JPH06310729A - Semiconductor device having mos gate - Google Patents

Semiconductor device having mos gate

Info

Publication number
JPH06310729A
JPH06310729A JP5096394A JP9639493A JPH06310729A JP H06310729 A JPH06310729 A JP H06310729A JP 5096394 A JP5096394 A JP 5096394A JP 9639493 A JP9639493 A JP 9639493A JP H06310729 A JPH06310729 A JP H06310729A
Authority
JP
Japan
Prior art keywords
conductivity type
region
layer
type region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5096394A
Other languages
Japanese (ja)
Inventor
Shinichi Umekawa
真一 梅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5096394A priority Critical patent/JPH06310729A/en
Publication of JPH06310729A publication Critical patent/JPH06310729A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To obtain a semiconductor device in which damage to gate insulation film is recovered through processing at a relatively low temperature and the threshold voltage is recovered through heat treatment after irradiation with an electron beam by forming a barrier metal layer to touch both the source diffusion layer and the base diffusion layer but not touch the surface of a gate electrode. CONSTITUTION:The semiconductor device comprises a second conductivity type region 5 formed inward from the surface of a first conductivity type semiconductor substrate 1, a first conductivity type region 4 formed annularly within the second conductivity type region 5, a channel region 6 provided for the first conductivity type region 4 and the second conductivity type region 5 continuous thereto, and a dielectric layer 7 covering a channel region 6. The semiconductor device further comprises a gate electrode 8 superposed on the dielectric layer 7, an interlayer insulation layer 9 covering the gate electrode 8, and a metal layer 10 deposited on the surface in the annular first conductivity type region 4 and the exposed second conductivity type region 5 continuous thereto and continuous to the interlayer insulation layer 9 only on the side part thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MOSゲートを備える
半導体装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a semiconductor device having a MOS gate.

【0002】[0002]

【従来の技術】絶縁ゲート型バイポーラトランジスタ即
ちIGBT(InsulatedGate Bipol
ar Transistor)は、モータ制御またはイ
ンバータなどの各種スイッチング素子として広く用いら
れている。
2. Description of the Related Art Insulated gate type bipolar transistor or IGBT (Insulated Gate Bipol)
ar Transistor) is widely used as various switching elements such as motor control or inverters.

【0003】IGBTの構造は、通常のパワ−MOSF
ETのドレイン領域に連続して、これと反対導電型のア
ノード領域を重ねて形成したものであり、N型IGBT
の断面図を図1により説明する。
The structure of the IGBT is a normal power MOSF.
An N-type IGBT is formed by continuously forming a drain region of ET and overlapping an anode region of opposite conductivity type.
A sectional view of the above will be described with reference to FIG.

【0004】即ち、縦型IGBTのアノード領域として
機能するP+ 1、N+ 2更にN- 3の順に重ねて構成す
る例えばシリコンから成る半導体基板の高比抵抗領域N
- 3表面から内部に向けてP拡散層4を設け、このPベ
ース拡散層4内に環状のN+ソース拡散層5を形成す
る。
That is, a high specific resistance region N of a semiconductor substrate made of, for example, silicon, which is formed by stacking P + 1, N + 2 and N - 3 which function as an anode region of a vertical IGBT in this order.
- 3 P diffusion layer 4 is provided toward the inside from the surface, to form an N + source diffusion layer 5 of the ring to the P base diffusion layer 4.

【0005】また、N+ ソース拡散層5と高比抵抗領域
- 3に挟まれたPベース拡散層4部分をチャンネル領
域6として動作させるために、これを覆ってゲート絶縁
物層7を設置する。更に、ゲート絶縁物層7に重ねて多
結晶珪素層から成るゲート電極8を配置すると共に、こ
れを覆う層間絶縁物層9を設置する。
Further, in order to operate the portion of the P base diffusion layer 4 sandwiched between the N + source diffusion layer 5 and the high specific resistance region N - 3 as the channel region 6, the gate insulating layer 7 is provided so as to cover it. To do. Further, a gate electrode 8 made of a polycrystalline silicon layer is arranged so as to overlap the gate insulator layer 7, and an interlayer insulator layer 9 covering the same is provided.

【0006】一方、環状のN+ ソース拡散層5部分及び
これに挟まれかつ連続したPベース拡散層4部分更に層
間絶縁物層9表面に連続してバリヤ金属層即ち金属層1
0を配置し、これに配線として機能する電極11を積層
して形成する。
On the other hand, a portion of the ring-shaped N + source diffusion layer 5 and a portion of the P base diffusion layer 4 which is sandwiched between the N + source diffusion layer 4 and the ring-shaped N + source diffusion layer 5 are further connected to the surface of the interlayer insulating layer 9 to form a barrier metal layer, that is, a metal layer 1.
0 is arranged, and an electrode 11 functioning as a wiring is laminated on this.

【0007】アノード領域P+ 1には、アノ−ド電極1
2を設けて、IGBTを構成することによって、高入力
インピーダンスで、低オン抵抗の特性とすることが特徴
である。
An anode electrode 1 is formed in the anode region P + 1.
2 is provided to form an IGBT, which is characterized by high input impedance and low on-resistance.

【0008】[0008]

【発明が解決しようとする課題】以上のIGBTのソー
ス電極では、半導体基板を構成するシリコンがアルミニ
ウムに拡散するのを防ぐために、Tiなどをバリヤ金属
即ち金属層10を薄く形成し、ここにアルミニウムを含
む金属電極11を設けてソース電極として機能する方式
が採られている。
In the above-mentioned IGBT source electrode, in order to prevent the silicon constituting the semiconductor substrate from diffusing into aluminum, a barrier metal, that is, a metal layer 10 is formed thinly with Ti or the like. A method is adopted in which the metal electrode 11 including is provided to function as a source electrode.

【0009】他の方法としては、金属層10を形成せず
に電極11としてアルミニウムに微量のシリコンを固溶
したAl−SiやAl−Si−Cuを使用する例がある
が、信頼性やオン抵抗に関して金属層10を設置する方
が有利である。更に、このようにソース電極として動作
する金属層10は、前記のように層間絶縁物層9上に形
成する。このようなIGBT素子では、アノード領域か
らドレイン領域に注入する少数キャリアの一部が過剰キ
ヤリアとして蓄積されるので、遮断時にゲート印加電圧
を零にしてチャンネルを閉じて、エレクトロンの流れを
止めても蓄積した少数キャリアが排出されるまで、オフ
状態に戻らない。その上、ドレイン領域に残るエレクト
ロンがアノード領域を通り抜ける際アノード領域から少
数キャリアの注入を誘起してターンオフ時間を大きくす
る。
As another method, there is an example of using Al-Si or Al-Si-Cu in which a small amount of silicon is solid-dissolved in aluminum as the electrode 11 without forming the metal layer 10. It is advantageous to place the metal layer 10 in terms of resistance. Further, the metal layer 10 thus acting as the source electrode is formed on the interlayer insulating layer 9 as described above. In such an IGBT element, a part of the minority carriers injected from the anode region to the drain region is accumulated as an excess carrier, so that the gate applied voltage is set to zero at the time of interruption and the channel is closed to stop the electron flow. It does not return to the off state until the accumulated minority carriers are discharged. Moreover, when the electrons remaining in the drain region pass through the anode region, injection of minority carriers is induced from the anode region to increase the turn-off time.

【0010】ターンオフ時間を改善する方法としては、
電子線を照射してキャリアのライフタイムを小さくする
方法が知られているが、ゲート酸化膜に発生した固定電
荷により、Nch−IGBTのしきい値電圧が低下す
る。低下したしきい値電圧を回復するために電子線照射
後に熱処理を施す。
As a method of improving the turn-off time,
A method of irradiating an electron beam to reduce the carrier lifetime is known, but the fixed charge generated in the gate oxide film lowers the threshold voltage of the Nch-IGBT. In order to recover the lowered threshold voltage, heat treatment is performed after the electron beam irradiation.

【0011】この400℃程度の熱負荷によりN+ ドレ
イン領域の損傷が回復するのに対して、キャリアのライ
フタイムは、電子線照射前の状態に戻ってしまうので、
熱処理温度としては、350℃以下が選ばれている。
Although the damage of the N + drain region is recovered by the heat load of about 400 ° C., the lifetime of the carrier returns to the state before the electron beam irradiation.
As the heat treatment temperature, 350 ° C. or lower is selected.

【0012】このような熱処理工程によりしきい値電圧
を許容範囲内に回復することができるが、ゲート絶縁物
層中の損傷が完全に回復しないと、IGBTの動作に伴
いしきい値の変動(上昇)が発生する。
Although the threshold voltage can be recovered within the permissible range by such a heat treatment process, if the damage in the gate insulating layer is not completely recovered, the fluctuation of the threshold value accompanying the operation of the IGBT ( Rise) occurs.

【0013】一方、ソース電極のバリア金属として金属
層Tiを使用すると、電子線照射後の熱処理は、ゲート
絶縁物層中の損傷の回復を阻害して、しきい値電圧が完
全に回復せず、経時変化を起こすもとになる。
On the other hand, when the metal layer Ti is used as the barrier metal of the source electrode, the heat treatment after the electron beam irradiation hinders the recovery of damage in the gate insulating layer, and the threshold voltage is not completely recovered. , Causes the change over time.

【0014】本発明は、このような事情により成された
もので、特に、電子線照射後の熱処理によりしきい値電
圧が十分に回復しかつ、経時変化が発生しない上に信頼
性の高いMOS型ゲートを備える半導体装置を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and in particular, the threshold voltage is sufficiently recovered by the heat treatment after the electron beam irradiation, and the change with time does not occur, and the MOS is highly reliable. An object of the present invention is to provide a semiconductor device including a mold gate.

【0015】[0015]

【課題を解決するための手段】第1導電型の半導体基板
表面から内部に向けて形成する第2導電型の領域と,前
記第2導電型の領域内に環状に設ける第1導電型の領域
と,前記第1導電型の領域と第2導電型の領域の外周を
占めかつこれに連続する第2導電型領域に設けるチャン
ネル領域と,前記チャンネル領域を覆って形成する絶縁
物層と,前記絶縁物層に重ねて配置するゲート電極と,
前記ゲート電極を被覆する層間絶縁物層と,前記環状の
第1導電型の領域部分及びこれに連続かつ露出する第2
導電型の領域の表面部分に積層して配置しかつ、前記層
間絶縁物層の側部だけに連続する金属層と、前記金属層
に積層して配置する電極層とに本発明に係わるMOSゲ
ートを備える半導体装置の特徴がある。
A second conductivity type region is formed from the surface of a first conductivity type semiconductor substrate toward the inside, and a first conductivity type region is provided in a ring shape in the second conductivity type region. A channel region that occupies the outer periphery of the first conductivity type region and the second conductivity type region and is provided in a second conductivity type region that is continuous with the region; and an insulator layer formed to cover the channel region, A gate electrode which is arranged so as to overlap the insulating layer,
An interlayer insulating layer covering the gate electrode, the annular first conductivity type region portion, and a second continuous and exposed portion
A MOS gate according to the present invention is provided on a metal layer laminated on the surface of a conductivity type region and continuous only on the side of the interlayer insulating layer, and on an electrode layer laminated on the metal layer. There is a feature of the semiconductor device including

【0016】また、金属層をTi、WまたはMoから成
る郡から選定する一種を含み、電極層をアルミニウムを
主成分とすることにも特徴がある。
Another feature is that the metal layer includes one selected from the group consisting of Ti, W or Mo, and the electrode layer contains aluminum as a main component.

【0017】[0017]

【作用】本発明に係わるMOSゲートを備える半導体装
置は、ソース拡散層とベース拡散層の両方に接触するよ
うにバリア金属である金属層を形成して、ゲート電極上
に設置しない点に特徴がある。と言うのは、このような
構成にすることにより、比較的低温での処理によりゲー
ト絶縁膜即ち絶縁物層中の損傷が回復できるとの事実を
基に完成したものである。
A semiconductor device having a MOS gate according to the present invention is characterized in that a metal layer which is a barrier metal is formed so as to be in contact with both the source diffusion layer and the base diffusion layer and is not placed on the gate electrode. is there. This is completed based on the fact that with such a structure, the damage in the gate insulating film, that is, the insulating layer can be recovered by the treatment at a relatively low temperature.

【0018】[0018]

【実施例】本発明に係わる実施例を図2乃至図6を参照
して説明する。
Embodiments of the present invention will be described with reference to FIGS.

【0019】従来の技術欄に示したように、IGBTの
構造は、通常のパワMOSFETのドレイン領域に連続
して、これと反対導電型のアノード領域を重ねて構成し
ており、本発明に係わるN型で縦型のIGBTを示す図
2により先ず説明する。
As shown in the section of the prior art, the structure of the IGBT is constructed such that the drain region of a normal power MOSFET is continuous with the anode region of the opposite conductivity type and overlaps with the drain region. First, a description will be given with reference to FIG. 2 showing an N-type vertical IGBT.

【0020】アノード領域として機能するP+ 1、N+
2更にN- 3の順に重ねて、例えばシリコンから成る半
導体基板を構成し、最上層を構成する高比抵抗領域即ち
第1導電型の半導体基板3表面から内部に向けてP拡散
層即ち第1導電型の領域4を形成する。この第1導電型
の領域4内には、環状のN+ ソース拡散層即ち第2導電
型の領域5を形成する。また、集積回路素子を形成する
ために、第1導電型の領域4を複数個形成し、この中に
環状の第2導電型の領域5を形成することもある。
P + 1, N + which functions as an anode region
2 and N 3 are stacked in this order to form a semiconductor substrate made of, for example, silicon, and a P diffusion layer, that is, a first diffusion layer, that is, a first conductivity type semiconductor substrate 3 that forms the uppermost layer from the surface toward the inside. A conductivity type region 4 is formed. An annular N + source diffusion layer, that is, a second conductivity type region 5 is formed in the first conductivity type region 4. Further, in order to form an integrated circuit element, a plurality of first conductivity type regions 4 may be formed, and an annular second conductivity type region 5 may be formed therein.

【0021】環状の第2導電型の領域4と高比抵の第1
導電型の半導体基板3に挟まれた第2導電型の領域4部
分をチャンネル領域6として動作させるために、これを
覆って厚さが1000オングストローム程度の酸化珪素
層即ちゲート絶縁物層7を設置する。更に、ゲート絶縁
物層7に重ねて多結晶珪素層から成り厚さが約5000
オングストロームのゲート電極8を配置すると共に、こ
れを覆う層間絶縁物層9を例えばCVD( Chemi
cal Vapour Deposition)法によ
り設置する。このような厚さの層間絶縁物層9には、そ
の厚さ方向を占める側部Aが形成される。
The annular second conductivity type region 4 and the first high resistivity region
In order to operate the region 4 of the second conductivity type sandwiched by the semiconductor substrate 3 of the conductivity type as the channel region 6, a silicon oxide layer having a thickness of about 1000 Å, that is, a gate insulator layer 7 is provided so as to cover it. To do. Further, the gate insulator layer 7 is formed of a polycrystalline silicon layer and has a thickness of about 5000.
An angstrom gate electrode 8 is arranged, and an interlayer insulating layer 9 covering it is formed, for example, by CVD (Chemi).
It is installed by the cal vapor deposition method. A side portion A occupying the thickness direction is formed in the interlayer insulating layer 9 having such a thickness.

【0022】一方、環状のN+ ソース拡散層5部分及び
これに挟まれかつ連続した第2導電型の領域4部分更に
層間絶縁物層9表面の側面部分Aのみに連続する金属層
10を配置し、これに配線として機能する電極11を積
層して縦型IGBTを完成する。このような縦型IGB
Tは、電子線を照射後ほぼ350℃で熱処理を行ってし
きい値電圧Vthを回復後、図3に明らかにする高温逆バ
イアス試験を行い、その結果を図4に示した。図4の比
較例は、図1の従来の縦型IGBTを対象としたもので
ある。
On the other hand, a ring-shaped N + source diffusion layer 5 portion, a second conductivity type region 4 portion which is sandwiched between the N + source diffusion layer 5 portion and a continuous metal layer 10 are disposed only on the side surface portion A of the interlayer insulating layer 9. Then, the electrodes 11 functioning as wirings are stacked on this to complete the vertical IGBT. Such a vertical IGB
T was subjected to heat treatment at about 350 ° C. after irradiation with an electron beam to recover the threshold voltage V th, and then a high temperature reverse bias test shown in FIG. 3 was performed. The results are shown in FIG. The comparative example of FIG. 4 is intended for the conventional vertical IGBT of FIG.

【0023】図3における高温逆バイアス試験は、縦型
IGBTトランジスタ(図2参照)のエミッタとコレク
タ間にダイオードDを順方向に接続し、ベースエミッタ
間にツェナダイオードZをクランプし、ベースとエミッ
タの間に抵抗Rを介して電源VGEを配置する。しかも、
ダイオードD、ツェナダイオードZ及び抵抗Rは、縦型
IGBTトランジスタ外部に接続し、測定温度は、約1
25℃である。
In the high temperature reverse bias test shown in FIG. 3, the diode D is connected in the forward direction between the emitter and collector of the vertical IGBT transistor (see FIG. 2), the Zener diode Z is clamped between the base and the emitter, and the base and the emitter are clamped. A power source V GE is arranged between the two via a resistor R. Moreover,
The diode D, the Zener diode Z, and the resistor R are connected to the outside of the vertical IGBT transistor, and the measurement temperature is about 1
25 ° C.

【0024】外部の各部品と接続する縦型IGBTトラ
ンジスタ端子は、図2にエミッタをE、ベースをB更に
コレクタをCと記載した。
The vertical IGBT transistor terminal connected to each external component is shown in FIG. 2 by referring to E for the emitter, B for the base and C for the collector.

【0025】このような高温逆バイアス試験の結果は、
縦軸に1000時間後のVth、横軸に初期(Intia
l)のVthを採った図4に明らかにした。これにある比
較例では、+5%程度の変動が見られるのに対して、本
願は、殆ど変動がない。いいかえれば金属層を層間絶縁
物層の上部には、設置せず側部だけに接触かつ連続さ
せ、更に、N+ ソース拡散層5部分と、これに挟まれか
つ露出するP拡散層4部分に重ねて形成する構造による
効果が判然としている。
The results of such a high temperature reverse bias test are
The vertical axis indicates V th after 1000 hours, and the horizontal axis indicates initial (Intia
Vth of 1) is shown in FIG. In this comparative example, a fluctuation of about + 5% is observed, whereas in the present application, there is almost no fluctuation. In other words, the metal layer is not placed on the interlayer insulating layer and is contacted and continuous only with the side portion, and further, the N + source diffusion layer 5 portion and the P diffusion layer 4 portion sandwiched between and exposed to this are formed. The effect of the structure formed by overlapping is clear.

【0026】また図5は、本発明に係わるMOSFET
を、図6は、同じく横型IGBTを示した。MOSFE
Tは、半導体基板をN+ 、N- の半導体層により構成す
る点が図2と違い、その他はほぼ同じ構造である。
FIG. 5 shows a MOSFET according to the present invention.
FIG. 6 also shows a lateral IGBT. MOSFE
The T has a structure similar to that of FIG. 2 in that the semiconductor substrate is composed of N + and N semiconductor layers, and is otherwise the same.

【0027】図6に明かにする横型のIGBTでは、コ
レクタ端子を別途形成する。即ち、図2における金属層
10−E、P拡散層4−B及びN+ ソース拡散層5によ
り構成するトランジスタのエミッタとベースに対して、
別にコレクタ領域13を形成する点が特徴である。
In the lateral IGBT shown in FIG. 6, the collector terminal is separately formed. That is, with respect to the emitter and base of the transistor constituted by the metal layer 10-E, the P diffusion layer 4-B and the N + source diffusion layer 5 in FIG.
Another feature is that the collector region 13 is formed separately.

【0028】即ち、第1導電型の半導体基板3の所定の
位置に第1導電型のN+ 領域14を形成し、この中に第
1導電型のP+ 拡散層15を設けてコレクタ領域13を
構成する。
That is, the N + region 14 of the first conductivity type is formed at a predetermined position of the semiconductor substrate 3 of the first conductivity type, and the P + diffusion layer 15 of the first conductivity type is provided therein to collect the collector region 13. Make up.

【0029】図7は、図2に明かにした縦型IGBTの
他の例であり、相違点は、金属層10にある。図2にあ
っては、層間絶縁物層9の側面部分Aだけに形成するの
に対して、図7では、側面全体の加えて層間絶縁物層9
表面部分も被覆しており、製造プロセスの相違即ち金属
層10のパターニング工程の有無によりもたらされるも
のである。
FIG. 7 shows another example of the vertical IGBT shown in FIG. 2, and the difference lies in the metal layer 10. In FIG. 2, it is formed only on the side surface portion A of the interlayer insulating layer 9, whereas in FIG.
The surface portion is also covered and is caused by the difference in the manufacturing process, that is, the presence or absence of the patterning step of the metal layer 10.

【0030】[0030]

【発明の効果】以上のように、本発明に係わるMOSゲ
ートを備える半導体装置は、ゲート電極上にバリア金属
であるチタンなどから成る金属層が介在していないの
で、比較的低温の熱処理によりゲート電極の損傷が回復
きる。
As described above, in the semiconductor device having the MOS gate according to the present invention, since the metal layer made of titanium or the like which is the barrier metal is not present on the gate electrode, the gate is formed by heat treatment at a relatively low temperature. The electrode damage is completely recovered.

【0031】従って、しきい値電圧Vthが十分に回復
し、経時変化もなく信頼性の高いMOSゲートを備える
半導体装置を提供できる。
Therefore, it is possible to provide a semiconductor device having a highly reliable MOS gate in which the threshold voltage V th is sufficiently recovered and does not change with time.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のMOSゲートを備える半導体装置の断面
図である。
FIG. 1 is a cross-sectional view of a semiconductor device including a conventional MOS gate.

【図2】本発明に係わるMOSゲートを備える半導体装
置の一実施例であるIGBTの断面図である。
FIG. 2 is a cross-sectional view of an IGBT which is an embodiment of a semiconductor device having a MOS gate according to the present invention.

【図3】高温逆バイアス試験用回路図である。FIG. 3 is a circuit diagram for a high temperature reverse bias test.

【図4】図3の回路によりMOSゲートを備える半導体
装置に高温逆バイアス試験を行った結果を示す図であ
る。
FIG. 4 is a diagram showing a result of performing a high temperature reverse bias test on a semiconductor device having a MOS gate by the circuit of FIG.

【図5】本発明の第2の実施例を示す断面図である。FIG. 5 is a sectional view showing a second embodiment of the present invention.

【図6】本発明の第3の実施例を示す断面図である。FIG. 6 is a sectional view showing a third embodiment of the present invention.

【図7】本発明の第4の実施例を示す断面図である。FIG. 7 is a sectional view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:第1導電型の半導体基板、 2、3:第2導電型の半導体基板、 4:第1導電型の領域、 5:第2導電型の領域、 6:チャンネル領域、 7:絶縁物層、 8:ゲート電極、 9:層間絶縁物層、 10:金属層、 11:配線層。 1: semiconductor substrate of the first conductivity type, 2, 3: semiconductor substrate of the second conductivity type, 4: first conductivity type region, 5: second conductivity type region, 6: channel region, 7: insulator layer , 8: gate electrode, 9: interlayer insulating layer, 10: metal layer, 11: wiring layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板表面から内部に
向けて形成する第2導電型の領域と,前記第2導電型の
領域内に環状に設ける第1導電型の領域と,前記第1導
電型の領域の外周を占めかつこれに連続する第2導電型
領域に設けるチャンネル領域と,前記チャンネル領域を
覆って形成する絶縁物層と,前記絶縁物層に重ねて配置
するゲート電極と,前記ゲート電極を被覆する層間絶縁
物層と,前記環状の第1導電型の領域部分及びこれに連
続かつ露出する第2導電型の領域の表面部分に積層して
配置しかつ、前記層間絶縁物層の側部だけに連続する金
属層と、前記金属層に積層して配置する電極層とを具備
することを特徴とするMOSゲートを備える半導体装置
1. A region of the second conductivity type formed from the surface of a semiconductor substrate of the first conductivity type toward the inside, a region of the first conductivity type provided annularly in the region of the second conductivity type, and the first region. A channel region that is provided in a second conductivity type region that occupies the outer periphery of the one conductivity type region and is continuous with this, an insulator layer that is formed to cover the channel region, and a gate electrode that is arranged so as to overlap the insulator layer. An interlayer insulating layer covering the gate electrode, a ring-shaped first conductivity type region portion and a surface part of a second conductivity type region continuous with and exposed from the first conductivity type region portion, and the interlayer insulation layer. A semiconductor device having a MOS gate, comprising a metal layer continuous only on a side portion of a physical layer, and an electrode layer laminated and arranged on the metal layer.
【請求項2】 前記請求項1における金属層をTi、W
またはMoから成る群から選定する一種を含み、電極層
をアルミニウムを主成分とすることを特徴とするMOS
ゲートを備える半導体装置
2. The metal layer according to claim 1 is formed of Ti, W
Alternatively, a MOS including one selected from the group consisting of Mo and having an electrode layer containing aluminum as a main component.
Semiconductor device with gate
JP5096394A 1993-04-23 1993-04-23 Semiconductor device having mos gate Pending JPH06310729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5096394A JPH06310729A (en) 1993-04-23 1993-04-23 Semiconductor device having mos gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5096394A JPH06310729A (en) 1993-04-23 1993-04-23 Semiconductor device having mos gate

Publications (1)

Publication Number Publication Date
JPH06310729A true JPH06310729A (en) 1994-11-04

Family

ID=14163748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5096394A Pending JPH06310729A (en) 1993-04-23 1993-04-23 Semiconductor device having mos gate

Country Status (1)

Country Link
JP (1) JPH06310729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869961B2 (en) 2016-09-20 2024-01-09 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869961B2 (en) 2016-09-20 2024-01-09 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US11107912B2 (en) Trench gate semiconductor device with dummy gate electrode and manufacturing method of the same
US6888206B2 (en) Power semiconductor device and method of manufacturing the same
US5162966A (en) Semiconductor device having a surge protecting element
US6246092B1 (en) High breakdown voltage MOS semiconductor apparatus
US6407413B1 (en) Semiconductor device with guard ring and Zener diode layer thereover
EP0738011B1 (en) High voltage integrated circuit, high voltage junction terminating structure, and high voltage MIS transistor
US4072976A (en) Gate protection device for MOS circuits
US5473181A (en) Integrated circuit arrangement having at least one power component and low-voltage components
US6914270B2 (en) IGBT with PN insulation and production method
JP2814079B2 (en) Semiconductor integrated circuit and manufacturing method thereof
CN112713124A (en) Semiconductor device with a plurality of semiconductor chips
JP3906504B2 (en) Isolated semiconductor device
JPH06310729A (en) Semiconductor device having mos gate
JPH08116049A (en) Insulated-gate semiconductor device
EP0622853B1 (en) Insulated gate bipolar transistor
US20240162335A1 (en) Semiconductor device and method of manufacturing the same
JPH02156572A (en) Mos type semiconductor device
JPH0324056B2 (en)
JP2546179B2 (en) Semiconductor device
JPH07321307A (en) Semiconductor device
JPH0587137B2 (en)
JPH0120549B2 (en)
JPH0214781B2 (en)
JPH08236770A (en) Semiconductor element for power
JPS6114764A (en) Insulated gate field effect transistor