JPH06325869A - Organic electroluminescent panel - Google Patents

Organic electroluminescent panel

Info

Publication number
JPH06325869A
JPH06325869A JP5116208A JP11620893A JPH06325869A JP H06325869 A JPH06325869 A JP H06325869A JP 5116208 A JP5116208 A JP 5116208A JP 11620893 A JP11620893 A JP 11620893A JP H06325869 A JPH06325869 A JP H06325869A
Authority
JP
Japan
Prior art keywords
organic
organic electroluminescent
electrode
panel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5116208A
Other languages
Japanese (ja)
Inventor
Makoto Ichihara
誠 市原
Kiyoshi Matsuda
潔 松田
Yoshiharu Sato
佳晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP5116208A priority Critical patent/JPH06325869A/en
Publication of JPH06325869A publication Critical patent/JPH06325869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

PURPOSE:To provide an organic BL panel having an excellent displaying ability by furnishing an active matrix circuit consisting of a thin film transistor and a capacitor on the same base board as an organic EL element. CONSTITUTION:An organic EL element consisting of an organic light emitting layer 4 pinched by an anode 2 and a cathode 5 and an active matrix circuit to drive this organic EL element are installed on a base board 1, and thereby an organic BL panel is formed. The arrangement is characterized by this active matrix circuit composed of the first thin film transistor TFT1, which is to charge and discharge an accumulative capacitor C in conformity to the light emission signal, and the second thin film transistor TFT2 which is turned on and off in compliance with the discharge voltage from the accumulative capacitor C and controls the light emission and non-emission of the organic EL element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機電界発光パネルに関
するものであり、詳しくは、有機化合物から成る発光層
に電界をかけて光を放出する薄膜型デバイスに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescent panel, and more particularly to a thin film type device which emits light by applying an electric field to a light emitting layer made of an organic compound.

【0002】[0002]

【従来の技術】従来、薄膜型の電界発光素子としては、
無機材料のII−VI族化合物半導体であるZnS、Ca
S、SrS等に、発光中心であるMnや希土類元素(E
u、Ce、Tb、Sm等)をドープしたものが一般的で
あるが、上記の無機材料から作製した電界発光素子は、
1)交流駆動が必要(50〜1000Hz)、2)駆動
電圧が高い(〜200V)、3)フルカラー化が困難
(特に青色が問題)、4)周辺駆動回路のコストが高
い、という問題点を有している。
2. Description of the Related Art Conventionally, as a thin film type electroluminescent device,
ZnS and Ca which are II-VI group compound semiconductors of inorganic materials
In S, SrS, etc., Mn, which is the emission center, and rare earth elements (E
(u, Ce, Tb, Sm, etc.) is generally doped, but an electroluminescent device made of the above inorganic material is
1) AC drive is required (50 to 1000 Hz), 2) High drive voltage (up to 200 V), 3) Full colorization is difficult (especially blue color is a problem), and 4) Peripheral drive circuit cost is high. Have

【0003】しかし、近年、上記問題点の改良のため、
有機薄膜を用いた電界発光素子の開発が行われるように
なった。特に、発光効率を高めるために電極からのキャ
リアー注入の効率向上を目的とした電極種類の最適化を
行い、芳香族ジアミンから成る有機正孔輸送層と8−ヒ
ドロキシキノリンのアルミニウム錯体から成る発光層を
設けた有機電界発光素子の開発(Appl.Phys.
Lett.,51巻,913頁,1987年等参照)に
より、従来のアントラセン等の単結晶を用いた電界発光
素子と比較して発光効率の大幅な改善がなされている。
However, in recent years, in order to improve the above problems,
Electroluminescent devices using organic thin films have been developed. In particular, the electrode type was optimized for the purpose of improving the efficiency of carrier injection from the electrode in order to increase the light emission efficiency, and an organic hole transport layer composed of an aromatic diamine and a light emitting layer composed of an aluminum complex of 8-hydroxyquinoline. Of an organic electroluminescent device provided with (Appl. Phys.
Lett. , 51, p. 913, 1987, etc.), the luminous efficiency is greatly improved as compared with the conventional electroluminescent device using a single crystal such as anthracene.

【0004】[0004]

【発明が解決しようとする課題】上記の様な有機電界発
光素子をディスプレイパネルとして用いるためには、一
般にマトリクスアドレス方式(特開平2−66873号
公報、電気通信学会技術研究報告,OME89−46,
37,1989年等参照)が採用されるが、画素数の増
加にともない、輝度がデューティの減少とともに減少す
る(電気通信学会技術研究報告,OME88−47,3
5,1988年等参照)ことや、クロストークが起きる
ことが実用上大きな問題となっている。
In order to use the above organic electroluminescent device as a display panel, generally, a matrix address method (Japanese Patent Laid-Open No. 2-66873, Technical Research Report of the Institute of Electrical Communication, OME89-46, is used.
37, 1989, etc.), but the brightness decreases with the decrease of the duty as the number of pixels increases (Technical Research Report of the Institute of Electrical Communication, OME88-47, 3).
5, 1988, etc.) and the occurrence of crosstalk has become a serious problem in practical use.

【0005】上記の問題を解決するために、有機電界発
光素子をアクティブ・マトリクス回路で駆動することが
考えられるが、これまでに開示されている方法(特開平
2−148687公報等参照)では、一つ一つの有機電
界発光素子に複数のMOSトランジスタから成るメモリ
素子を接続してデジタル信号で輝度の制御を行うことか
ら、有機電界発光素子と同一基板上にこれらの回路を実
装することは、開口率が小さくなり、多大な配線を必要
とすることから非常に困難である。
In order to solve the above problem, it is considered to drive the organic electroluminescent element by an active matrix circuit, but in the methods disclosed so far (see Japanese Patent Laid-Open No. 2-148687, etc.), Since each organic electroluminescent element is connected to a memory element composed of a plurality of MOS transistors to control the brightness with a digital signal, it is possible to mount these circuits on the same substrate as the organic electroluminescent element. It is very difficult because the aperture ratio becomes small and a large amount of wiring is required.

【0006】本発明者等は上記実状に鑑み、同一基板上
に有機電界発光素子とそのアクティブ・マトリクス駆動
回路を備えた有機電界発光パネルを提供することを目的
とする。
In view of the above situation, the present inventors have an object to provide an organic electroluminescent panel having an organic electroluminescent element and an active matrix driving circuit thereof on the same substrate.

【0007】[0007]

【課題を解決するための手段】即ち、本発明の要旨は、
基板上に、陽極及び陰極により挟持された有機発光層か
ら成る有機電界発光素子及び該有機電界発光素子を駆動
するアクティブ・マトリクス回路を設けた有機電界発光
パネルであって、前記アクティブ・マトリクス回路が、
スイッチング信号に応じてオンし、発光信号に応じて蓄
積用コンデンサを充放電する第1の薄膜トランジスタ
と、前記蓄積用コンデンサからの放電電圧に応じてオ
ン、オフし、前記有機電界発光素子の発光、非発光を制
御する第2の薄膜トランジスタ、とから成ることを特徴
とする有機電界発光パネルに存する。
The summary of the present invention is as follows.
What is claimed is: 1. An organic electroluminescent panel comprising an organic electroluminescent device comprising an organic light emitting layer sandwiched between an anode and a cathode and an active matrix circuit for driving the organic electroluminescent device, the organic electroluminescent panel comprising: ,
A first thin film transistor that turns on in response to a switching signal and charges and discharges a storage capacitor in response to a light emission signal; and turns on and off in response to a discharge voltage from the storage capacitor to emit light from the organic electroluminescent element. A second thin film transistor for controlling non-light emission, and an organic electroluminescent panel.

【0008】以下、本発明の有機電界発光パネルについ
て添付図面に従い説明する。図1は、本発明に用いられ
る一般的な有機電界発光素子の構造例を模式的に示す断
面図であり、1は基板、2は陽極、3は正孔輸送層、4
は発光層、5は陰極を各々表わす。基板1は、有機電界
発光素子の支持体となるものであり、石英やガラスの板
等が用いられる。
The organic electroluminescent panel of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view schematically showing a structural example of a general organic electroluminescent device used in the present invention, where 1 is a substrate, 2 is an anode, 3 is a hole transport layer, and 4 is a hole transport layer.
Represents a light emitting layer, and 5 represents a cathode. The substrate 1 serves as a support for the organic electroluminescence device, and a plate of quartz or glass or the like is used.

【0009】基板1上には陽極2が設けられるが、この
陽極としては通常、金、銀、パラジウム、白金等の金
属、インジウム及び/又はスズの酸化物(ITOと以下
略す)等の金属酸化物やヨウ化銅、あるいは、ポリ(3
−メチルチオフェン)等の導電性高分子等により構成さ
れる。陽極2の上に設けられる正孔輸送層3に用いられ
る化合物としては、例えば、特開昭59−194393
号公報及び米国特許第4,175,960号の第13〜
14欄に解説される、N,N’−ジフェニル−N,N’
−(3−メチルフェニル)−1,1’−ビフェニル−
4,4’−ジアミン:1,1’−ビス(4−ジ−p−ト
リルアミノフェニル)シクロヘキサン:4,4’−ビス
(ジフェニルアミノ)クワドロフェニル等の芳香族アミ
ン系化合物、特開平2−311591号公報に示される
ヒドラゾン化合物、米国特許第4,950,950号公
報に示されるシラザン化合物等が挙げられる。これらの
化合物は、単独で用いるか、必要に応じて、各々、混合
して用いてもよい。上記の化合物以外に、ポリビニルカ
ルバゾールやポリシラン(Appl.Phys.Let
t.,59巻,2760頁,1991年)等の高分子材
料が挙げられる。
An anode 2 is provided on the substrate 1. As the anode, a metal such as gold, silver, palladium, platinum or the like, or a metal oxide such as an oxide of indium and / or tin (abbreviated as ITO hereinafter) is usually used. Object or copper iodide, or poly (3
-Methylthiophene) and other conductive polymers. Examples of the compound used for the hole transport layer 3 provided on the anode 2 include JP-A-59-194393.
No. 13 to U.S. Pat. No. 4,175,960.
N, N'-diphenyl-N, N ', described in column 14
-(3-Methylphenyl) -1,1'-biphenyl-
Aromatic amine compounds such as 4,4′-diamine: 1,1′-bis (4-di-p-tolylaminophenyl) cyclohexane: 4,4′-bis (diphenylamino) quadrophenyl, JP-A-2- Examples thereof include the hydrazone compound disclosed in Japanese Patent No. 311591 and the silazane compound disclosed in US Patent No. 4,950,950. These compounds may be used alone or, if necessary, may be mixed and used. In addition to the above compounds, polyvinylcarbazole and polysilane (Appl. Phys. Let)
t. , Vol. 59, page 2760, 1991) and the like.

【0010】発光層4に用いられる材料としては、テト
ラフェニルブタジエン等の芳香族化合物(特開昭57−
51781号公報)、8−ヒドロキシキノリンのアルミ
ニウム錯体等の金属錯体(特開昭59−194393号
公報)、シクロペンタジエン誘導体(特開平2−289
675号公報)、ペリノン誘導体(特開平2−2896
76号公報)、オキサジアゾール誘導体(特開平2−2
16791号公報)、ビススチリルベンゼン誘導体(特
開平1−245087号公報、同2−222484号公
報)、ペリレン誘導体(特開平2−189890号公
報、同3−791号公報)、クマリン化合物(特開平2
−191694号公報、同3−792号公報)、希土類
錯体(特開平1−256584)、ジスチリルピラジン
誘導体(特開平2−252793号公報)、p−フェニ
レン化合物(特開平3−33183号公報)、チアジア
ゾロピリジン誘導体(特開平3−37292号公報)、
ピロロピリジン誘導体(特開平3−37293号公
報)、ナフチリジン誘導体(特開平3−203982号
公報)等が挙げられる。
As a material used for the light emitting layer 4, an aromatic compound such as tetraphenyl butadiene (see JP-A-57-57).
No. 51781), a metal complex such as an aluminum complex of 8-hydroxyquinoline (JP-A-59-194393), a cyclopentadiene derivative (JP-A-2-289).
675), and a perinone derivative (JP-A-2-2896).
76), oxadiazole derivatives (JP-A-2-2)
16791), a bisstyrylbenzene derivative (JP-A 1-245087, JP-A-2-222484), a perylene derivative (JP-A-2-189890, JP-A-3-791), and a coumarin compound (JP-A-1). Two
No. 191694, No. 3-792), rare earth complexes (JP-A-1-256584), distyrylpyrazine derivatives (JP-A-2-252793), p-phenylene compounds (JP-A-3-33183). , A thiadiazolopyridine derivative (JP-A-3-37292),
Examples thereof include a pyrrolopyridine derivative (JP-A-3-37293) and a naphthyridine derivative (JP-A-3-203982).

【0011】陰極5は発光層4に電子を注入する役割を
果たす。陰極4として用いられる材料は、効率よく電子
注入を行なうために仕事関数の低い金属が好ましく、ス
ズ、マグネシウム、インジウム、アルミニウム、銀等の
適当な金属又はそれらの合金が用いられる。図1に示し
た構造以外にも、以下に示すような層構成の有機電界発
光素子が本発明の有機電界発光パネルに用いられる。
The cathode 5 plays a role of injecting electrons into the light emitting layer 4. The material used as the cathode 4 is preferably a metal having a low work function in order to efficiently inject electrons, and an appropriate metal such as tin, magnesium, indium, aluminum, silver or an alloy thereof is used. In addition to the structure shown in FIG. 1, an organic electroluminescent device having the following layer structure is used in the organic electroluminescent panel of the present invention.

【0012】[0012]

【表1】 陽極/有機発光層/陰極、 陽極/高分子から成る有機発光層/陰極、 陽極/高分子に分散させた有機発光層/陰極、 陽極/正孔輸送層/有機電子輸送性発光層/陰極、 陽極/有機正孔輸送性発光層/有機電子輸送層/陰極、 陽極/正孔輸送層/有機電子輸送性発光層/電子輸送層
/陰極、 次に、本発明における有機電界発光素子を駆動するアク
ティブ・マトリクス回路について説明する。
[Table 1] Anode / organic light emitting layer / cathode, organic light emitting layer / cathode consisting of anode / polymer, organic light emitting layer / cathode dispersed in anode / polymer, anode / hole transporting layer / organic electron transporting light emission Layer / cathode, anode / organic hole transporting light emitting layer / organic electron transporting layer / cathode, anode / hole transporting layer / organic electron transporting light emitting layer / electron transporting layer / cathode, then organic electroluminescence in the present invention An active matrix circuit that drives the elements will be described.

【0013】本発明の有機電界発光パネルは、XYのマ
トリクスに配置された有機電界発光素子から成る画素に
対して、X方向に1ラインずつ選択し、Y方向の電極か
ら各画素の表示信号を与え、X方向の選択信号は1ライ
ンずつ操作され、一巡して全画面を表示する方式であ
る。このパネルにおいては、各画素の回路上にメモリ機
能をもたせるようにした。なぜなら液晶の場合とは異な
り、選択時(ある画素の走査電極がONとなり、表示信
号が与えられている状態)のみに電流を流しただけで
は、選択された瞬間だけ画素が発光することになり、画
面全体として連続した表示はできないからである。そこ
で回路上に選択時から画面を一巡して次の選択時までの
間、表示状態を維持するためのメモリが必要となる。そ
して、電流駆動が可能な回路とした。具体的には、液晶
用の駆動回路と比較して、素子に流れる電流密度は10
00倍以上となる。
In the organic electroluminescent panel of the present invention, one line is selected in the X direction for each pixel composed of the organic electroluminescent elements arranged in the XY matrix, and the display signal of each pixel is selected from the electrode in the Y direction. The selection signal in the X direction is operated line by line, and the entire screen is displayed in one cycle. In this panel, each pixel circuit has a memory function. This is because, unlike the case of liquid crystal, if a current is passed only during selection (the scanning electrode of a certain pixel is ON and a display signal is being applied), the pixel will emit light only at the selected moment. , Because the entire screen cannot be displayed continuously. Therefore, it is necessary to provide a memory on the circuit for maintaining the display state from the time of selection to the time of the next selection after making a round of the screen. Then, a circuit that can be driven by current is used. Specifically, the current density flowing in the device is 10 compared with the drive circuit for liquid crystal.
It is more than 00 times.

【0014】以上が基本的な回路の機能であるが、さら
に表示パネルとしてコントラストが十分に大きいこと、
画面の開口率が大きいこと、クロストークがないこと等
をさらに考慮した。図2に一画素分の薄膜トランジスタ
(TFT)とコンデンサとから成るアクティブ・マトリ
クス駆動回路を示す。本回路では各画素毎に2つのTF
Tと1つのコンデンサから構成され、電流駆動とメモリ
性を実現している。駆動信号用に2つの電極(SCAN
電極、DATA電極)があり液晶用と類似しているが、
その他に電流供給用としてCOM電極があり、常に電圧
が印加されている点が異なっている。
The above is the basic circuit function, but further, the contrast is sufficiently large as a display panel,
Further consideration was given to the large aperture ratio of the screen and the absence of crosstalk. FIG. 2 shows an active matrix drive circuit including a thin film transistor (TFT) for one pixel and a capacitor. This circuit uses two TFs for each pixel.
It is composed of T and one capacitor, and realizes current drive and memory performance. Two electrodes (SCAN) for drive signals
Electrode, DATA electrode) and similar to those for liquid crystal,
In addition, there is a COM electrode for supplying current, which is different in that a voltage is always applied.

【0015】以下に素子の動作を説明する。図2の回路
図上ではTFTをFETとして表現しているが、TFT
は基本的にはMOS−FETと類似した構造・動作であ
り、ゲート電位によりソース・ドレイン電極間のスイッ
チ動作を行うことができる。駆動のための信号の与え方
は、1ライン毎に選択し、選択されたライン中の各画素
毎にONかOFFかの信号を与える。選択するための電
極がSCAN電極であり、信号を与える電極がDATA
電極である。いま、選択状態即ちSCAN信号(SCA
N電極の入力信号)がHIGHの時、TFT1はON状
態になり、中間電極FEの電位はDATA信号がHIG
HならHIGHに、LOWならLOWとなる。従って、
DATA信号がHIGHならTFT2はONとなり、出
力電位(画素電極の電位)はHIGHとなる。また、D
ATA信号がLOWならばTFT2はOFFとなり、出
力電位はLOWとなる。その後、SCAN信号がLO
W、即ち、非選択状態になった時、TFT1はOFFと
なるが、中間電極FEの電位はコンデンサCにより保持
されて変化せず、DATA信号が変化しても出力電位の
状態は変化しない。出力電位が変化するのは、再びこの
画素を含むラインが選択状態、つまり、SCAN信号が
HIGHになり、以前とは異なった信号がDATA電極
に与えられた時である。この回路により、電流駆動型で
あってもアクティブ・マトリクス方式の駆動が可能とな
る。
The operation of the device will be described below. Although the TFT is expressed as an FET in the circuit diagram of FIG.
Has basically the same structure and operation as the MOS-FET, and can switch between the source and drain electrodes by the gate potential. The method of giving a signal for driving is selected for each line, and an ON or OFF signal is given for each pixel in the selected line. The electrodes for selection are SCAN electrodes, and the electrodes that give signals are DATA.
It is an electrode. Now, the selected state, that is, the SCAN signal (SCA
When the input signal of the N electrode is HIGH, the TFT1 is in the ON state and the potential of the intermediate electrode FE is HIGH when the DATA signal is HIGH.
If it is H, it becomes HIGH, and if it is LOW, it becomes LOW. Therefore,
If the DATA signal is HIGH, the TFT 2 is turned on and the output potential (pixel electrode potential) becomes HIGH. Also, D
If the ATA signal is LOW, the TFT2 is turned off and the output potential becomes LOW. After that, the SCAN signal becomes LO
When W, that is, in the non-selected state, the TFT 1 is turned off, but the potential of the intermediate electrode FE is held by the capacitor C and does not change, and the state of the output potential does not change even if the DATA signal changes. The output potential changes when the line including this pixel is in the selected state again, that is, when the SCAN signal becomes HIGH and a different signal from before is applied to the DATA electrode. With this circuit, it is possible to drive an active matrix system even if it is a current drive type.

【0016】以上の回路を開口率を考慮して基板上に具
体化したのものを図3に示す。同図には4回路分のパタ
ーンを示してある。本発明のアクティブ・マトリクス回
路に用いられるTFTの材料としては、非晶質シリコン
(a−Si)、多結晶シリコン(poly−Si)、セ
レン化カドミウム(CdSe)が挙げられる。TFT構
造としては、逆スタガ型と呼ばれるものが好ましくは採
用される。
FIG. 3 shows the above circuit embodied on a substrate in consideration of the aperture ratio. In the figure, patterns for four circuits are shown. Examples of the material of the TFT used in the active matrix circuit of the present invention include amorphous silicon (a-Si), polycrystalline silicon (poly-Si), and cadmium selenide (CdSe). As the TFT structure, what is called an inverted stagger type is preferably adopted.

【0017】代表的な例として、逆スタガ型構造のa−
SiTFTを図4に示す。ガラス基板6の上にa−Si
TFTは形成される。ゲート電極7としては、Mo、T
a、Al、Crやそれらの積層膜又は合金等が用いられ
る。ゲート電極は、通常、電子ビーム蒸着法やスパッタ
法により形成される。ゲート絶縁膜8としては、シリコ
ン窒化膜(SiNx )が用いられ、その上にi型a−S
i層9とn+ 型a−Si層10が積層される。シリコン
窒化膜(SiNx )、i型a−Si層及びn+型a−S
i層は、通常、プラズマCVD法により連続して形成さ
れる。n+ 型a−Si層10に窓を形成した後に、ソー
ス及びドレイン電極11a、11bを形成する。ソー
ス、ドレイン電極としてはゲート電極と同様の金属が使
用される。上記のa−SiTFTにおいては、ゲート電
位によりi型a−Si半導体層表面に電荷が誘起され、
その電荷の有無によりソース・ドレイン電極間のスイッ
チ動作を行う。n+ 型a−Siは電極への電荷の移動を
円滑にするためのコンタクト層である。
As a typical example, an inverted stagger type a-
The SiTFT is shown in FIG. A-Si on the glass substrate 6
The TFT is formed. As the gate electrode 7, Mo, T
A, Al, Cr, a laminated film or alloy thereof, or the like is used. The gate electrode is usually formed by an electron beam evaporation method or a sputtering method. A silicon nitride film (SiN x ) is used as the gate insulating film 8, and the i-type aS
The i layer 9 and the n + type a-Si layer 10 are laminated. Silicon nitride film (SiN x ), i-type a-Si layer and n + -type a-S
The i layer is usually continuously formed by the plasma CVD method. After forming the window in the n + type a-Si layer 10, the source and drain electrodes 11a and 11b are formed. The same metal as the gate electrode is used for the source and drain electrodes. In the above a-Si TFT, electric charges are induced on the surface of the i-type a-Si semiconductor layer by the gate potential,
A switch operation between the source and drain electrodes is performed depending on the presence or absence of the charge. The n + type a-Si is a contact layer for facilitating the transfer of charges to the electrodes.

【0018】コンデンサ及び電極交差部はTFT用の絶
縁膜を用い、TFT作製と同時に形成できる構造とし
た。コンデンサは定電位のCOM電極との間で形成され
るために、ノイズに強い回路構成となっている。有機電
界発光パネルの製作工程の例を図5に示す。
An insulating film for a TFT is used for the capacitor and the electrode crossing portion so that the capacitor and the electrode intersecting portion can be formed simultaneously with the fabrication of the TFT. Since the capacitor is formed between the constant potential COM electrode and the constant potential COM electrode, it has a circuit structure resistant to noise. An example of the manufacturing process of the organic electroluminescent panel is shown in FIG.

【0019】[0019]

【表2】 (a)下部電極形成工程:ITO画素電極12とゲート
電極7aのパターニング(電極7bは蓄積用コンデンサ
の電極となる) (b)a−Si連続成膜工程:SiNx 層8/i型a−
Si層9/n+ 型a−Si層10 (c)a−Siパターニング工程:TFT(8a〜10
a)と蓄積用コンデンサ(8b〜10b) (d)上部電極形成工程:TFTのソース電極、ドレイ
ン電極11a、11b及び蓄積用コンデンサの電極11
cの形成 (e)TFTのチャンネル形成:n+ 型a−Si層10
aのエッチオフ (f)有機発光層成膜工程:有機発光層13の形成 (g)陰極形成工程:陰極5の形成 上記の工程例では最後の陰極形成は全面一様成膜でよ
く、これまでに開示されているマトリクス構造における
様な陰極のパターニングが必要でなく、従って、有機発
光層を形成した後に、有機発光層にダメージを与えるフ
ォトリソグラフィプロセスを経ることが避けられ、全体
の工程も簡素化される。
(A) Lower electrode forming step: patterning of the ITO pixel electrode 12 and the gate electrode 7a (the electrode 7b becomes an electrode of the storage capacitor) (b) a-Si continuous film forming step: SiN x layer 8 / i type a-
Si layer 9 / n + type a-Si layer 10 (c) a-Si patterning step: TFT (8a-10
a) and storage capacitor (8b to 10b) (d) upper electrode forming step: source electrode and drain electrode 11a, 11b of TFT and electrode 11 of storage capacitor
c) (e) TFT channel formation: n + type a-Si layer 10
Etching off of a (f) Organic light emitting layer film forming step: formation of organic light emitting layer 13 (g) Cathode forming step: formation of cathode 5 In the above example of the process, the final cathode formation may be a uniform film formation over the entire surface. No patterning of the cathode as in the matrix structures disclosed up to now is required, thus avoiding a photolithography process that damages the organic light emitting layer after forming the organic light emitting layer, and To be simplified.

【0020】[0020]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はその要旨を越えない限り、以下の
実施例により限定されるものではない。以下に有機電界
発光パネルの製作例を示す。TFT素子の設計として
は、図2に示した回路図において、第1のTFTのゲー
ト長を20μm、ゲート幅を100μmとし、第2のT
FTのゲート長を20μm、ゲート幅を600μmとし
た。画素面積は600μm×600μm、画素間隔は8
00μm×800μmで、開口率を56%とした。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. An example of manufacturing an organic electroluminescent panel is shown below. As the design of the TFT element, in the circuit diagram shown in FIG. 2, the gate length of the first TFT is 20 μm, the gate width is 100 μm, and the second T
The gate length of the FT was 20 μm and the gate width was 600 μm. Pixel area is 600μm x 600μm, pixel spacing is 8
The size was 00 μm × 800 μm, and the aperture ratio was 56%.

【0021】以下に各製作工程について説明する。 (a)下部電極形成工程 無アルカリガラス(HOYA製NA−40)基板上に、
ITOを膜厚120nmスパッタしたもの(シート抵抗
〜20Ω/□)を、通常のフォトリソグラフィー技術と
塩酸を用いたウェットエッチングにより、画素電極(陽
極)のパターニングを行った。次に通常のフォトリソグ
ラフィー技術と電子ビーム蒸着により行い、100nm
のAl層と50nmのCr層を順次積層したゲート電極
を形成した。 (b)a−Si連続成膜工程 (a)の工程で作製した基板を、プラズマCVD装置に
セットし、以下の表−1に示す条件でa−Si各層を連
続成膜した。
Each manufacturing process will be described below. (A) Lower electrode forming step On a non-alkali glass (NA-40 made by HOYA) substrate,
A pixel electrode (anode) was patterned by sputtering ITO with a film thickness of 120 nm (sheet resistance ˜20 Ω / □) by wet etching using ordinary photolithography technology and hydrochloric acid. Next, it is performed by the usual photolithography technique and electron beam evaporation, and 100 nm
To form a gate electrode in which an Al layer and a Cr layer having a thickness of 50 nm were sequentially laminated. (B) a-Si continuous film forming step The substrate produced in the step (a) was set in a plasma CVD apparatus, and a-Si layers were continuously formed under the conditions shown in Table 1 below.

【0022】[0022]

【表3】 [Table 3]

【0023】(c)a−Siパターニング工程 上記のプラズマCVD装置から基板を取り出して、通常
のフォトリソグラフィー技術とSF6 ガスを用いたプラ
ズマエッチングによりa−Siのパターニングを行っ
た。 (d)上部電極形成工程 通常のフォトリソグラフィー技術と電子ビーム蒸着によ
り、50nmのCr層と100nmのAl層とを順次積
層したドレイン及びソース電極を形成した。 (e)n+ a−Si層エッチオフ工程 通常のフォトリソグラフィー技術とSF6 ガスを用いた
プラズマエッチングによりn+ a−Siの層のエッチン
グを行い、チャンネルを形成した。 (f)有機電界発光層成膜工程 (e)までの工程で出来上がった駆動回路基板をアセト
ンで超音波洗浄、メタノールで超音波洗浄、純水で水
洗、乾燥窒素で乾燥、UV/オゾン洗浄を行った後、蒸
着部分を限定する密着マスクをつけて真空蒸着装置内に
設置し、装置内の真空度が2×10-6Torr以下にな
るまで油拡散ポンプを用いて排気した。以下図1に示す
構造の有機電界発光素子部分を作製した。
(C) a-Si patterning step The substrate was taken out from the above plasma CVD apparatus, and a-Si patterning was carried out by the usual photolithography technique and plasma etching using SF 6 gas. (D) Step of forming upper electrode A drain and source electrode in which a Cr layer of 50 nm and an Al layer of 100 nm were sequentially stacked were formed by a normal photolithography technique and electron beam evaporation. (E) by plasma etching using the n + a-Si layer etching off process ordinary photolithography technique and SF 6 gas is performed to etch the layer of n + a-Si, to form channels. (F) Organic electroluminescent layer forming step Ultrasonic cleaning of the drive circuit board completed in the steps up to (e) with acetone, ultrasonic cleaning with methanol, water cleaning with pure water, drying with dry nitrogen, UV / ozone cleaning. After that, it was installed in a vacuum vapor deposition apparatus with a contact mask for limiting the vapor deposition portion, and exhausted using an oil diffusion pump until the degree of vacuum in the apparatus became 2 × 10 −6 Torr or less. An organic electroluminescence device portion having the structure shown in FIG. 1 was produced below.

【0024】有機正孔輸送層材料として、以下の構造式
(H1)に示すN,N’−ジフェニル−N,N’−(3
−メチルフェニル)−1,1’−ビフェニル−4,4’
−ジアミン
As the organic hole transport layer material, N, N'-diphenyl-N, N '-(3 represented by the following structural formula (H1) is used.
-Methylphenyl) -1,1'-biphenyl-4,4 '
-Diamine

【0025】[0025]

【化1】 [Chemical 1]

【0026】をセラミックるつぼに入れ、るつぼの周囲
のタンタル線ヒーターで加熱して蒸着を行った。この時
のるつぼの温度は、160〜170℃の範囲で制御し
た。蒸着時の真空度は2×10-6Torrで、蒸着時間
3分20秒で膜厚60nmの正孔輸送層3を得た。
[0026] was placed in a ceramic crucible and heated by a tantalum wire heater around the crucible for vapor deposition. The temperature of the crucible at this time was controlled in the range of 160 to 170 ° C. The degree of vacuum during vapor deposition was 2 × 10 −6 Torr, and the hole transport layer 3 having a film thickness of 60 nm was obtained with the vapor deposition time of 3 minutes and 20 seconds.

【0027】次に、発光層4の材料として、以下の構造
式(E1)に示すアルミニウムの8−ヒドロキシキノリ
ン錯体Al(C96NO)3
Next, as a material for the light emitting layer 4, an aluminum 8-hydroxyquinoline complex Al (C 9 H 6 NO) 3 represented by the following structural formula (E1) is used.

【0028】[0028]

【化2】 [Chemical 2]

【0029】を上記正孔輸送層3の上に同様にして蒸着
を行なった。この時のるつぼの温度は230〜270℃
の範囲で制御した。蒸着時の真空度は2×10-6Tor
r、蒸着時間は3分30秒、膜厚は75nmであった。 (g)陰極形成工程 (f)で成膜したものを上記の真空蒸着装置から取り出
して、陰極蒸着部分を限定する密着マスクをつけて別の
真空蒸着装置内に設置し、マグネシウムと銀の合金陰極
を2元同時蒸着法によって膜厚150nmで蒸着した。
蒸着はモリブデンボートを用いて、真空度は3×10-6
Torr、蒸着時間は4分30秒で光沢のある膜が得ら
れた。マグネシウムと銀の原子比は10:1.5であっ
た。 <有機電界発光パネルの駆動特性>上記(a)〜(g)
の工程で作製した有機電界発光パネルのa−SiTFT
の特性を評価したところ、移動度(μFE)は0.5c
2/V・sec、しきい値は3Vであった。
The above was vapor-deposited on the hole transport layer 3 in the same manner. The temperature of the crucible at this time is 230-270 ° C.
Controlled in the range of. The degree of vacuum during vapor deposition is 2 × 10 -6 Tor
r, the vapor deposition time was 3 minutes and 30 seconds, and the film thickness was 75 nm. (G) Cathode forming step The film formed in (f) is taken out from the above vacuum vapor deposition apparatus, placed in another vacuum vapor deposition apparatus with a contact mask that limits the cathode vapor deposition portion, and an alloy of magnesium and silver. The cathode was vapor-deposited with a film thickness of 150 nm by the two-source simultaneous vapor deposition method.
Vapor deposition uses a molybdenum boat and the degree of vacuum is 3 × 10 -6
A glossy film was obtained with Torr and vapor deposition time of 4 minutes and 30 seconds. The atomic ratio of magnesium to silver was 10: 1.5. <Driving Characteristics of Organic Electroluminescent Panel> Above (a) to (g)
A-SiTFT of organic electroluminescent panel manufactured by the process of
When the characteristics of were evaluated, the mobility (μFE) was 0.5c.
m 2 / V · sec and the threshold value was 3V.

【0030】次に、入力信号波形として、1ラインの選
択時間を0.2m秒、選択状態が1巡する時間(フィー
ルド時間)を10m秒とした場合の、SCAN信号、D
ATA信号、COM信号の各入力波形を図6に示す。入
力信号電圧は、DATA信号とSCAN信号について
は、LOW=0V、HIGH=36Vとし、COM信号
については25Vとした。この入力信号波形は100ラ
イン(画面を2分割して駆動する場合)のディスプレイ
において、フィールド周波数(画面を書き換える周波
数)を100Hzとした時に相当し、このフィールド周
波数は動画及び静止画の表示が十分に可能な値である。
画素電極の電圧波形を図7に示す。ONからOFFへの
立ち下がり応答が遅くなっているが、有機電界発光素子
の電流−電圧特性からすると問題にならず、実際の有機
電界発光素子からの発光波形も急峻な立ち下がりとなり
ディスプレイとして満足できる(図8)。200ライ
ン、フィールド周波数50Hzに相当する入力信号の場
合についても同様な測定を行い、満足する動作特性を得
た。
Next, as the input signal waveform, when the selection time for one line is 0.2 msec and the time (field time) for one cycle of the selection state is 10 msec, the SCAN signal, D
FIG. 6 shows input waveforms of the ATA signal and the COM signal. The input signal voltage was LOW = 0V and HIGH = 36V for the DATA signal and the SCAN signal, and 25V for the COM signal. This input signal waveform corresponds to a field frequency (frequency for rewriting the screen) of 100 Hz in a display of 100 lines (when the screen is divided and driven), and this field frequency is sufficient for displaying moving images and still images. Is a possible value for.
The voltage waveform of the pixel electrode is shown in FIG. The falling response from ON to OFF is slow, but it does not cause a problem according to the current-voltage characteristics of the organic electroluminescent element, and the emission waveform from the actual organic electroluminescent element also has a steep falling edge, which is satisfactory for a display. Yes (Figure 8). The same measurement was carried out for an input signal corresponding to 200 lines and a field frequency of 50 Hz, and satisfactory operating characteristics were obtained.

【0031】[0031]

【発明の効果】本発明においては、有機電界発光素子と
同一基板に薄膜トランジスタとコンデンサとから成るア
クティブ・マトリクス回路を設けることにより、優れた
表示能力を有する有機電界発光パネルが達成される。従
って、本発明の有機電界発光パネルはフラットパネル・
ディスプレイ(例えばOA用、FA用及びLA用コンピ
ュータや壁掛けテレビ)の分野や計測機器類の表示パネ
ルへの応用が考えられ、その技術的価値は大きいもので
ある。
According to the present invention, an organic electroluminescent panel having excellent display capability is achieved by providing an active matrix circuit composed of thin film transistors and capacitors on the same substrate as the organic electroluminescent element. Therefore, the organic electroluminescent panel of the present invention is a flat panel
The field of display (for example, computers for OA, FA and LA, and wall-mounted television) and application to display panels of measuring instruments can be considered, and its technical value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる有機電界発光素子の一例を
示した模式断面図。
FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescence device used in the present invention.

【図2】本発明の有機電界発光パネルの駆動用の回路
図。
FIG. 2 is a circuit diagram for driving the organic electroluminescent panel of the present invention.

【図3】本発明の有機電界発光パネルのTFT駆動回路
平面図。
FIG. 3 is a plan view of a TFT drive circuit of the organic electroluminescence panel of the present invention.

【図4】本発明の有機電界発光パネル駆動回路に用いら
れるTFT構造の例。
FIG. 4 is an example of a TFT structure used in an organic electroluminescence panel driving circuit of the present invention.

【図5】本発明の有機電界発光パネルの作製工程例。FIG. 5 shows an example of steps for manufacturing an organic electroluminescence panel of the present invention.

【図6】実施例における入力信号波形FIG. 6 is an input signal waveform according to an embodiment.

【図7】実施例における画素電圧信号波形FIG. 7 is a pixel voltage signal waveform according to an embodiment.

【図8】実施例における画素発光出力波形FIG. 8 is a pixel light emission output waveform in the example.

【符号の説明】[Explanation of symbols]

1 基板 2 陽極 3 正孔輸送層 4 発光層 5 陰極 6 ガラス基板 7a TFTのゲート電極、 7b 蓄積用コンデンサの電極 8,8a,8b SiNx絶縁膜 9,9a,9b i層a−Si 10,10a,10b n+ 層a−Si 11a ソース電極 11b ドレイン電極 11c 蓄積用コンデンサの電極 12 ITO画素電極 13 有機発光層 1 Substrate 2 Anode 3 Hole transport layer 4 Light emitting layer 5 Cathode 6 Glass substrate 7a TFT gate electrode, 7b Storage capacitor electrode 8, 8a, 8b SiNx insulating film 9, 9a, 9b i layer a-Si 10, 10a , 10b n + layer a-Si 11a source electrode 11b drain electrode 11c storage capacitor electrode 12 ITO pixel electrode 13 organic light emitting layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、陽極及び陰極により挟持され
た有機発光層から成る有機電界発光素子及び該有機電界
発光素子を駆動するアクティブ・マトリクス回路を設け
た有機電界発光パネルであって、前記アクティブ・マト
リクス回路が、スイッチング信号に応じてオンし、発光
信号に応じて蓄積用コンデンサを充放電する第1の薄膜
トランジスタと、前記蓄積用コンデンサからの放電電圧
に応じてオン、オフし、前記有機電界発光素子の発光、
非発光を制御する第2の薄膜トランジスタとから成るこ
とを特徴とする有機電界発光パネル。
1. An organic electroluminescence panel comprising an organic electroluminescence device comprising an organic luminescence layer sandwiched by an anode and a cathode, and an active matrix circuit for driving the organic electroluminescence device, the organic electroluminescence panel comprising: An active matrix circuit is turned on in response to a switching signal, and is turned on / off in response to a discharge voltage from the storage capacitor, and a first thin film transistor for charging / discharging the storage capacitor in response to a light emission signal. Emission of electroluminescent device,
An organic electroluminescent panel comprising a second thin film transistor for controlling non-light emission.
JP5116208A 1993-05-18 1993-05-18 Organic electroluminescent panel Pending JPH06325869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5116208A JPH06325869A (en) 1993-05-18 1993-05-18 Organic electroluminescent panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5116208A JPH06325869A (en) 1993-05-18 1993-05-18 Organic electroluminescent panel

Publications (1)

Publication Number Publication Date
JPH06325869A true JPH06325869A (en) 1994-11-25

Family

ID=14681522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116208A Pending JPH06325869A (en) 1993-05-18 1993-05-18 Organic electroluminescent panel

Country Status (1)

Country Link
JP (1) JPH06325869A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717446A2 (en) * 1994-12-14 1996-06-19 Eastman Kodak Company TFT-EL display panel using organic electroluminiscent media
EP0717439A2 (en) * 1994-12-14 1996-06-19 Eastman Kodak Company A method of fabricating a TFT-EL pixel
WO1999012150A1 (en) * 1997-08-28 1999-03-11 Seiko Epson Corproration Display device
EP0717445A3 (en) * 1994-12-14 1999-06-02 Eastman Kodak Company An electroluminescent device having an organic electroluminescent layer
JP2000242232A (en) * 1999-02-19 2000-09-08 Tdk Corp Display
JP2002032057A (en) * 2000-05-08 2002-01-31 Semiconductor Energy Lab Co Ltd Light emitting device and driving method therefor
JP2002083689A (en) * 2000-06-29 2002-03-22 Semiconductor Energy Lab Co Ltd Luminescence device
EP0961525A4 (en) * 1997-08-29 2003-01-22 Seiko Epson Corp Active matrix display
US6642544B1 (en) * 1996-12-11 2003-11-04 Sanyo Electric Co., Ltd. Display apparatus using electroluminscence elements and method of manufacturing the same
KR100420907B1 (en) * 2000-03-28 2004-03-02 산요덴키가부시키가이샤 Display device
US6853083B1 (en) 1995-03-24 2005-02-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transfer, organic electroluminescence display device and manufacturing method of the same
US6862011B2 (en) 1996-09-26 2005-03-01 Seiko Epson Corporation Display apparatus
US6905907B2 (en) 2001-09-10 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
EP1505651A3 (en) * 1997-07-02 2005-08-10 Seiko Epson Corporation Display apparatus
EP1505649A3 (en) * 1997-07-02 2005-08-10 Seiko Epson Corporation Display device
KR100559077B1 (en) * 1997-04-14 2006-06-29 트랜스퍼시픽 아이피 리미티드 Active Matrix Organic Light Emitting Diode (AMOLED) Display Pixel Structure and Data Load / Light Emitting Circuit for It
US7173612B2 (en) 2000-12-08 2007-02-06 Matsushita Electric Industrial Co., Ltd. EL display device providing means for delivery of blanking signals to pixel elements
JP2007148446A (en) * 1996-09-26 2007-06-14 Seiko Epson Corp Display apparatus
EP1830343A3 (en) * 1997-02-17 2009-03-11 Seiko Epson Corporation Structure of a driving circuit for an electroluminescent display

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241047A (en) * 1994-12-14 1996-09-17 Eastman Kodak Co Manufacture of tft- el picture element
EP0717439A2 (en) * 1994-12-14 1996-06-19 Eastman Kodak Company A method of fabricating a TFT-EL pixel
JPH08234683A (en) * 1994-12-14 1996-09-13 Eastman Kodak Co Tft- el display panel using organic electroluminescent medium
EP0717446A2 (en) * 1994-12-14 1996-06-19 Eastman Kodak Company TFT-EL display panel using organic electroluminiscent media
EP0717445A3 (en) * 1994-12-14 1999-06-02 Eastman Kodak Company An electroluminescent device having an organic electroluminescent layer
EP0717439A3 (en) * 1994-12-14 1999-06-02 Eastman Kodak Company A method of fabricating a TFT-EL pixel
EP0717446A3 (en) * 1994-12-14 1999-06-02 Eastman Kodak Company TFT-EL display panel using organic electroluminiscent media
US7476900B2 (en) 1995-03-24 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, organic electroluminescence display device and manufacturing method of the same
US6853083B1 (en) 1995-03-24 2005-02-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transfer, organic electroluminescence display device and manufacturing method of the same
US6992435B2 (en) 1995-03-24 2006-01-31 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, organic electroluminescence display device and manufacturing method of the same
US6862011B2 (en) 1996-09-26 2005-03-01 Seiko Epson Corporation Display apparatus
JP2007148446A (en) * 1996-09-26 2007-06-14 Seiko Epson Corp Display apparatus
US7012278B2 (en) 1996-09-26 2006-03-14 Seiko Epson Corporation Light-emitting apparatus driven with thin-film transistor and method of manufacturing light-emitting apparatus
US6642544B1 (en) * 1996-12-11 2003-11-04 Sanyo Electric Co., Ltd. Display apparatus using electroluminscence elements and method of manufacturing the same
EP1830343A3 (en) * 1997-02-17 2009-03-11 Seiko Epson Corporation Structure of a driving circuit for an electroluminescent display
KR100559077B1 (en) * 1997-04-14 2006-06-29 트랜스퍼시픽 아이피 리미티드 Active Matrix Organic Light Emitting Diode (AMOLED) Display Pixel Structure and Data Load / Light Emitting Circuit for It
US8310476B2 (en) 1997-07-02 2012-11-13 Seiko Epson Corporation Display apparatus
US8334858B2 (en) 1997-07-02 2012-12-18 Seiko Epson Corporation Display apparatus
US8803773B2 (en) 1997-07-02 2014-08-12 Intellectual Keystone Technology Llc Display apparatus
EP1505651A3 (en) * 1997-07-02 2005-08-10 Seiko Epson Corporation Display apparatus
EP1505652A3 (en) * 1997-07-02 2005-08-10 Seiko Epson Corporation Display apparatus
EP1505649A3 (en) * 1997-07-02 2005-08-10 Seiko Epson Corporation Display device
EP1505650A3 (en) * 1997-07-02 2005-08-17 Seiko Epson Corporation Display apparatus
KR100594828B1 (en) * 1997-08-28 2006-07-03 세이코 엡슨 가부시키가이샤 Current light emitting device
WO1999012150A1 (en) * 1997-08-28 1999-03-11 Seiko Epson Corproration Display device
US7236164B2 (en) 1997-08-28 2007-06-26 Seiko Epson Corporation Display device
US6518941B1 (en) 1997-08-28 2003-02-11 Seiko Epson Corporation Display device
EP0961525A4 (en) * 1997-08-29 2003-01-22 Seiko Epson Corp Active matrix display
US6734839B2 (en) 1997-08-29 2004-05-11 Seiko Epson Corporation Active matrix display device
JP2000242232A (en) * 1999-02-19 2000-09-08 Tdk Corp Display
KR100420907B1 (en) * 2000-03-28 2004-03-02 산요덴키가부시키가이샤 Display device
JP2002032057A (en) * 2000-05-08 2002-01-31 Semiconductor Energy Lab Co Ltd Light emitting device and driving method therefor
JP2002083689A (en) * 2000-06-29 2002-03-22 Semiconductor Energy Lab Co Ltd Luminescence device
US7173612B2 (en) 2000-12-08 2007-02-06 Matsushita Electric Industrial Co., Ltd. EL display device providing means for delivery of blanking signals to pixel elements
US7453095B2 (en) 2001-09-10 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US6905907B2 (en) 2001-09-10 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3667842B2 (en) TFT-EL pixel manufacturing method
JP3694078B2 (en) TFT-EL display panel using organic electroluminescence medium
JPH06325869A (en) Organic electroluminescent panel
US6882105B2 (en) Organic light-emitting display device
US7619244B2 (en) Organic light emitting display apparatus
JP3451680B2 (en) Organic electroluminescent device
US8093585B2 (en) Organic electro-luminescent display apparatus
TWI623929B (en) Liquid crystal display device
JP3389653B2 (en) Organic electroluminescent panel
EP0717445A2 (en) An electroluminescent device having an organic electroluminescent layer
US20100308314A1 (en) Light emitting device and manufacturing method thereof
JP2001134217A (en) Driving device for organic el element
JPH11212493A (en) Light emission display device
JPH07153576A (en) Organic electroluminescent panel
KR100390680B1 (en) Active-Matrix Organic Electroluminescent Device and Method for Fabricating the same
JP3399048B2 (en) Organic electroluminescent panel
Hatalis et al. Polysilicon TFT active matrix organic EL displays
JPH07122362A (en) Organic field emission panel
JP4566575B2 (en) Method for manufacturing light emitting device
KR20030085239A (en) Active Matrix Organic Electro-Luminescence Display Panel And Method Of Fabricating The Same
JP2002299049A (en) Organic electroluminescence unit
EP1089291A2 (en) Shift register and image display apparatus using the same
JPH0486891A (en) El light emission device
JP2000164358A (en) Organic thin film electroluminescent element and drive method thereof