JPH0633492B2 - Electrolytic cathode and method of manufacturing the same - Google Patents

Electrolytic cathode and method of manufacturing the same

Info

Publication number
JPH0633492B2
JPH0633492B2 JP62159685A JP15968587A JPH0633492B2 JP H0633492 B2 JPH0633492 B2 JP H0633492B2 JP 62159685 A JP62159685 A JP 62159685A JP 15968587 A JP15968587 A JP 15968587A JP H0633492 B2 JPH0633492 B2 JP H0633492B2
Authority
JP
Japan
Prior art keywords
cerium
platinum group
cathode
group metal
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62159685A
Other languages
Japanese (ja)
Other versions
JPS648288A (en
Inventor
善則 錦
秀司 中松
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP62159685A priority Critical patent/JPH0633492B2/en
Priority to CN88104726A priority patent/CN1012970B/en
Priority to EP88830281A priority patent/EP0298055B1/en
Priority to DE8888830281T priority patent/DE3862071D1/en
Priority to KR1019880007806A priority patent/KR950011405B1/en
Priority to US07/213,047 priority patent/US4900419A/en
Publication of JPS648288A publication Critical patent/JPS648288A/en
Priority to US07/440,835 priority patent/US5035779A/en
Priority to SG839/91A priority patent/SG83991G/en
Publication of JPH0633492B2 publication Critical patent/JPH0633492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解用陰極に関するものであり、特にイオン交
換膜法食塩水電解に好適に使用される、長期間安定な低
水素過電圧を示す活性化陰極に関するものである。
TECHNICAL FIELD The present invention relates to a cathode for electrolysis, which is particularly suitable for use in ion exchange membrane method saline electrolysis and exhibits long-term stable activity with low hydrogen overvoltage. The present invention relates to an activated cathode.

〔従来の技術と問題点〕[Conventional technology and problems]

電解工業において、消費エネルギーの低減は大きな課題
であり、取りわけ、電解電圧の低下に多くの努力が払わ
れてきている。
In the electrolysis industry, reduction of energy consumption is a major issue, and in particular, much effort has been made to reduce electrolysis voltage.

例えば、イオン交換膜法食塩水電解において、貴金属酸
化物含有被覆を有する不溶性金属陽極の採用、極間距離
の極小化、電解液の強制循環等により、それらの電圧上
昇要因は、現在極限に近くまで改良され、低減されてい
る。しかし、陰極に関しては、その過電圧の低減につき
同様に種々の改良がなされているものの、陽極における
如き長寿命で、しかも過電圧が数10mV程度と低く長期間
保持できるようなものは、未だ得られていない。
For example, in the ion-exchange membrane method saline electrolysis, due to the adoption of an insoluble metal anode having a coating containing a noble metal oxide, the minimization of the interelectrode distance, forced circulation of the electrolytic solution, etc. Have been improved and reduced. However, regarding the cathode, although various improvements have been made to reduce the overvoltage as well, a long-life cathode, which has a low overvoltage of about several tens of mV and can be maintained for a long time, has not yet been obtained. Absent.

イオン交換膜法の実用化と共に、当初から陰極材料とし
て用いられている低炭素鋼は、水素過電圧が300〜400mV
と比較的高い。その後、より高濃度の苛性ソーダ生成の
ため、より耐食性のあるステンレス鋼、ニッケル又はニ
ッケルメッキ材が使用されるようになったが、水素過電
圧の低下は達成されなかった。
With the commercialization of the ion exchange membrane method, the low carbon steel used as a cathode material from the beginning has a hydrogen overvoltage of 300 to 400 mV.
And relatively high. After that, stainless steel, nickel, or nickel-plated materials, which are more resistant to corrosion, came to be used because of the generation of higher concentration of caustic soda, but the reduction of hydrogen overvoltage was not achieved.

そこで、Ni−Zn合金メッキ被覆からZnを溶出したり、Ni
やラネ−Niをプラズマ溶射したり、粉体成分を用いて懸
濁メッキする方法等により、陰極表面積を拡大して、み
かけ上の過電圧を100〜200-mV低下させることが可能と
なった。しかし、これらの方法による陰極は表面が粗雑
なため、イオン交換膜を傷めやすく、又、電解液中の鉄
イオン等を集積して活性が低下し、寿命が短くなる欠点
を有し、依然、電圧低下が不十分である。
Therefore, elute Zn from the Ni-Zn alloy plating coating,
It has become possible to increase the surface area of the cathode and reduce the apparent overvoltage by 100-200-mV by methods such as plasma spraying Raney-Ni or plasma-spraying using powder components. However, since the cathode by these methods has a rough surface, it is easy to damage the ion exchange membrane, and also has the drawback that the activity is reduced due to the accumulation of iron ions and the like in the electrolytic solution, and the life is shortened. The voltage drop is insufficient.

そして近時、ニッケルを主体とし、種々の触媒成分を付
与して低過電圧化等を図ることが主流となっている。例
えば、銅や硫黄成分を触媒成分とする陰極が知られてい
るが、これらの成分は耐久性が不十分であるため、初期
の過電圧の低下は得られても劣化し易く、長寿命は期待
出来ない欠点がある。
In recent years, it has become mainstream to mainly use nickel and to add various catalyst components to achieve low overvoltage. For example, cathodes that use copper or sulfur components as catalyst components are known, but these components have insufficient durability, so they tend to deteriorate even if an initial overvoltage drop is obtained, and long life is expected. There is a drawback that cannot be done.

又、白金族金属又はその酸化物を使用して、過電圧の低
下、長寿命化を図る陰極が知られている。白金族金属酸
化物を用いるものでは、加熱した金属基体上に該金属塩
を含む溶液を塗布し、焼成して表面にルテニウム等の酸
化物を形成するもの(特公昭55-22556号)、ルテニウム
等の酸化物粉末をニッケルと共に懸濁メッキ法により基
体表面に付着するもの(特公昭59-48872号、特公昭60-1
3074号)、ニッケル等とルテニウム等の金属の複合酸化
物を形成するもの(特開昭59-232284 号)等が知られて
いる。これらの陰極は、水素過電圧が低く、電解液中の
鉄等の不純物の影響を受けにくいものであるが、陰極と
して不安定な酸化物を使用しているので耐久性に難点が
あり、しばしば短寿命となってしまう欠点がある。
Further, there is known a cathode which uses a platinum group metal or its oxide to reduce overvoltage and prolong life. When a platinum group metal oxide is used, a solution containing the metal salt is applied onto a heated metal substrate and baked to form an oxide such as ruthenium (Japanese Patent Publication No. 55-22556), ruthenium. And other oxide powders such as nickel adhered to the surface of the substrate by the suspension plating method (Japanese Patent Publication Nos. 59-48872 and 60-1)
No. 3074), those forming a composite oxide of a metal such as nickel and ruthenium (Japanese Patent Laid-Open No. 59-232284) and the like are known. These cathodes have a low hydrogen overvoltage and are not easily affected by impurities such as iron in the electrolytic solution.However, since unstable oxides are used as the cathode, they have a difficulty in durability and are often short. It has the drawback of reaching the end of its life.

一方、白金族金属、特に白金又はその合金をニッケル等
の基材上に化学的沈着させたものが知られている(特開
昭57-23083号)。
On the other hand, it is known that a platinum group metal, in particular platinum or its alloy, is chemically deposited on a substrate such as nickel (Japanese Patent Laid-Open No. 57-23083).

この陰極は、低い水素過電圧と耐久性を有するものであ
るが、電解液中の鉄等の不純物による被毒を受けやすい
という問題が依然解決されていない。
This cathode has low hydrogen overvoltage and durability, but the problem of being easily poisoned by impurities such as iron in the electrolytic solution has not been solved.

〔発明の目的〕[Object of the Invention]

本発明は、叙上の問題を解決するためになされたもの
で、極めて低い水素過電圧を保持し、長寿命であって、
しかも電解液中の不純物の影響を受けにくい電解用陰極
を提供することを目的とするものである。
The present invention has been made in order to solve the above problems, and holds an extremely low hydrogen overvoltage, has a long life,
Moreover, it is an object of the present invention to provide a cathode for electrolysis which is less likely to be affected by impurities in the electrolytic solution.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第一にニッケルの表面を有する導電性基体上
にセリウム金属、セリウム酸化物及びセリウム水酸化物
から選ばれた少なくとも一種と、白金族金属、白金族金
属酸化物及び白金族金属水酸化物から選ばれた少なくと
も一種とからなる被覆層を有することを特徴とする電解
用陰極であり、第二にニッケルの表面を有する導電性基
体上にセリウム及び白金族金属の塩、金属粒子又は化合
物粒子を含有する溶液又は懸濁液を付着又は接触させ、
該基体上にセリウム、セリウム酸化物及びセリウム水酸
化物の少なくとも一種と、白金族金属、白金族金属酸化
物及び白金族金属水酸化物の少なくとも一種とからなる
被覆層を形成する処理を行うことを特徴とする電解用陰
極の製造方法である。
The present invention is, firstly, at least one selected from cerium metal, cerium oxide and cerium hydroxide on a conductive substrate having a nickel surface, a platinum group metal, a platinum group metal oxide and a platinum group metal water. A cathode for electrolysis, which has a coating layer consisting of at least one selected from oxides, secondly a salt of cerium and a platinum group metal on a conductive substrate having a surface of nickel, metal particles or Attaching or contacting a solution or suspension containing compound particles,
Performing a treatment for forming a coating layer made of at least one of cerium, cerium oxide and cerium hydroxide and at least one of platinum group metal, platinum group metal oxide and platinum group metal hydroxide on the substrate. And a method for producing a cathode for electrolysis.

このような手段によって、極めて低い水素過電圧を有
し、且つ長寿命で電解液中の不純物による影響を受けに
くい電解用陰極を得ることができる。
By such means, it is possible to obtain a cathode for electrolysis which has an extremely low hydrogen overvoltage, has a long life, and is hardly affected by impurities in the electrolytic solution.

前述した通り、白金族金属やその酸化物が低い水素過電
圧を示すことは知られており、特に白金金属は陰極とし
て耐久性が優れている。
As described above, it is known that platinum group metals and oxides thereof exhibit low hydrogen overvoltage, and particularly platinum metal has excellent durability as a cathode.

しかし、白金被覆陰極は電解液中の不純物、特に鉄イオ
ンに対して敏感に影響を受け、1ppm以下の微量であっ
ても、低水素過電圧活性が失われてしまう。ところが、
実際の電解操業においては、電解装置や配管等に鉄を含
む材料が使われていることが多く、電解液中に鉄イオン
の存在を避けることは極めて困難で、陰極の劣化を来た
す問題がある。本発明は、これらの問題点を克服するた
めに、種々考究した結果、到達したものである。
However, the platinum-coated cathode is sensitively affected by impurities in the electrolytic solution, particularly iron ions, and loses the low hydrogen overvoltage activity even with a trace amount of 1 ppm or less. However,
In the actual electrolytic operation, a material containing iron is often used in the electrolyzer and piping, etc., and it is extremely difficult to avoid the presence of iron ions in the electrolytic solution, which causes the deterioration of the cathode. . The present invention has been achieved as a result of various studies in order to overcome these problems.

即ち、陰極被覆として白金族金属、白金族金属酸化物及
び白金族金属水酸化物の群から選ばれた少なくとも一種
(以下、白金族金属成分という)に、セリウム、セリウ
ム酸化物及びセリウム水酸化物の群から選ばれた少なく
とも一種(以下、セリウム成分という)を組成させるこ
とによって、低い水素過電圧と耐久性を長期間維持し、
しかも鉄イオン等の不純物の影響を効果的に防止し得る
事を見出した。
That is, at least one selected from the group of platinum group metals, platinum group metal oxides, and platinum group metal hydroxides (hereinafter referred to as platinum group metal component) as a cathode coating, cerium, cerium oxide, and cerium hydroxide. The composition of at least one selected from the group (hereinafter referred to as cerium component) maintains low hydrogen overvoltage and durability for a long time,
Moreover, they have found that the influence of impurities such as iron ions can be effectively prevented.

セリウム等の希土類元素は、一般に化学的に活性であ
り、苛性ソーダ溶液中では安定に存在しにくい。又、導
電性に乏しいので、例え混合物として含有させても、被
覆層の抵抗増加を来たし、過電圧特性が不十分となる可
能性があるので、通常は使用できないとされている。と
ころが、白金族金属成分との混合被覆層とすることによ
り、上記の問題は全く無く、セリウム成分が高濃度アル
カリ中においても極めて安定に存在し得、耐久性、対被
毒性に優れ、導電性も十分な低水素過電圧陰極被覆層が
得られることが判明した。
Rare earth elements such as cerium are generally chemically active and are unlikely to exist stably in a caustic soda solution. Further, since it is poor in conductivity, even if it is contained as a mixture, the resistance of the coating layer may increase and the overvoltage characteristic may become insufficient, so that it is said that it cannot be usually used. However, by forming a mixed coating layer with a platinum group metal component, the above problem does not occur at all, and the cerium component can exist extremely stably even in a high-concentration alkali, and has excellent durability, poisoning resistance, and conductivity. It was found that a sufficiently low hydrogen overvoltage cathode coating layer can be obtained.

その理由は明らかではないが、被覆中のセリウム成分が
高濃度アルカリ中で難溶性のセリウム水酸化物を形成
し、同時に白金族金属成分上への鉄の電気化学的析出反
応の過電圧を増加させるためと考えられる。
The reason for this is not clear, but the cerium component in the coating forms a sparingly soluble cerium hydroxide in high-concentration alkali and at the same time increases the overvoltage of the electrochemical deposition reaction of iron on the platinum group metal component. It is thought to be because.

本発明の導電性基体として、ニッケル又はニッケルを表
面に有する金属を用いる。後者の例としては、ニッケル
をメッキしたSUS又は鋼が好適であるが、鉄成分が表
面に出ないことが必要である。鉄成分は、低過電圧で電
解すると溶出する可能性があり、陰極の寿命を短くする
恐れがある。
As the conductive substrate of the present invention, nickel or a metal having nickel on its surface is used. As an example of the latter, nickel-plated SUS or steel is preferable, but it is necessary that the iron component does not appear on the surface. The iron component may be eluted when electrolyzing at a low overvoltage, which may shorten the life of the cathode.

このような、少なくとも表面をニッケルとした導電性基
体は、板状、棒状、多孔状、網状等適宜の形状とするこ
とが出来る。又、被覆層を形成する前に、該基体に脱
脂、酸洗、ブラスト等の清浄化或いは表面粗化処理を行
うことが望ましく、該処理により基体と被覆層の付着性
がより良好となる。
Such a conductive substrate having at least the surface of nickel can be formed in a suitable shape such as a plate shape, a rod shape, a porous shape, or a net shape. Before forming the coating layer, it is desirable to subject the substrate to cleaning such as degreasing, pickling, blasting or surface roughening treatment, which makes the adhesion between the substrate and the coating layer better.

次いで、該導電性基体上にセリウム成分と、白金族金属
成分とを有する被覆層を形成する。
Then, a coating layer having a cerium component and a platinum group metal component is formed on the conductive substrate.

被覆層中に組成される白金族金属成分中の金属として、
Pt、Ir、Ru、Rh、Pd、Osが使用でき、これにセリウム成
分を適宜の割合で組成させることが出来る。これらの金
属成分は金属状、酸化物状、水酸化物状及びそれらが混
在した状態のいずれでも良く、有効である。その組成割
合は広範囲に選定出来、特に限定されないが、組成中の
金属モル基準で白金族金属に対してセリウム5〜95%と
することができ、好ましくは30〜70%である。
As a metal in the platinum group metal component composed in the coating layer,
Pt, Ir, Ru, Rh, Pd, and Os can be used, and a cerium component can be added to this at an appropriate ratio. These metal components may be in a metallic form, an oxide form, a hydroxide form or a mixed state thereof and are effective. The composition ratio can be selected within a wide range and is not particularly limited, but it can be 5 to 95%, preferably 30 to 70% of cerium with respect to the platinum group metal based on the metal mole in the composition.

該被覆層を基体上に形成する方法は特に限定されず、種
々の手段が適用出来る。
The method for forming the coating layer on the substrate is not particularly limited, and various means can be applied.

第1の方法は、被覆層成分金属の熱分解可能な塩を所望
の割合で含む溶液を、基体表面に塗布等により付着さ
せ、加熱分解して被覆層を形成する方法である。例え
ば、白金族金属として2〜40g/、セリウムとして1
〜100g/含む塩化物等の金属塩の水、アルコール、
酸等の溶液をそれぞれ用意し、両者を所望の割合で混合
して塗布液とし、基体に付着させ、乾燥後、300〜800℃
程度に加熱する。該加熱は酸化性、不活性、還元性のい
ずれの雰囲気中で行っても良く、酸化物を主に形成する
場合は空気中等の酸化性雰囲気中で行うことが望まし
い。
The first method is a method of forming a coating layer by applying a solution containing a thermally decomposable salt of a coating layer component metal to a substrate surface by coating or the like and thermally decomposing it. For example, 2 to 40 g / for platinum group metal and 1 for cerium
~ 100g / containing metal salt such as chloride water, alcohol,
Prepare a solution such as acid, mix both at the desired ratio to form a coating solution, attach it to the substrate, dry, and then 300-800 ℃
Heat to a degree. The heating may be carried out in any of oxidizing, inert and reducing atmospheres, and when the oxide is mainly formed, it is desirable to carry out in an oxidizing atmosphere such as air.

このようにして得られた被覆層は、白金族金属又はその
酸化物或いは水酸化物と、セリウム又はその酸化物或い
は水酸化物とからなり、場合により非晶質に近い低結晶
のものも得られるが、高結晶質のものと性能的にはあま
り変わらない 第1の方法の変形として、被覆成分金属の一部を固体粒
子又はコロイド粒子として、例えば白金、ルテニウム、
イリジウム等又はセリウムの金属粒、水酸化物粒、酸化
物粒等を、塗布液に分散させた懸濁液又はコロイド溶液
とし、これを基体に付着させ、第1の方法に準じて加熱
処理を行い、所望の被覆層を形成することが出来る。
The coating layer thus obtained is composed of a platinum group metal or an oxide or hydroxide thereof and cerium or an oxide or hydroxide thereof. However, as a variation of the first method, which is not so different in performance as the highly crystalline one, a part of the coating component metal is used as solid particles or colloidal particles, for example, platinum, ruthenium,
A suspension or colloidal solution of metal particles, hydroxide particles, oxide particles, etc. of iridium or cerium dispersed in a coating liquid is adhered to a substrate, and heat treatment is performed according to the first method. Then, a desired coating layer can be formed.

第2の方法は、被覆成分金属の塩を含む溶液又は懸濁液
を基体に浸漬等により接触させ、該液から被覆層を化学
的析出により形成する方法である。例えば、白金族金属
及びセリウムの塩化物水溶液を作製し、アルカリを加え
てpH7〜14とした後、基体を浸漬し、化学的に混合被覆
層を基体表面に沈積、析出させることが出来る。特に、
金属水酸化物が形成される場合には、電解中に高濃度苛
性ソーダ中でセリウム又はその酸化物が水酸化物に変化
することを考えると、この方法により初めから安定な水
酸化物として被覆中に組成することができるので好都合
である。
The second method is a method in which a solution or suspension containing a salt of a coating component metal is brought into contact with a substrate by dipping or the like, and a coating layer is formed from the solution by chemical deposition. For example, it is possible to prepare a chloride aqueous solution of a platinum group metal and cerium, add an alkali to adjust the pH to 7 to 14, immerse the substrate, and chemically deposit the mixed coating layer on the substrate surface. In particular,
When a metal hydroxide is formed, considering that cerium or its oxide is converted to a hydroxide in high-concentration caustic soda during electrolysis, this method is used as a stable hydroxide during the coating. It is convenient because it can be formulated into

このようにして得た被覆層は、更に300〜800℃程度の温
度で加熱焼成することにより、安定性を向上することが
出来る。
The stability of the coating layer thus obtained can be improved by further heating and baking at a temperature of about 300 to 800 ° C.

第3の方法は、基体表面のニッケルと接触液中の被覆層
金属成分、特に白金族金属との化学的置換により被覆層
を形成する方法である。例えば、白金族金属の塩化物溶
液にセリウム金属又はその水酸化物の微細粒子を懸濁さ
せた液を基体に接触させ、塩酸を加えてpH0〜4程度に
調整すると、イオン化傾向の差により白金族金属イオン
が基体表面のニッケルと化学的に置換し、その際同時に
セリウム成分の固体粒子が取り込まれて所望の被覆層が
基体表面に形成される。
The third method is a method of forming a coating layer by chemically substituting nickel on the surface of the substrate with a coating layer metal component in the contact liquid, particularly a platinum group metal. For example, when a liquid obtained by suspending fine particles of cerium metal or its hydroxide in a chloride solution of a platinum group metal is brought into contact with a substrate and hydrochloric acid is added to adjust the pH to about 0 to 4, the platinum tends to be platinum due to a difference in ionization tendency. Group metal ions chemically replace nickel on the surface of the substrate, and at the same time, solid particles of the cerium component are taken in and a desired coating layer is formed on the surface of the substrate.

上記した被覆層の形成方法は、場合により複数回繰り返
し行っても良く、又、複数の方法を組み合わせて適用す
ることも可能である。
The above-mentioned method for forming the coating layer may be repeated a plurality of times depending on the case, and a plurality of methods can be applied in combination.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、本発明はこれ
に限定されるものではない。
Hereinafter, the present invention will be described by way of examples, but the present invention is not limited thereto.

実施例 1 ニッケル金網(LW12.7×SW6.4×t1mm)を鉄グリットブ
ラスト処理により粗面化し、脱脂洗浄後、20%沸騰塩酸
水溶液中で10分間エッチングを行って基体とした。別途
調製した塩化白金酸水和物20g/、硝酸セリウム水和
物30g/及び硝酸50g/から成る水溶液を基体上に
刷毛で塗布した。これを50℃で5分間空気中で乾燥後、
500℃の電気炉中で10分間、空気雰囲気下に加熱焼成
し、空冷した。
Example 1 A nickel wire mesh (LW12.7 × SW6.4 × t1 mm) was roughened by iron grit blasting, degreased and washed, and then etched in a 20% boiling hydrochloric acid aqueous solution for 10 minutes to obtain a substrate. A separately prepared aqueous solution of 20 g of chloroplatinic acid hydrate / 30 g of cerium nitrate hydrate / 50 g / nitric acid was applied onto the substrate with a brush. After drying in air at 50 ° C for 5 minutes,
In an electric furnace at 500 ° C., the material was heated and baked in an air atmosphere for 10 minutes and air-cooled.

上記塗布−加熱・空冷の工程を繰り返し、白金として5
g/m及びセリウムとして3.6g/mを含む金属と
酸化物の混合被覆層を形成した陰極が得られた。
Repeat the above steps of coating-heating and air-cooling to make platinum 5
A cathode having a mixed coating layer of metal and oxide containing g / m 2 and 3.6 g / m 2 as cerium was obtained.

実施例 2 実施例1と同様に処理したニッケル金網基体上に、硝酸
ルテニウム20g/、硝酸セリウム水和物50g/及び
硝酸50g/よりなる水溶液を塗布した後、実施例1と
同様の焼成工程を行い、この工程を繰り返してルテニウ
ムとして5g/m及びセリウムとして7g/mを被
覆層中に含む陰極を得た。
Example 2 A nickel wire netting substrate treated in the same manner as in Example 1 was coated with an aqueous solution of 20 g of ruthenium nitrate / 50 g of cerium nitrate hydrate / and 50 g / nitric acid, and then subjected to the same firing step as in Example 1. This process was repeated and a cathode containing 5 g / m 2 as ruthenium and 7 g / m 2 as cerium in the coating layer was obtained.

これらの陰極を、その性能を試験するため表−1に示す
条件にて、市販のイオン交換膜を使用した食塩水電解に
供した。比較のため、次の2種の陰極を作製し、併せて
同様に試験した。
These cathodes were subjected to saline electrolysis using a commercially available ion exchange membrane under the conditions shown in Table 1 to test their performance. For comparison, the following two types of cathodes were prepared and tested in the same manner.

<比較例 1> 実施例1と同じ基体上に、塩化白金酸水和物20g/及
び硝酸50g/からなる水溶液を塗布し、実施例1と同
様の加熱焼成を行って、白金として5g/mの被覆層
を有する陰極を作製した。
Comparative Example 1 On the same substrate as in Example 1, an aqueous solution containing 20 g of chloroplatinic acid hydrate and 50 g of nitric acid was applied, and the same heating and firing as in Example 1 was performed to obtain 5 g / m of platinum. A cathode having two coating layers was prepared.

<比較例 2> 実施例1と同じ基体上に、硝酸ルテニウム20g/、硝
酸ニッケル水和物35g/及び硝酸50g/を含む水溶
液を塗布し、実施例1と同様の加熱焼成を行って、ルテ
ニウムとして5g/m及びニッケルとして3g/m
の混合酸化物被覆層を有する陰極を作製した。
<Comparative Example 2> An aqueous solution containing 20 g of ruthenium nitrate, 35 g of nickel nitrate hydrate / and 50 g of nitric acid was applied onto the same substrate as in Example 1, and the same heating and firing as in Example 1 was performed to make ruthenium. 5 g / m 2 and nickel 3 g / m 2
A cathode having the mixed oxide coating layer of was prepared.

上記各陰極を表−1にて試験して、電極電位の経時的変
化を測定し、得られた結果を表−2に示す。電極電位
は、SCEを参照電極として測定し、表−2にはこれを
過電圧の値に換算して示した。
Each of the above cathodes was tested in Table-1, the change in electrode potential with time was measured, and the obtained results are shown in Table-2. The electrode potential was measured by using SCE as a reference electrode and shown in Table 2 by converting it into an overvoltage value.

表−2の結果から明らかのように、本発明による実施例
1及び2の陰極は100mV以下の極めて低い水素過電圧を
長期間維持した。一方比較例の陰極は、初期は比較的低
い過電圧値を示すものの、電解を継続していくと徐々に
高くなり、200日では180〜260mVに達した。
As is clear from the results in Table 2, the cathodes of Examples 1 and 2 according to the present invention maintained a very low hydrogen overvoltage of 100 mV or less for a long period of time. On the other hand, the cathode of the comparative example initially showed a relatively low overvoltage value, but gradually increased as electrolysis was continued, reaching 180 to 260 mV in 200 days.

又、200日運転後の電解槽を分解して陰極の表面状態を
観察したところ、本実施例のものは、いずれも何ら付着
物が認められなかった。
Further, when the electrolytic cell after 200 days of operation was disassembled and the surface condition of the cathode was observed, no deposits were observed in any of the examples.

これに対し、比較例の陰極表面には、黒色針状の鉄及び
鉄酸化物の結晶と見られる付着物が認められ、活性が低
下していることが判った。
On the other hand, black needle-shaped deposits of iron and iron oxide crystals were observed on the surface of the cathode of the comparative example, and it was found that the activity was lowered.

実施例 3 実施例1と同様に作製したニッケル金網基体を、塩化白
金酸水和物20g/、硝酸セリウム水和物30g/から
なり、水酸化ナトリウムを加えてpH12に調整した水溶液
に1時間浸漬した。その結果、基体には白金として5g
/m及びセリウムとして2g/m含む被覆層が化学
的析出により沈着形成された。
Example 3 A nickel wire mesh substrate prepared in the same manner as in Example 1 was immersed in an aqueous solution containing 20 g of chloroplatinic acid hydrate / 30 g of cerium nitrate hydrate / pH adjusted to 12 with sodium hydroxide for 1 hour. did. As a result, 5g of platinum was added to the substrate.
/ M 2 and a coating layer containing 2 g / m 2 as cerium was deposited by chemical deposition.

得られた陰極を表−3に示す条件で一室法苛性ソーダ水
溶液の電解に供し、電解使用前後の過電圧の変化として
その性能を試験した。その結果を比較例の陰極と併せて
表−4に示す。
The obtained cathode was subjected to electrolysis of a one-chamber aqueous solution of caustic soda under the conditions shown in Table 3, and its performance was tested as a change in overvoltage before and after electrolysis. The results are shown in Table 4 together with the cathode of the comparative example.

過電圧は32%NaOH水溶液中、温度90℃、電流密度30A/d
m2での値である。
Overvoltage is 32% NaOH aqueous solution, temperature 90 ℃, current density 30A / d
It is the value at m 2 .

比較例の陰極は、塩化白金酸水和物20g/のみを含む
水溶液から実施例3と同様にして、ニッケル金網基体に
被覆層として5g/mの白金を析出沈着させ、作製し
た。
The cathode of the comparative example was prepared by depositing and depositing 5 g / m 2 of platinum as a coating layer on the nickel wire mesh substrate in the same manner as in Example 3 from an aqueous solution containing only 20 g of chloroplatinic acid hydrate.

表−4の結果から、本発明による実施例3の陰極は、10
0時間の電解使用後においても当初の低い過電圧特性を
維持し、表面に何ら変化が認められず、長期間安定して
使用し得ることが明らかである。これに対し、比較例の
白金被覆陰極は、電解に使用することにより過電圧が大
幅に上昇し、表面に黒色針状の鉄酸化物の生成が認めら
れ、劣化していくことが分る。
From the results of Table-4, the cathode of Example 3 according to the present invention was 10
Even after 0 hours of electrolytic use, the initial low overvoltage characteristic is maintained, no change is observed on the surface, and it is clear that stable use is possible for a long time. On the other hand, when the platinum-coated cathode of the comparative example is used for electrolysis, the overvoltage is significantly increased, and generation of black needle-shaped iron oxide is recognized on the surface, and it is found that the platinum-coated cathode is deteriorated.

〔発明の効果〕〔The invention's effect〕

本発明は、ニッケル基体上に白金族金属成分と、セリウ
ム成分とを組成させた被覆層を設けるので、極めて低い
水素過電圧を保持し、しかも長寿命の電解用陰極が容易
に得られ、その使用により電解消費エネルギーの低減が
もたらされる。
According to the present invention, since a coating layer composed of a platinum group metal component and a cerium component is provided on a nickel substrate, an extremely low hydrogen overvoltage can be maintained, and a long-life electrolysis cathode can be easily obtained. This results in a reduction in electrolysis energy consumption.

又、本発明の陰極は、電解液中の鉄等の不純物に対する
耐被毒性に優れ、食塩水電解用等の陰極として長期間安
定して使用することが出来る。
Further, the cathode of the present invention is excellent in poisoning resistance to impurities such as iron in the electrolytic solution and can be stably used as a cathode for electrolysis of saline solution for a long period of time.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ニッケルの表面を有する導電性基体上に、
セリウム金属、セリウム酸化物及びセリウム水酸化物の
少なくとも一種と、白金族金属、白金族金属酸化物及び
白金族金属水酸化物の少なくとも一種とからなる被覆層
を有することを特徴とする電解用陰極。
1. A conductive substrate having a nickel surface,
A cathode for electrolysis comprising a coating layer composed of at least one of cerium metal, cerium oxide and cerium hydroxide and at least one of platinum group metal, platinum group metal oxide and platinum group metal hydroxide. .
【請求項2】白金族金属が白金である特許請求の範囲第
(1)項に記載の陰極。
2. The claim in which the platinum group metal is platinum.
The cathode according to item (1).
【請求項3】白金族金属酸化物がルテニウム酸化物であ
る特許請求の範囲第(1)項に記載の陰極。
3. The cathode according to claim 1, wherein the platinum group metal oxide is ruthenium oxide.
【請求項4】ニッケルの表面を有する導電性基体上に、
セリウム及び白金族金属の塩、金属粒子又は化合物粒子
を含有する溶液又は懸濁液を付着又は接触させ、該基体
上にセリウム金属、セリウム酸化物及びセリウム水酸化
物の少なくとも一種と、白金族金属、白金族金属酸化物
及び白金族金属水酸化物の少なくとも一種とからなる被
覆層を形成する処理を行うことを特徴とする電解用陰極
の製造方法。
4. A conductive substrate having a nickel surface,
A solution or suspension containing a salt of cerium and a platinum group metal, metal particles or compound particles is adhered or contacted, and at least one of cerium metal, cerium oxide and cerium hydroxide, and a platinum group metal on the substrate. A method for producing a cathode for electrolysis, which comprises performing a treatment for forming a coating layer comprising at least one of a platinum group metal oxide and a platinum group metal hydroxide.
【請求項5】被覆層の形成を、付着した溶液又は懸濁液
の加熱処理により行う特許請求の範囲第(4)項に記載の
方法。
5. The method according to claim 4, wherein the coating layer is formed by heating the attached solution or suspension.
【請求項6】被覆層の形成を、接触させた溶液又懸濁液
からの化学的析出により行う特許請求の範囲第(4)項に
記載の方法。
6. The method according to claim 4, wherein the coating layer is formed by chemical deposition from a contacted solution or suspension.
【請求項7】被覆層の形成を、基体表面のニッケルと接
触させた溶液又は懸濁液中の被覆金属成分との化学的置
換により行う特許請求の範囲第(4)項に記載の方法。
7. The method according to claim 4, wherein the coating layer is formed by chemical substitution with the coating metal component in a solution or suspension in contact with nickel on the surface of the substrate.
【請求項8】被覆層の形成を複数回行う特許請求の範囲
第(4)項に記載の方法。
8. The method according to claim 4, wherein the coating layer is formed a plurality of times.
【請求項9】加熱処理を300〜800℃の温度で行う特許請
求の範囲第(5)項に記載の方法。
9. The method according to claim 5, wherein the heat treatment is performed at a temperature of 300 to 800 ° C.
JP62159685A 1987-06-29 1987-06-29 Electrolytic cathode and method of manufacturing the same Expired - Lifetime JPH0633492B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62159685A JPH0633492B2 (en) 1987-06-29 1987-06-29 Electrolytic cathode and method of manufacturing the same
CN88104726A CN1012970B (en) 1987-06-29 1988-06-24 Cathode for electrolysis and process for producing same
EP88830281A EP0298055B1 (en) 1987-06-29 1988-06-28 Cathode for electrolysis and process for producing the same
DE8888830281T DE3862071D1 (en) 1987-06-29 1988-06-28 ELECTROLYSIS CATHODE AND METHOD FOR PRODUCING THE SAME.
KR1019880007806A KR950011405B1 (en) 1987-06-29 1988-06-28 Cathode for electrolysis and process for producing the same
US07/213,047 US4900419A (en) 1987-06-29 1988-06-29 Cathode for electrolysis and process for producing the same
US07/440,835 US5035779A (en) 1987-06-29 1989-11-24 Process for producing cathode and process for electrolysis using said cathode
SG839/91A SG83991G (en) 1987-06-29 1991-10-11 Cathode for electrolysis and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62159685A JPH0633492B2 (en) 1987-06-29 1987-06-29 Electrolytic cathode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS648288A JPS648288A (en) 1989-01-12
JPH0633492B2 true JPH0633492B2 (en) 1994-05-02

Family

ID=15699084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62159685A Expired - Lifetime JPH0633492B2 (en) 1987-06-29 1987-06-29 Electrolytic cathode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0633492B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004209468A (en) * 2002-12-17 2004-07-29 Asahi Kasei Chemicals Corp Electrode catalyst for oxygen reduction, and gas diffusion electrode
EP1643014A2 (en) 2004-10-01 2006-04-05 Permelec Electrode Ltd. Hydrogen evolving cathode
JP2006193768A (en) * 2005-01-12 2006-07-27 Permelec Electrode Ltd Cathode for hydrogen generation
US7122219B2 (en) 2002-03-20 2006-10-17 Asahi Kasei Kabushiki Kaisha Electrode for generation of hydrogen
WO2011040464A1 (en) * 2009-09-29 2011-04-07 ダイソー株式会社 Electrode for generation of hydrogen, and electrolysis method
US7959774B2 (en) 2008-03-07 2011-06-14 Permelec Electrode Ltd. Cathode for hydrogen generation
US9133556B2 (en) 2010-02-10 2015-09-15 Permelec Electrode Ltd. Activated cathode for hydrogen evolution
WO2020110527A1 (en) * 2018-11-27 2020-06-04 株式会社大阪ソーダ Hydrogen generation electrode, method of producing same, and hydrogen production method
WO2021141435A1 (en) * 2020-01-09 2021-07-15 주식회사 엘지화학 Electrode for electrolysis

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8343329B2 (en) 2004-04-23 2013-01-01 Tosoh Corporation Electrode for hydrogen generation, method for manufacturing the same and electrolysis method using the same
JP4716825B2 (en) * 2005-09-02 2011-07-06 旭化成ケミカルズ株式会社 Manufacturing method of gas diffusion electrode
ITMI20100268A1 (en) * 2010-02-22 2011-08-23 Industrie De Nora Spa ELECTRODE FOR ELECTROLYTIC PROCESSES AND METHOD FOR ITS ACHIEVEMENT
ITMI20110735A1 (en) * 2011-05-03 2012-11-04 Industrie De Nora Spa ELECTRODE FOR ELECTROLYTIC PROCESSES AND METHOD FOR ITS ACHIEVEMENT

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749671A1 (en) 2002-03-20 2014-07-02 Asahi Kasei Kabushiki Kaisha Method for producing an electrode for use in hydrogen generation
US7122219B2 (en) 2002-03-20 2006-10-17 Asahi Kasei Kabushiki Kaisha Electrode for generation of hydrogen
US7229536B2 (en) 2002-03-20 2007-06-12 Asahi Kasei Kabushiki Kaisha Electrode for use in hydrogen generation
JP2004209468A (en) * 2002-12-17 2004-07-29 Asahi Kasei Chemicals Corp Electrode catalyst for oxygen reduction, and gas diffusion electrode
EP1643014A2 (en) 2004-10-01 2006-04-05 Permelec Electrode Ltd. Hydrogen evolving cathode
JP4673628B2 (en) * 2005-01-12 2011-04-20 ペルメレック電極株式会社 Cathode for hydrogen generation
JP2006193768A (en) * 2005-01-12 2006-07-27 Permelec Electrode Ltd Cathode for hydrogen generation
US7959774B2 (en) 2008-03-07 2011-06-14 Permelec Electrode Ltd. Cathode for hydrogen generation
WO2011040464A1 (en) * 2009-09-29 2011-04-07 ダイソー株式会社 Electrode for generation of hydrogen, and electrolysis method
CN102471905A (en) * 2009-09-29 2012-05-23 大曹株式会社 Electrode for generation of hydrogen, and electrolysis method
US9133556B2 (en) 2010-02-10 2015-09-15 Permelec Electrode Ltd. Activated cathode for hydrogen evolution
WO2020110527A1 (en) * 2018-11-27 2020-06-04 株式会社大阪ソーダ Hydrogen generation electrode, method of producing same, and hydrogen production method
JPWO2020110527A1 (en) * 2018-11-27 2021-10-14 株式会社大阪ソーダ Electrode for hydrogen generation, its manufacturing method, and hydrogen manufacturing method
WO2021141435A1 (en) * 2020-01-09 2021-07-15 주식회사 엘지화학 Electrode for electrolysis

Also Published As

Publication number Publication date
JPS648288A (en) 1989-01-12

Similar Documents

Publication Publication Date Title
US4900419A (en) Cathode for electrolysis and process for producing the same
RU2268324C2 (en) Electrode for production of hydrogen (versions) and method of its manufacture (versions)
CN101525755B (en) Cathode for hydrogen generation
JP5189781B2 (en) Electrode for hydrogen generation
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
EP0183100B1 (en) Electrode for electrochemical processes, method for preparing the same and use thereof in electrolysis cells
JP4673628B2 (en) Cathode for hydrogen generation
JP5307270B2 (en) Cathode for hydrogen generation used for salt electrolysis
JPH0633492B2 (en) Electrolytic cathode and method of manufacturing the same
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
JP4578348B2 (en) Electrode for hydrogen generation
US5035789A (en) Electrocatalytic cathodes and methods of preparation
US5164062A (en) Electrocatalytic cathodes and method of preparation
JPH0633481B2 (en) Electrolytic cathode and method of manufacturing the same
EP3929331A1 (en) Electrode for electrolysis
JPS6017086A (en) Cathode for aqueous solution electrolysis and manufacture
NL8004057A (en) PROCESS FOR MANUFACTURING CATHODES WITH LOW HYDROGEN SPAN.
JP4115575B2 (en) Activated cathode
JP3676554B2 (en) Activated cathode
JPS63507B2 (en)
JP2006265649A (en) Method for producing electrode for generating hydrogen
JP7033215B2 (en) Active layer composition of reduction electrode for electrolysis and reduction electrode derived from it
JPS6341994B2 (en)
KR102347983B1 (en) Cathode for electrolysis and method for preparing the same
US5066380A (en) Electrocatalytic cathodes and method of preparation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 14