and one of the branch passages is provided with a venturi portion. The differential pressure is taken out by the differential pressure transducer. Since the flow rate of the venturi section is determined by the flow passage area of the venturi section and the differential pressure across the venturi, the differential pressure across the venturi is converted to the EGR flow rate by utilizing this relationship.

【0007】しかしながら、低回転域や低EGR流量域
といった運転条件ではベンチュリ部の前後差圧が小さく
なり、EGR流量を精度良く検出することができない。
精度のよくないEGR流量の検出値を用いてEGR率を
フィードバック制御するときはかえってフィードバック
制御精度を落としてしまうのである。
However, under operating conditions such as a low rotation speed range and a low EGR flow rate range, the differential pressure across the venturi portion becomes small, and the EGR flow rate cannot be detected accurately.
When the EGR rate is feedback-controlled by using the detection value of the EGR flow rate which is not accurate, the feedback control accuracy is rather deteriorated.

【0008】そこでこの発明は、EGR通路と吸気通路
の圧力差の実測値が所定の限度値を越えるときだけフィ
ードバック制御を行い、実測値が限度値以下になるとオ
ープン制御に切換えることにより、低回転域や低EGR
流量域で、EGR流量の検出精度の低下に伴うEGR制
御への影響をなくすことを目的とする。
Therefore, according to the present invention, the feedback control is performed only when the measured value of the pressure difference between the EGR passage and the intake passage exceeds a predetermined limit value, and when the measured value becomes equal to or less than the limit value, the control is switched to the open control to reduce the rotation speed. Range and low EGR
It is an object of the present invention to eliminate the influence on the EGR control due to the decrease in the detection accuracy of the EGR flow rate in the flow rate range.

【0009】[0009]

【課題を解決するための手段】この発明は、図1で示す
ように、排気通路21と吸気通路22を連通するEGR
通路23と、このEGR通路23を開閉するEGR弁2
4と、このEGR弁24の開度を可変に調整可能なアク
チュエータ(たとえばデューティ制御弁)25と、前記
EGR通路23と吸気通路22の接続部より上流に位置
して吸気を絞る弁26と、この吸気絞り弁26の開度を
多段階に調整可能なアクチュエータ27と、運転条件の
検出値(たとえばエンジン回転数Neとエンジン負荷L
p)に応じた吸気絞り弁開度となるように前記吸気絞り
弁用アクチュエータ27を制御する手段28と、前記E
GR弁24の開度目標値を前記運転条件の検出値に応じ
て算出する手段29と、前記排気通路21と吸気絞り弁
26下流の吸気通路23との差圧を実測するセンサ30
と、この差圧の目標値ΔPtを前記運転条件の検出値に
応じて算出する手段31と、この差圧目標値ΔPtと前
記差圧実測値ΔPsとが一致するように前記EGR弁用
アクチュエータ25への制御指令値に対するフィードバ
ック補正量を算出する手段32と、前記差圧実測値ΔP
sとあらかじめ定めた差圧限度値ΔP0との比較により
差圧実測値ΔPsが差圧限度値ΔP0を越える場合はフ
ィードバック制御域であると、また差圧実測値ΔPsが
差圧限度値ΔP0以下のときオープン制御域であるとそ
れぞれ判定する手段33と、この判定結果よりフィード
バック制御域では前記フィードバック補正量を用いて、
またオープン制御域になると前記運転条件の検出値に応
じたEGR弁の開度目標値に応じてそれぞれ前記EGR
弁用アクチュエータ25への制御指令値を決定する手段
34とを設けた。
According to the present invention, as shown in FIG. 1, an EGR which connects an exhaust passage 21 and an intake passage 22 with each other.
The passage 23 and the EGR valve 2 that opens and closes the EGR passage 23
4, an actuator (for example, a duty control valve) 25 capable of variably adjusting the opening degree of the EGR valve 24, and a valve 26 that is located upstream of the connection between the EGR passage 23 and the intake passage 22 and throttles the intake air. An actuator 27 capable of adjusting the opening degree of the intake throttle valve 26 in multiple stages, and a detected value of operating conditions (for example, engine speed Ne and engine load L).
means 28 for controlling the intake throttle valve actuator 27 so that the intake throttle valve opening degree corresponds to p);
A means 29 for calculating a target opening value of the GR valve 24 in accordance with the detected value of the operating condition, and a sensor 30 for actually measuring the differential pressure between the exhaust passage 21 and the intake passage 23 downstream of the intake throttle valve 26.
And means 31 for calculating the target value ΔPt of the differential pressure according to the detected value of the operating condition, and the EGR valve actuator 25 so that the target differential pressure value ΔPt and the actual differential pressure value ΔPs match. Means 32 for calculating a feedback correction amount for the control command value to the
If the measured differential pressure value ΔPs exceeds the differential pressure limit value ΔP 0 by comparing s with a predetermined differential pressure limit value ΔP 0 , it is in the feedback control range, and the measured differential pressure value ΔPs is the differential pressure limit value ΔP 0. When the value is 0 or less, each means 33 that determines that the control range is the open control range, and the feedback control amount is used in the feedback control range based on the determination result,
Further, when the open control range is reached, the EGR valve opening target value corresponding to the detected value of the operating condition is set to the EGR valve opening target value.
Means 34 for determining a control command value for the valve actuator 25 is provided.

【0010】第2の発明は、前記フィードバック制御域
で差圧実測値ΔPsと差圧目標値ΔPtとが一致した場
合に、標準排圧時におけるEGR弁開度の基準値と実際
のEGR弁開度との差を補正量として算出してこれを保
持しておき、この補正量でオープン制御域でのEGR弁
24の開度目標値を補正する。
In a second aspect of the invention, when the measured differential pressure value ΔPs and the differential pressure target value ΔPt match in the feedback control range, the reference value of the EGR valve opening at the time of standard exhaust pressure and the actual EGR valve opening. The difference from the degree is calculated as a correction amount and is held, and the opening target value of the EGR valve 24 in the open control range is corrected by this correction amount.

【0011】[0011]

【作用】第1の発明で差圧実測値ΔPsが差圧限度値Δ
0を越えたときは、差圧実測値ΔPsが差圧目標値Δ
Ptと一致するようにEGR弁用アクチュエータ25に
与える制御指令値がフィードバック制御されることで、
排気通路21に設けた後処理装置にパーティキュレート
(排気微粒子のこと)がたまって排圧が上昇するときで
も、運転条件に応じた目標EGR率が得られる。また、
吸入空気流量センサは不要である。
In the first aspect of the invention, the measured differential pressure value ΔPs is the differential pressure limit value Δ.
When P 0 is exceeded, the measured differential pressure value ΔPs is equal to the differential pressure target value Δ
By feedback-controlling the control command value given to the EGR valve actuator 25 so as to match Pt,
Even when the exhaust pressure rises due to the accumulation of particulates (exhaust particles) in the aftertreatment device provided in the exhaust passage 21, the target EGR rate according to the operating conditions can be obtained. Also,
No intake air flow sensor is required.

【0012】一方、差圧実測値ΔPsが差圧限度値ΔP
0以下になると、差圧が精度良く実測されないと判断さ
れ、オープン制御に切換えられることで、排気通路21
と吸気絞り弁26下流の吸気通路23との差圧が小さく
なる低回転域や低EGR率域でその差圧を実測すること
に伴う測定誤差に影響されることがない。
On the other hand, the measured differential pressure value ΔPs is the differential pressure limit value ΔP
When it becomes 0 or less, it is determined that the differential pressure is not accurately measured, and the open control is switched to the exhaust passage 21.
Is not affected by the measurement error associated with the actual measurement of the differential pressure between the intake throttle valve 26 and the intake passage 23 downstream of the intake throttle 23.

【0013】第2の発明で、フィードバック制御域にお
いて標準排圧時におけるEGR弁開度の基準値と実際の
EGR弁開度との差が補正量として算出され、この補正
量でオープン制御時のEGR弁の開度目標値が補正され
ると、オープン制御時においてもフィードバック制御時
と同様に、排気通路に設けた後処理装置により排圧が上
昇するときでも、排圧の上昇に関係なくEGR率が一定
に保持される。
In the second invention, the difference between the reference value of the EGR valve opening at the time of standard exhaust pressure and the actual EGR valve opening in the feedback control region is calculated as a correction amount, and this correction amount is used for open control. When the opening target value of the EGR valve is corrected, even when the exhaust control is performed by the post-treatment device provided in the exhaust passage, the EGR is performed regardless of the increase in the exhaust pressure during the open control as in the feedback control. The rate is kept constant.

【0014】[0014]

【実施例】図2において、排気通路1と吸気通路2を連
通するEGR通路3には、その吸気通路2との接続部に
オリフィス4が、また排気通路1との接続部の近くにE
GR通路3を開閉するEGR弁5が設けられる。
In FIG. 2, an EGR passage 3 connecting the exhaust passage 1 and the intake passage 2 is provided with an orifice 4 at a connecting portion with the intake passage 2 and an E near the connecting portion with the exhaust passage 1.
An EGR valve 5 that opens and closes the GR passage 3 is provided.

【0015】EGR弁5は、その弁リフト(弁開度相当
値である)がデューティ制御弁(アクチュエータ)6に
より調整され、制御弁6に与えるデューティ比(一定時
間周期当たりのON時間割合)に比例して弁リフトが大
きくなる。デューティ比が大きくなるほど、大気圧より
もバキュームポンプ(エンジンによって駆動される)7
からの一定負圧を導入する割合が増してEGR弁の作動
室5Aへの制御負圧が強まり、弁リフトが大きくなるの
である。
The EGR valve 5 has its valve lift (a valve opening equivalent value) adjusted by a duty control valve (actuator) 6 to give a duty ratio (ON time ratio per constant time period) to the control valve 6. The valve lift increases proportionally. The higher the duty ratio, the more vacuum pump (driven by the engine) than atmospheric pressure 7
The ratio of introducing a constant negative pressure from the EGR valve increases, the control negative pressure to the working chamber 5A of the EGR valve increases, and the valve lift increases.

【0016】同様にして、EGR通路3と吸気通路2の
接続部より上流側に設けられた吸気絞り弁8も、その弁
開度がデューティ制御弁9により調整され、三段階(た
とえば20度、30度、80度)に閉じられる。EGR
弁5のリフトが同じでも、その前後差圧が大きいほどE
GR流量が多くなるので、ダイヤフラムアクチュエータ
10への制御負圧を強くして吸気絞り弁8を閉じればE
GR弁5の前後差圧が大きくなってEGR流量が増すの
である。
Similarly, the intake throttle valve 8 provided upstream of the connection between the EGR passage 3 and the intake passage 2 has its valve opening adjusted by the duty control valve 9, and has three stages (for example, 20 degrees, 30 degrees, 80 degrees). EGR
Even if the lift of valve 5 is the same, the larger the differential pressure across the valve, the more E
Since the GR flow rate increases, if the control negative pressure to the diaphragm actuator 10 is increased and the intake throttle valve 8 is closed, E
The differential pressure across the GR valve 5 increases and the EGR flow rate increases.

【0017】ただし、絞り弁6はエンジンに吸入される
空気流量も制御することになるので、エンジン本来の出
力性能を阻害することのないように、目標EGR率と吸
気絞り弁開度特性とを図3に示したように運転条件に応
じて定めている。図3において、EGR制御領域でエン
ジンの負荷(たとえば噴射ポンプのレバー開度)Lpが
小さくなるほど、またエンジン回転数(噴射ポンプの回
転数から得られる)Neが小さくなるほど目標EGR率
の値が大きくなり、この目標EGR率によればEGR流
量が破線で示したように流れるわけである。
However, since the throttle valve 6 also controls the flow rate of air taken into the engine, the target EGR rate and the intake throttle valve opening characteristic are set so as not to impair the original output performance of the engine. As shown in FIG. 3, it is determined according to operating conditions. In FIG. 3, as the engine load (for example, the opening degree of the injection pump lever) Lp in the EGR control region becomes smaller, and as the engine speed (obtained from the rotation speed of the injection pump) Ne becomes smaller, the target EGR rate becomes larger. Therefore, according to this target EGR rate, the EGR flow rate flows as shown by the broken line.

【0018】さて、図3は排気系に流路抵抗となるもの
が設けられてないときの特性であるため、図2において
排気通路1にパーティキュレートを捕集するフィルター
などの後処理装置12が設けられたときは、同じ運転条
件でも後処理装置12でのパーティキュレートの捕集量
が増えるほど排圧が上昇するので、この排圧の上昇に伴
ってEGR流量が増加し、実際のEGR率が目標値から
外れてしまう。
Since FIG. 3 shows the characteristics when the exhaust system does not have a passage resistance, the post-treatment device 12 such as a filter for collecting the particulates in the exhaust passage 1 in FIG. When provided, the exhaust pressure rises as the amount of collected particulate matter in the post-treatment device 12 increases even under the same operating conditions. Therefore, the EGR flow rate increases as the exhaust pressure rises, and the actual EGR rate increases. Is out of the target value.

【0019】この排気対策として、EGR通路3と吸気
通路2にそれぞれ設けた圧力センサ(絶対圧センサ)1
3,14でオリフィス4の前後差圧(この差圧をEGR
差圧という)を実測し、マイコンからなるコントロール
ユニット11において、EGR差圧の実測値が運転条件
に応じて定めたEGR差圧の目標値と一致するように制
御弁6に与えるデューティ比を補正してやれば、排圧が
上昇してもEGR率を一定に保持することができる。図
4は、同じ運転条件で標準排圧(後処理装置のない状態
での排圧で、図では5mmHg)よりも排圧を上昇させ
たときの影響を示したものであるが、EGR差圧を目標
とする理由は、図4の第2段目に示したように、排圧が
上昇してもEGR差圧が一定であれば、EGR率が一定
となるからである。なお、2つの圧力センサ13,14
の代わりにオリフィス4の前後差圧を直接に検出する差
圧センサを用いてもよい。
As a measure against this exhaust, a pressure sensor (absolute pressure sensor) 1 provided in each of the EGR passage 3 and the intake passage 2
3, 14 the differential pressure across the orifice 4 (this differential pressure
(Referred to as differential pressure) is measured, and the control unit 11 including a microcomputer corrects the duty ratio given to the control valve 6 so that the measured value of the EGR differential pressure matches the target value of the EGR differential pressure determined according to the operating conditions. By doing so, the EGR rate can be kept constant even if the exhaust pressure rises. FIG. 4 shows the effect of increasing the exhaust pressure above the standard exhaust pressure (exhaust pressure without the aftertreatment device; 5 mmHg in the figure) under the same operating conditions. The reason why the target is set is that, as shown in the second stage of FIG. 4, if the EGR differential pressure is constant even if the exhaust pressure increases, the EGR rate becomes constant. The two pressure sensors 13 and 14
Alternatively, a differential pressure sensor that directly detects the differential pressure across the orifice 4 may be used.

【0020】ただし、EGR率に対するEGR差圧の傾
きは、図5に示したように低回転になるほどまた低EG
R率になるほど小さくなるため、低回転域や低EGR率
域では、実際のEGR差圧を精度良く検出することがで
きなくなる。低回転域や低EGR率域でEGR率が変化
しても、EGR差圧の実測値のほうはその値がEGR率
の変化前と変化後で変わらなくなってしまうのである。
However, the slope of the EGR differential pressure with respect to the EGR rate becomes lower as the rotation speed becomes lower as shown in FIG.
Since the R ratio becomes smaller, the actual EGR differential pressure cannot be accurately detected in the low rotation speed region and the low EGR ratio region. Even if the EGR rate changes in the low rotation range and the low EGR rate range, the measured value of the EGR differential pressure remains unchanged before and after the change of the EGR rate.

【0021】なお、オリフィス4の流路面積を小さくす
ることで、EGR差圧は大きくなるが、その一方で必要
な最大EGR流量が流れるようにしなければならないた
め、オリフィス4の流路面積を小さくするにしても限度
があり、EGRを行うことが要求されるすべての運転域
で必要なEGR差圧を作りだすのは困難である。
Although the EGR differential pressure is increased by reducing the flow passage area of the orifice 4, the flow passage area of the orifice 4 is reduced because the required maximum EGR flow rate must be made to flow. However, there is a limit, and it is difficult to create the required EGR differential pressure in all operating ranges where EGR is required.

【0022】そこで、この例では必要な精度が確保でき
るEGR差圧の限度値を設定しておき、EGR差圧の実
測値がこの限度値以上では、EGR差圧の実測値が運転
条件に応じた目標値と一致するように制御弁6に与える
デューティ比(制御指令値)をフィードバック制御し、
EGR差圧の実測値が限度値以下になると、フィードバ
ック制御を中止してオープン制御に切換える。
Therefore, in this example, a limit value of the EGR differential pressure is set so that the required accuracy can be secured, and if the measured value of the EGR differential pressure is equal to or higher than this limit value, the measured value of the EGR differential pressure depends on the operating conditions. Feedback control of the duty ratio (control command value) given to the control valve 6 so as to match the target value
When the measured value of the EGR differential pressure becomes less than or equal to the limit value, the feedback control is stopped and the open control is switched to.

【0023】なお、吸気絞り弁8を三段階に制御するに
は、図3の吸気絞り弁開度特性を内容とするマップをあ
らかじめ与えておき、エンジン回転数Neとエンジン負
荷Lpからこのマップを参照することで、回転数と負荷
の検出値で定まる運転条件の属する領域の絞り弁開度を
求め、これをデューティ比に変えて制御弁9に出力すれ
ばよい。
In order to control the intake throttle valve 8 in three stages, a map containing the intake throttle valve opening characteristic of FIG. 3 is given in advance, and this map is calculated from the engine speed Ne and the engine load Lp. By referring to this, the throttle valve opening degree in the region to which the operating condition determined by the rotation speed and the detected value of the load belongs can be obtained, and this can be output to the control valve 9 by changing it into the duty ratio.

【0024】図6は制御弁6に与えるデューティ比を制
御するためのフローチャートである。
FIG. 6 is a flow chart for controlling the duty ratio applied to the control valve 6.

【0025】まず2つの圧力センサ13,14の信号か
らEGR差圧の実測値ΔPsを読み込み、これとあらか
じめ定めてあるEGR差圧の限界値(一定値)ΔP0
を比較することにより(図6のステップ1,2)、ΔP
s>ΔP0であればフィードバック制御域であると、こ
の逆にΔPs≦ΔP0であればオープン制御域であると
判断する。フィードバック制御域とオープン制御域を回
転数Neと負荷Lpをパラメータとする運転領域で示す
と、図8のように、オープン制御域は低回転域と低EG
R率域(低EGR流量域でもある)とを合わせたもの
で、フィードバック制御域とオープン制御域の境界線に
相当するEGR差圧が限界値ΔP0である。
First, the measured value ΔPs of the EGR differential pressure is read from the signals of the two pressure sensors 13 and 14, and this is compared with a predetermined limit value (constant value) ΔP 0 of the EGR differential pressure (see FIG. Steps 1 and 2 of 6, ΔP
If s> ΔP 0 , it is in the feedback control region. Conversely, if ΔPs ≦ ΔP 0 , it is in the open control region. When the feedback control region and the open control region are shown in the operating region with the rotation speed Ne and the load Lp as parameters, the open control region has a low rotation region and a low EG as shown in FIG.
The EGR differential pressure, which is a combination of the R rate range (which is also a low EGR flow rate range) and corresponds to the boundary line between the feedback control range and the open control range, is the limit value ΔP 0 .

【0026】図8を内容とする領域マップをあらかじめ
与えておき、回転数Neと負荷Lpからこのマップを参
照することで、現在の運転条件がフィードバック制御域
にあるのかそれともオープン制御域にあるのかを判断す
るようにしてもかまわない。フィードバック制御域で
は、回転数Neと負荷Lpから図9を内容とするマップ
を参照してEGR差圧の目標値ΔPtを求める(図6の
ステップ3,4)。目標値ΔPtのマップは図3の目標
EGR率の特性を図5の関係を用いてEGR差圧の特性
に置き換えたものである。
By giving a region map having the contents of FIG. 8 in advance and referring to this map from the rotational speed Ne and the load Lp, it is determined whether the current operating condition is in the feedback control region or the open control region. You may decide to judge. In the feedback control region, the target value ΔPt of the EGR differential pressure is obtained from the rotational speed Ne and the load Lp with reference to the map having the content of FIG. 9 (steps 3 and 4 in FIG. 6). The map of the target value ΔPt is obtained by replacing the characteristic of the target EGR rate of FIG. 3 with the characteristic of the EGR differential pressure using the relationship of FIG.

【0027】この目標値ΔPtと実測値ΔPsを比較
し、ΔPt≠ΔPsであれば、実測値ΔPsが目標値Δ
Ptと一致するように制御弁6へのデューティ比を補正
する(図6のステップ5,6)。たとえば、ΔPs>Δ
Ptであれば排圧の上昇でEGR流量が増加していると
判断し、EGR流量を減少させるため、図7のサブルー
チンで示したように、デューティ比Dtから一定値ΔD
tを差し引いた値をあらためてデューティ比Dtとおく
ことによってEGR弁5を閉じる側に補正するわけであ
る(図7のステップ21,22,23)。ΔPs<ΔP
tのときはデューティ比を増加補正してEGR弁5を開
く側に駆動する(図7のステップ21,24,23)。
The target value ΔPt and the measured value ΔPs are compared. If ΔPt ≠ ΔPs, the measured value ΔPs is the target value ΔPs.
The duty ratio to the control valve 6 is corrected so as to match Pt (steps 5 and 6 in FIG. 6). For example, ΔPs> Δ
If it is Pt, it is determined that the EGR flow rate is increasing due to the increase of the exhaust pressure, and the EGR flow rate is decreased. Therefore, as shown in the subroutine of FIG. 7, from the duty ratio Dt to the constant value ΔD.
The value obtained by subtracting t is newly set as the duty ratio Dt so that the EGR valve 5 is closed (steps 21, 22, and 23 in FIG. 7). ΔPs <ΔP
At t, the duty ratio is increased and corrected, and the EGR valve 5 is driven to the open side (steps 21, 24 and 23 in FIG. 7).

【0028】一方、オープン制御域になると、回転数N
eと負荷Lpから図10を内容とするマップを参照して
EGR弁のリフト目標値Htを求める(図6のステップ
7,8)。目標値Htのマップは図3の目標EGR率特
性を図4の最下段に示す標準排圧時の関係(排圧が5m
mHgのときのEGR率とEGR弁リフトの関係)を用
いてEGR弁リフトの特性に置き換えたものである。
On the other hand, in the open control range, the rotation speed N
The target lift value Ht of the EGR valve is obtained from e and the load Lp with reference to the map having the contents of FIG. 10 (steps 7 and 8 in FIG. 6). The map of the target value Ht shows the target EGR rate characteristic of FIG. 3 at the bottom of FIG. 4 at the time of standard exhaust pressure (exhaust pressure is 5 m.
The relationship between the EGR rate and the EGR valve lift at mHg) is used to replace the EGR valve lift characteristic.

【0029】このEGR弁のリフト目標値Htを図11
を内容とするテーブルを用いてデューティ比に変換し、
この変換したデューティ比DOPを制御弁6に出力する
(図6のステップ9,10,11)。
The target lift value Ht of this EGR valve is shown in FIG.
Is converted to a duty ratio using a table containing
This converted duty ratio D OP is output to the control valve 6 (steps 9, 10, 11 in FIG. 6).

【0030】このように、あらかじめ定めたEGR差圧
の限度値をEGR差圧の実測値が越えたときは、EGR
差圧の実測値が目標値と一致するように制御弁6へのデ
ューティ比をフィードバック制御することで、後処理装
置12にパーティキュレートがたまり排圧が上昇すると
きでも、運転条件に応じた目標EGR率が得られる。
As described above, when the measured value of the EGR differential pressure exceeds the predetermined limit value of the EGR differential pressure, the EGR
By performing feedback control of the duty ratio to the control valve 6 so that the measured value of the differential pressure matches the target value, even if the particulate pressure is accumulated in the post-processing device 12 and the exhaust pressure rises, the target according to the operating conditions can be obtained. The EGR rate is obtained.

【0031】また、EGR率でなくEGR差圧を目標値
としているため、従来例と相違して吸入空気流量センサ
は不要である。
Further, since the EGR differential pressure is used as the target value instead of the EGR rate, the intake air flow rate sensor is unnecessary unlike the conventional example.

【0032】一方、EGR差圧の実測値がEGR差圧の
限度値以下になると、EGR差圧を精度良く実測できな
いと判断し、オープン制御に切換えることで、EGR差
圧が小さくなる低回転域や低EGR率域でEGR差圧を
実測することに伴う測定誤差に影響されることがない。
On the other hand, when the measured value of the EGR differential pressure becomes less than or equal to the limit value of the EGR differential pressure, it is determined that the EGR differential pressure cannot be accurately measured, and the open control is switched to reduce the EGR differential pressure. Also, it is not affected by the measurement error caused by actually measuring the EGR differential pressure in the low EGR rate range.

【0033】図12は第2実施例である。排気通路1に
後処理装置12を設けた場合に、EGR差圧の実測精度
がよくないとはいえオープン制御を行うときは、排圧の
上昇でEGR流量が増加し、その分スモークの排出量が
多くなるので、このスモーク増加分を考慮してEGR流
量の目標値が少なめになるように目標EGR率を設定し
ておく必要があるが、この少なめの設定によってEGR
によるNOx低減の効果が少なくなる。
FIG. 12 shows a second embodiment. When the aftertreatment device 12 is provided in the exhaust passage 1 and the open control is performed even though the measurement accuracy of the EGR differential pressure is not good, the EGR flow rate increases due to the increase in exhaust pressure, and the amount of smoke exhausted by that amount increases. Therefore, it is necessary to set the target EGR rate so that the target value of the EGR flow rate becomes small in consideration of this increase in smoke.
The effect of NOx reduction due to is reduced.

【0034】そこで、この例ではEGR差圧が同じでも
排圧が異なればEGR弁リフトが異なる(図4の最下段
参照)ことを利用して、フィードバック制御中に標準排
圧時におけるEGR弁のリフト基準値H0と実際のEG
R弁リフトHcとの差を補正量ΔH(=Hc−H0)と
して算出しておき、この補正量ΔHでオープン制御時に
EGR弁のリフト目標値Htを補正する。
Therefore, in this example, the EGR valve lift is different if the exhaust pressure is different even if the EGR differential pressure is the same (see the bottom of FIG. 4). Lift reference value H 0 and actual EG
The difference from the R valve lift Hc is calculated as a correction amount ΔH (= Hc−H 0 ), and the lift target value Ht of the EGR valve is corrected during the open control with the correction amount ΔH.

【0035】詳細には、標準排圧時(排圧が5mmHg
のとき)におけるEGR弁のリフト基準値H0は、回転
数Neと負荷Lpから図13を内容とするマップを、ま
たEGR弁リフトの実際値Hcは制御弁6に与えるデュ
ーティ比Dtから図14を内容とするテーブルを、それ
ぞれΔPs=ΔPtとなった時点で参照して求め、両者
の差を補正値ΔH(=Hc−H0)として記憶しておき
(図12のステップ31,32,33,34)、オープ
ン制御時になると、EGR弁のリフト目標値Htから補
正量ΔHを差し引いた値をあらためて目標値Htとおく
(図12のステップ35)。
Specifically, at standard exhaust pressure (exhaust pressure is 5 mmHg
13), the actual value Hc of the EGR valve lift is obtained from the duty ratio Dt given to the control valve 6, and the lift reference value H 0 of the EGR valve is shown in FIG. Table is obtained by referring to each of them when ΔPs = ΔPt, and the difference between them is stored as a correction value ΔH (= Hc−H 0 ) (steps 31, 32, 33 in FIG. 12). , 34), the value obtained by subtracting the correction amount ΔH from the EGR valve lift target value Ht is newly set as the target value Ht (step 35 in FIG. 12).

【0036】たとえば、フィードバック制御時にHc>
0より実際のEGR弁リフトを目標値より高くしない
とEGR差圧が大きい側にずれるのであれば、同じ運転
条件でも排圧が高くなっていることを意味するので、オ
ープン制御時にもEGR差圧が大きくなる側にずれない
ようにEGR弁のリフト目標値Htを減少補正し、この
逆にHc<H0になると目標値Htを増加補正するので
ある。なお、図10も標準排圧時の特性であり、図13
と同じ特性であるから、目標値Htのマップを参照した
値を基準値H0に置き換えてもかまわない。
For example, during feedback control, Hc>
If the actual EGR valve lift does not become higher than the target value than H 0 and the EGR differential pressure deviates to the larger side, it means that the exhaust pressure is high even under the same operating conditions. The lift target value Ht of the EGR valve is corrected so as not to deviate to the side where the pressure increases, and conversely, when Hc <H 0 , the target value Ht is corrected so as to increase. Note that FIG. 10 also shows the characteristics at the time of standard exhaust pressure.
Since it has the same characteristics as above, the value referring to the map of the target value Ht may be replaced with the reference value H 0 .

【0037】このように、フィードバック制御域で、標
準排圧時におけるEGR弁のリフト基準値H0と実際の
EGR弁リフトHcとの差を補正量ΔHとして算出し、
この補正量ΔHでオープン制御時のEGR弁リフトの目
標値Htを補正することによって、オープン制御域にお
いてもフィードバック制御域と同様に、排気通路に設け
た後処理装置12により排圧が上昇するときでも、排圧
の上昇に関係なくEGR率を一定に保持することができ
る。
Thus, in the feedback control range, the difference between the lift reference value H 0 of the EGR valve and the actual EGR valve lift Hc at the time of standard exhaust pressure is calculated as the correction amount ΔH,
By correcting the target value Ht of the EGR valve lift at the time of open control with this correction amount ΔH, when the exhaust pressure rises by the post-processing device 12 provided in the exhaust passage in the open control region as well as the feedback control region. However, the EGR rate can be kept constant regardless of the increase in exhaust pressure.

【0038】なお、排気通路に後処理装置を設けた場合
に、同一の運転条件ではEGR弁リフトを一定とするオ
ープン制御を全運転域で行うときは、排圧の上昇による
EGR流量の増加に伴ってパーティキュレートが増加し
てしまうため、この排圧上昇時のパーティキュレートの
増加が問題とならないように余裕代をもってEGR流量
を少なめに設定する必要があることを前述したが、第1
実施例では、パーティキュレートの増加分を考慮した余
裕代がフィードバック制御域について不要になり、EG
R流量の目標値を大きくできるため、その分だけNOx
を低減できる。第2実施例ではさらにオープン制御領に
おいてもEGR流量の目標値を大きくできるため、第1
実施例よりさらにNOxを低減できる。
When the aftertreatment device is provided in the exhaust passage and the open control for keeping the EGR valve lift constant under the same operating condition is performed in the entire operating range, the EGR flow rate increases due to the increase in exhaust pressure. As described above, since the particulate matter increases, it is necessary to set the EGR flow rate to a small value with a margin so that the particulate matter increase when the exhaust pressure rises does not pose a problem.
In the embodiment, the margin allowance in consideration of the increase in the particulates becomes unnecessary for the feedback control area,
Since the target value of the R flow rate can be increased, NOx
Can be reduced. In the second embodiment, the target value of the EGR flow rate can be increased even in the open control range.
NOx can be further reduced as compared with the embodiment.

【0039】実施例では、吸気絞り弁8を20度、30
度、80度の三段階に制御しているが、20度、30
度、80度といった実際の絞り弁開度の値については、
エンジン機種、絞り弁仕様に応じて適正値が異なること
はいうまでもない。
In the embodiment, the intake throttle valve 8 is set to 20 degrees and 30 degrees.
It is controlled in three steps of 80 degrees and 20 degrees, 30 degrees
For actual throttle valve opening values such as
Needless to say, the appropriate value varies depending on the engine model and throttle valve specifications.

【0040】[0040]

【発明の効果】第1の発明によれば、排気通路と吸気絞
り弁下流の吸気通路との差圧実測値が限界値を越えると
きは、その差圧を目標値としたフィードバック制御を、
その差圧が限界値以下になるとフィードバック制御を中
止してオープン制御に切換えるように構成したため、フ
ィードバック制御域では、排気通路に設けた後処理装置
にパーティキュレートがたまり排圧が上昇するときで
も、運転条件に応じた目標EGR率が得られ、かつ従来
例と相違して吸入空気流量センサが不要であるととも
に、オープン制御域である低回転域や低EGR率域で前
記差圧を実測することに伴う測定誤差に影響されること
がない。
According to the first aspect of the present invention, when the differential pressure measured value between the exhaust passage and the intake passage downstream of the intake throttle valve exceeds the limit value, feedback control with the differential pressure as a target value is performed.
When the differential pressure becomes equal to or lower than the limit value, the feedback control is stopped and switched to the open control.Therefore, in the feedback control region, even when the particulate matter accumulates in the aftertreatment device provided in the exhaust passage and the exhaust pressure increases, A target EGR rate according to operating conditions can be obtained, and unlike the conventional example, an intake air flow rate sensor is not required, and the differential pressure is actually measured in a low rotation range or a low EGR rate range which is an open control range. It is not affected by the measurement error associated with.

【0041】第2の発明は、前記フィードバック制御域
で差圧実測値と差圧目標値とが一致した場合に、標準排
圧時におけるEGR弁の開度基準値と実際のEGR弁開
度との差を補正量として算出してこれを保持しておき、
この補正量でオープン制御域でのEGR弁の開度目標値
を補正するため、オープン制御域においてもフィードバ
ック制御域と同様に、排気後処理装置により排圧が上昇
するような場合にあっても、この排圧の上昇に関係なく
EGR率を一定に保持することができる。
In a second aspect of the invention, when the measured differential pressure value and the differential pressure target value match in the feedback control range, the opening reference value of the EGR valve at the time of standard exhaust pressure and the actual EGR valve opening degree are set. The difference between is calculated as a correction amount and held,
Since the target opening value of the EGR valve in the open control range is corrected by this correction amount, even in the open control range, even when the exhaust pressure is increased by the exhaust aftertreatment device, as in the feedback control range. The EGR rate can be kept constant regardless of the increase in the exhaust pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明のクレーム対応図である。FIG. 1 is a diagram corresponding to a claim of the first invention.

【図2】EGR制御装置のシステム図である。FIG. 2 is a system diagram of an EGR control device.

【図3】運転条件に応じた目標EGR率と吸気絞り弁開
度の特性図である。
FIG. 3 is a characteristic diagram of a target EGR rate and an intake throttle valve opening degree according to operating conditions.

【図4】排圧を上昇させたときのEGR率に対するNO
x排出量、EGR差圧、吸入空気流量、EGR弁リフト
の各特性図である。
FIG. 4 is a graph showing NO with respect to EGR rate when exhaust pressure is increased.
FIG. 3 is a characteristic diagram of x discharge amount, EGR differential pressure, intake air flow rate, and EGR valve lift.

【図5】標準排圧時に回転数を変化させたときのEGR
率とEGR差圧の関係を表す特性図である。
FIG. 5: EGR when changing the number of revolutions at standard exhaust pressure
It is a characteristic view showing the relationship between a rate and EGR differential pressure.

【図6】コントロールユニット11の制御内容を示すフ
ローチャートである。
FIG. 6 is a flowchart showing the control contents of the control unit 11.

【図7】フィードバック制御域でのデューティ比の補正
内容を示すフローチャートである。
FIG. 7 is a flowchart showing the contents of correction of the duty ratio in the feedback control region.

【図8】フィードバック制御域とオープン制御域を示す
領域図である。
FIG. 8 is a region diagram showing a feedback control region and an open control region.

【図9】EGR差圧の目標値ΔPtのマップ内容を示す
特性図である。
FIG. 9 is a characteristic diagram showing map contents of a target value ΔPt of EGR differential pressure.

【図10】EGR弁のリフト目標値Htのマップ内容を
示す特性図である。
FIG. 10 is a characteristic diagram showing map contents of a lift target value Ht of an EGR valve.

【図11】EGR弁のリフト目標値Htとデューティ比
OPの関係を示す特性図である。
FIG. 11 is a characteristic diagram showing the relationship between the lift target value Ht of the EGR valve and the duty ratio D OP .

【図12】第2実施例の制御内容を示すフローチャート
である。
FIG. 12 is a flowchart showing the control contents of the second embodiment.

【図13】標準排圧時におけるEGR弁のリフト基準値
0のマップ内容を示す特性図である。
FIG. 13 is a characteristic diagram showing a map content of a lift reference value H 0 of the EGR valve at the time of standard exhaust pressure.

【図14】実際のEGR弁リフトHcとデューティ比D
tの関係を示す特性図である。
FIG. 14 is an actual EGR valve lift Hc and duty ratio D.
It is a characteristic view which shows the relationship of t.

【符号の説明】[Explanation of symbols]

1 排気通路 2 吸気通路 3 EGR通路 5 EGR弁 6 デューティ制御弁(EGR弁用アクチュエータ) 8 吸気絞り弁 9 デューティ制御弁(吸気絞り弁用アクチュエータ) 11 コントロールユニット 13,14 圧力センサ 21 排気通路 22 吸気通路 23 EGR通路 24 EGR弁 25 EGR弁用アクチュエータ 26 吸気絞り弁 27 吸気絞り弁用アクチュエータ 28 絞り弁制御手段 29 EGR弁開度目標値算出手段 30 差圧センサ 31 差圧目標値差圧手段 32 フィードバック補正量算出手段 33 制御域判定手段 34 制御指令値決定手段 1 Exhaust Passage 2 Intake Passage 3 EGR Passage 5 EGR Valve 6 Duty Control Valve (EGR Valve Actuator) 8 Intake Throttle Valve 9 Duty Control Valve (Intake Throttle Valve Actuator) 11 Control Unit 13, 14 Pressure Sensor 21 Exhaust Passage 22 Intake Passage 23 EGR Passage 24 EGR valve 25 EGR valve actuator 26 Intake throttle valve 27 Intake throttle valve actuator 28 Throttle valve control means 29 EGR valve opening target value calculation means 30 Differential pressure sensor 31 Differential pressure target value Differential pressure means 32 Feedback Correction amount calculation means 33 Control area determination means 34 Control command value determination means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排気通路と吸気通路を連通するEGR通
路と、このEGR通路を開閉するEGR弁と、このEG
R弁の開度を可変に調整可能なアクチュエータと、前記
EGR通路と吸気通路の接続部より上流に位置して吸気
を絞る弁と、この吸気絞り弁の開度を多段階に調整可能
なアクチュエータと、運転条件の検出値に応じた吸気絞
り弁開度となるように前記吸気絞り弁用アクチュエータ
を制御する手段と、前記EGR弁の開度目標値を前記運
転条件の検出値に応じて算出する手段と、前記排気通路
と吸気絞り弁下流の吸気通路との差圧を実測するセンサ
と、この差圧の目標値を前記運転条件の検出値に応じて
算出する手段と、この差圧目標値と前記差圧実測値とが
一致するように前記EGR弁用アクチュエータへの制御
指令値に対するフィードバック補正量を算出する手段
と、前記差圧実測値とあらかじめ定めた差圧限度値との
比較により差圧実測値が差圧限度値を越える場合はフィ
ードバック制御域であると、また差圧実測値が差圧限度
値以下のときオープン制御域であるとそれぞれ判定する
手段と、この判定結果よりフィードバック制御域では前
記フィードバック補正量を用いて、またオープン制御域
になると前記運転条件の検出値に応じたEGR弁の開度
目標値に応じてそれぞれ前記EGR弁用アクチュエータ
への制御指令値を決定する手段とを設けたことを特徴と
するディーゼルエンジンのEGR制御装置。
1. An EGR passage that connects an exhaust passage and an intake passage, an EGR valve that opens and closes the EGR passage, and an EG
An actuator that can variably adjust the opening of the R valve, a valve that is located upstream of the connection between the EGR passage and the intake passage, and throttles the intake air, and an actuator that can adjust the opening of the intake throttle valve in multiple stages. And means for controlling the intake throttle valve actuator so that the intake throttle valve opening degree corresponds to the detected value of the operating condition, and the opening target value of the EGR valve is calculated according to the detected value of the operating condition. Means, a sensor for actually measuring the differential pressure between the exhaust passage and the intake passage downstream of the intake throttle valve, a means for calculating a target value of the differential pressure according to the detected value of the operating condition, and a differential pressure target. A means for calculating a feedback correction amount for the control command value to the EGR valve actuator so that the measured value and the measured differential pressure match, and the comparison between the measured differential pressure and a predetermined differential pressure limit value. Differential pressure measurement Is in the feedback control range when the differential pressure exceeds the differential pressure limit value, and is in the open control range when the measured differential pressure value is less than or equal to the differential pressure limit value. Means for determining a control command value for the EGR valve actuator by using the feedback correction amount and in accordance with the opening target value of the EGR valve according to the detected value of the operating condition when the open control range is reached. An EGR control device for a diesel engine characterized by the above.
【請求項2】 前記フィードバック制御域で差圧実測値
と差圧目標値とが一致した場合に、標準排圧時における
EGR弁開度の基準値と実際のEGR弁開度との差を補
正量として算出してこれを保持しておき、この補正量で
オープン制御域でのEGR弁の開度目標値を補正するこ
とを特徴とする請求項1に記載のディーゼルエンジンの
EGR制御装置。
2. The difference between the reference value of the EGR valve opening and the actual EGR valve opening at the time of standard exhaust pressure is corrected when the actually measured differential pressure and the target differential pressure match in the feedback control range. 2. The EGR control device for a diesel engine according to claim 1, wherein the target value of the opening degree of the EGR valve in the open control range is corrected with this correction amount calculated and held as the amount.
JP5129595A 1993-05-31 1993-05-31 Egr control device for diesel engine Pending JPH06336957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5129595A JPH06336957A (en) 1993-05-31 1993-05-31 Egr control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5129595A JPH06336957A (en) 1993-05-31 1993-05-31 Egr control device for diesel engine

Publications (1)

Publication Number Publication Date
JPH06336957A true JPH06336957A (en) 1994-12-06

Family

ID=15013339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5129595A Pending JPH06336957A (en) 1993-05-31 1993-05-31 Egr control device for diesel engine

Country Status (1)

Country Link
JP (1) JPH06336957A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480782B2 (en) 2001-01-31 2002-11-12 Cummins, Inc. System for managing charge flow and EGR fraction in an internal combustion engine
KR20030049689A (en) * 2001-12-17 2003-06-25 현대자동차주식회사 a noise control device and the method for exhaust gas recirculation of engine
KR100778587B1 (en) * 2005-10-20 2007-11-22 가부시키가이샤 덴소 Method and system for controlling an actuator to rotate a valve
JP2008038627A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
WO2015053172A1 (en) * 2013-10-09 2015-04-16 ヤンマー株式会社 Engine
CN104884775A (en) * 2012-12-25 2015-09-02 洋马株式会社 Engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480782B2 (en) 2001-01-31 2002-11-12 Cummins, Inc. System for managing charge flow and EGR fraction in an internal combustion engine
WO2002061257A3 (en) * 2001-01-31 2003-03-06 Cummins Inc System for managing charge flow and egr fraction in an internal combustion engine
KR20030049689A (en) * 2001-12-17 2003-06-25 현대자동차주식회사 a noise control device and the method for exhaust gas recirculation of engine
KR100778587B1 (en) * 2005-10-20 2007-11-22 가부시키가이샤 덴소 Method and system for controlling an actuator to rotate a valve
JP2008038627A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
CN104884775A (en) * 2012-12-25 2015-09-02 洋马株式会社 Engine
CN104884775B (en) * 2012-12-25 2018-05-08 洋马株式会社 Engine
WO2015053172A1 (en) * 2013-10-09 2015-04-16 ヤンマー株式会社 Engine
JP2015075043A (en) * 2013-10-09 2015-04-20 ヤンマー株式会社 Engine
CN105612338A (en) * 2013-10-09 2016-05-25 洋马株式会社 Engine
KR20160067922A (en) * 2013-10-09 2016-06-14 얀마 가부시키가이샤 Engine
US9759144B2 (en) 2013-10-09 2017-09-12 Yanmar Co., Ltd. Engine

Similar Documents

Publication Publication Date Title
US6230697B1 (en) Integrated internal combustion engine control system with high-precision emission controls
US4748567A (en) Method of performing a fail safe control for an engine and a fail safe control unit thereof
WO2009136562A1 (en) Fuel control system for diesel engine
EP1245818B1 (en) Air-fuel ratio control apparatus and method for internal combustion engine
CN1580532A (en) Control device for internal combustion engine
JPS58150063A (en) Exhaust gas recirculation device of internal-combustion engine
JPH06336957A (en) Egr control device for diesel engine
WO2006112385A1 (en) Variable vane type turbo charger control device
JP2001182574A (en) Egr system and method for controlling it
JP3250322B2 (en) EGR control device for diesel engine
JP3945349B2 (en) Control device for internal combustion engine
JP4561652B2 (en) Control device for internal combustion engine
JPH09126060A (en) Method and device for controlling exhaust gas reflux
JP3580558B2 (en) EGR device
JPH10238414A (en) Control device for egr
JP4061443B2 (en) Variable turbocharger control device
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3632446B2 (en) EGR control device for internal combustion engine
JP4228577B2 (en) Engine air-fuel ratio control device
JPH06229246A (en) Controller of engine provided with supercharger
JPH06294355A (en) Exhaust circulation control device for diesel engine
JP2519338Y2 (en) Exhaust recirculation control device for diesel engine
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPH0211858A (en) Exhaust gas recycling control unit
JP3008770B2 (en) Air-fuel ratio control device for internal combustion engine