JPH06288283A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPH06288283A
JPH06288283A JP8091893A JP8091893A JPH06288283A JP H06288283 A JPH06288283 A JP H06288283A JP 8091893 A JP8091893 A JP 8091893A JP 8091893 A JP8091893 A JP 8091893A JP H06288283 A JPH06288283 A JP H06288283A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
injection timing
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8091893A
Other languages
Japanese (ja)
Other versions
JP2921325B2 (en
Inventor
Hiroko Ogita
浩子 小木田
Tsutomu Nakada
勉 中田
Teruyuki Ito
輝行 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8091893A priority Critical patent/JP2921325B2/en
Publication of JPH06288283A publication Critical patent/JPH06288283A/en
Application granted granted Critical
Publication of JP2921325B2 publication Critical patent/JP2921325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To control an injection timing and improve ignition stability so as to suppress an ignition timing when an air-fuel ratio in the vicinity of a sparking plug comes in a rich peak condition. CONSTITUTION:Laser beam having wave length absorbed selectively by gasoline is led in a combustion chamber, and passed into a space in the combustion chamber positioned in the vicinity of a sparking plug. Strength of transmitting beam is detected by a photoelectric transfer element, and an air-fuel ratio at an ignition timing is calculated on the basis of transmitting beam strength and internal cylinder pressure (S3). It is judged whether or not a detected air-fuel ratio is changed in rich direction comparing with a previous time as a result of injection timing control (S4). When rich change of the air-fuel ratio is judged, it is judged whether correction for advancing a previous injection timing is carried out or not (S6). Correction of the injection timing in direction in which rich condition of the air-fuel fuel is obtained is carried out continuously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の燃料噴射制御
装置に関し、詳しくは、燃焼室内における点火栓近傍の
空燃比を検出し、該検出結果に基づいて燃料噴射弁によ
る噴射時期を制御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to detecting an air-fuel ratio in the vicinity of a spark plug in a combustion chamber and controlling the injection timing of a fuel injection valve based on the detection result. Regarding the device.

【0002】[0002]

【従来の技術】従来から、燃焼室内における燃焼光を検
出することにより機関吸入混合気の空燃比(A/F)を
測定する装置が知られている。例えば特開平1−247
740号公報に開示される空燃比検出装置では、点火栓
に埋め込んだ光ファイバーによって燃焼光を取り出し、
該取り出した燃焼光を光電変換することで空燃比を検出
する構成としてある。
2. Description of the Related Art Conventionally, there is known a device for measuring an air-fuel ratio (A / F) of an engine intake air-fuel mixture by detecting combustion light in a combustion chamber. For example, JP-A 1-247
In the air-fuel ratio detection device disclosed in Japanese Patent No. 740, combustion light is taken out by an optical fiber embedded in a spark plug,
The air-fuel ratio is detected by photoelectrically converting the extracted combustion light.

【0003】[0003]

【発明が解決しようとする課題】ところで、特に希薄空
燃比で燃焼させる機関においては、点火栓近傍の空燃比
が点火限界を決定する大きな因子となるため、点火栓近
傍の局所空燃比を検出して、該空燃比を制御することが
望まれ、前記特開平1−247740号公報に開示され
る空燃比検出装置においても、点火栓に埋め込んだ光フ
ァイバーによって燃焼光を取り出すことで、点火栓近傍
の局所空燃比を検出させている。
By the way, particularly in an engine that burns with a lean air-fuel ratio, the air-fuel ratio near the spark plug is a major factor that determines the ignition limit, so the local air-fuel ratio near the spark plug is detected. Therefore, it is desired to control the air-fuel ratio, and even in the air-fuel ratio detecting device disclosed in the above-mentioned Japanese Patent Laid-Open No. 1-247740, the combustion light is taken out by the optical fiber embedded in the ignition plug, so that the vicinity of the ignition plug is detected. The local air-fuel ratio is detected.

【0004】しかしながら、点火栓近傍の空燃比は一定
ではなく、燃焼室内に形成されるガス流動に影響されて
逐次変化し、例えば空燃比変化のリーン側に落ち込んで
いるときに点火時期を迎えるような場合には、着火が不
安定になったり、失火が発生する惧れがある。従って、
点火限界を高めるためには、点火直前における空燃比を
検知する必要があるが、従来の燃焼光に基づく局所空燃
比の検出では、点火前の空燃比を検出することができな
いために、前述のようなガス流動に伴う空燃比の変動に
対応した高精度な空燃比制御が行えなず、高い着火性を
安定的に得ることが困難であるという問題があった。
However, the air-fuel ratio in the vicinity of the spark plug is not constant, but is changed by being influenced by the gas flow formed in the combustion chamber, and the ignition timing is reached when the air-fuel ratio falls to the lean side of the air-fuel ratio change, for example. In such a case, ignition may become unstable or misfire may occur. Therefore,
In order to increase the ignition limit, it is necessary to detect the air-fuel ratio immediately before ignition, but conventional local air-fuel ratio detection based on combustion light cannot detect the air-fuel ratio before ignition. There is a problem that it is not possible to perform highly accurate air-fuel ratio control corresponding to the change in air-fuel ratio due to such gas flow, and it is difficult to stably obtain high ignitability.

【0005】本発明は上記問題点に鑑みなされたもので
あり、点火前の点火栓近傍の局所空燃比を検出し、これ
に基づいて点火栓近傍の空燃比が最もリッチとなるタイ
ミングで点火時期を迎えることができるようにして、特
に希薄燃焼機関における点火性能を向上させることを目
的とする。
The present invention has been made in view of the above problems, and detects the local air-fuel ratio in the vicinity of the spark plug before ignition, and based on this, the ignition timing is the timing at which the air-fuel ratio in the vicinity of the spark plug becomes the richest. The present invention aims to improve the ignition performance especially in a lean burn engine by making it possible to meet the above conditions.

【0006】[0006]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の燃料噴射制御装置は、図1に示すように構成
される。図1において、透過光強度検出手段は、点火栓
近傍の燃焼室内に臨ませて発光側と受光側とからなる一
対の光学素子を所定間隙をもって対向配置し、光源で発
光した光を前記一対の光学素子を介して光電変換素子に
導く構成の手段である。
Therefore, a fuel injection control device for an internal combustion engine according to the present invention is constructed as shown in FIG. In FIG. 1, the transmitted light intensity detecting means faces a combustion chamber in the vicinity of the spark plug, and arranges a pair of optical elements consisting of a light emitting side and a light receiving side so as to face each other with a predetermined gap, and the light emitted from the light source is arranged to It is a means for guiding the photoelectric conversion element through the optical element.

【0007】また、筒内圧検出手段は機関の筒内圧を検
出し、空燃比演算手段は、透過光強度検出手段における
光電変換素子の出力と筒内圧検出手段で検出された筒内
圧とに基づいて点火栓近傍の空燃比を演算する。そし
て、噴射時期制御手段は、空燃比演算手段で演算される
空燃比に基づいて点火時期における点火栓近傍の空燃比
がより濃くなる方向に燃料噴射弁による噴射時期を制御
する。
Further, the in-cylinder pressure detecting means detects the in-cylinder pressure of the engine, and the air-fuel ratio calculating means detects the in-cylinder pressure in the in-cylinder pressure detecting means based on the output of the photoelectric conversion element in the transmitted light intensity detecting means. Calculate the air-fuel ratio near the spark plug. Then, the injection timing control means controls the injection timing by the fuel injection valve in a direction in which the air-fuel ratio near the spark plug at the ignition timing becomes thicker based on the air-fuel ratio calculated by the air-fuel ratio calculation means.

【0008】[0008]

【作用】かかる構成によると、透過光強度検出手段にお
いて、光源からの発光は、点火栓近傍の燃焼室内に臨む
一対の光学素子の間隙を通って光電変換素子に導かれる
構成であり、前記点火栓近傍の間隙を通るときに、かか
る空間に存在する燃料によって減衰されることになる。
According to this structure, in the transmitted light intensity detecting means, the light emitted from the light source is guided to the photoelectric conversion element through the gap between the pair of optical elements facing the combustion chamber near the ignition plug. As it passes through the gap near the plug, it will be damped by the fuel present in such space.

【0009】そして、前記減衰は、燃料濃度によって変
化し、また、燃料濃度によって変化するということは燃
焼室内の圧力(筒内圧)によっても変化することにな
る。そこで、前記間隙を通った透過光が入射する光電変
換素子の出力と筒内圧検出手段で検出された筒内圧とに
基づいて、筒内圧の要因を除外して点火栓近傍の燃料濃
度(空燃比)が検出できるようにした。
The attenuation changes depending on the fuel concentration, and the fact that it changes depending on the fuel concentration also changes depending on the pressure in the combustion chamber (cylinder pressure). Therefore, based on the output of the photoelectric conversion element on which the transmitted light passing through the gap is incident and the in-cylinder pressure detected by the in-cylinder pressure detecting means, the factor of the in-cylinder pressure is excluded and the fuel concentration (air-fuel ratio near the spark plug is eliminated. ) Can be detected.

【0010】ここで、前記空燃比検出は、燃焼室内の点
火栓近傍に存在する燃料による光の吸収を介して行われ
るものであり、点火前における点火栓近傍の空燃比を検
出することができる。そこで、かかる空燃比の検出結果
に基づいてガス流動に影響されて変動する空燃比がリッ
チピークとなるときに点火時期を迎えるように、噴射時
期を進・遅角補正するようにした。
Here, the air-fuel ratio detection is performed through the absorption of light by the fuel existing near the spark plug in the combustion chamber, and the air-fuel ratio near the spark plug before ignition can be detected. . Therefore, based on the detection result of the air-fuel ratio, the injection timing is advanced / retarded so that the ignition timing comes when the air-fuel ratio which is influenced by the gas flow and fluctuates has a rich peak.

【0011】[0011]

【実施例】以下に本発明の実施例を説明する。本実施例
のシステム構成を示す図2において、内燃機関1の吸気
ポート2には燃料噴射弁3が設けられており、図示しな
いエアクリーナ,スロットル弁を介して吸引される空気
に対して前記燃料噴射弁3から間欠的に燃料が噴射供給
されて混合気が形成される。前記燃料噴射弁3は後述す
るマイクロコンピュータを内蔵したコントロールユニッ
ト13から出力される噴射パルス信号に応じて開駆動され
る電磁式燃料噴射弁である。
EXAMPLES Examples of the present invention will be described below. In FIG. 2 showing the system configuration of the present embodiment, a fuel injection valve 3 is provided in an intake port 2 of an internal combustion engine 1, and the fuel injection is performed on the air sucked through an air cleaner and a throttle valve (not shown). Fuel is intermittently injected and supplied from the valve 3 to form an air-fuel mixture. The fuel injection valve 3 is an electromagnetic fuel injection valve that is driven to open in response to an injection pulse signal output from a control unit 13 having a microcomputer, which will be described later.

【0012】そして、前記混合気は、吸気弁4を介して
燃焼室5内に吸引され、点火栓6による火花点火によっ
て着火燃焼する。機関1からの排気は、図示しない排気
弁,触媒,マフラーを介して大気中に排出される。ここ
で、前記燃焼室5内の圧力(筒内圧)を検出する筒内圧
センサ(筒内圧検出手段)7が設けられている。
The air-fuel mixture is sucked into the combustion chamber 5 through the intake valve 4 and is ignited and burned by spark ignition by the spark plug 6. Exhaust gas from the engine 1 is discharged into the atmosphere via an exhaust valve, a catalyst, and a muffler (not shown). Here, an in-cylinder pressure sensor (in-cylinder pressure detecting means) 7 that detects the pressure (in-cylinder pressure) in the combustion chamber 5 is provided.

【0013】また、点火栓6には、燃焼室5内に光ビー
ムを導き、燃焼室5空間を通過させた光ビームを外部に
取り出すための一対の光学素子9,10が一体的に設けら
れている。前記点火栓6に一体的に設けられる光学素子
9,10は、図3及び図4に示すように、外部のレーザ源
(光源)8で発光したレーザ光を点火栓6の先端部の燃
焼室5内に臨む位置まで導き、その燃焼室5内に臨む先
端部に設けられた光学面9aによって他方の光学素子10
に向けてレーザ光を反射させる発光側の光学素子9と、
該光学素子9と所定間隙を介して対向配置され、前記光
学素子9の先端部の光学面9aで反射されたレーザ光を
入射し、該入射光を点火栓6の基端側に向けて反射させ
る光学面10aを燃焼室5内に臨む先端部に備え、前記光
学面10aで反射されたレーザ光を外部に導出する受光側
の光学素子10とからなる。
Further, the spark plug 6 is integrally provided with a pair of optical elements 9 and 10 for guiding the light beam into the combustion chamber 5 and taking out the light beam passing through the space of the combustion chamber 5 to the outside. ing. As shown in FIGS. 3 and 4, the optical elements 9 and 10 provided integrally with the spark plug 6 emit the laser light emitted from the external laser source (light source) 8 to the combustion chamber at the tip of the spark plug 6. 5 to a position facing the inside of the combustion chamber 5, and the optical surface 9a provided at the tip facing the inside of the combustion chamber 5 causes the other optical element 10
An optical element 9 on the light emitting side for reflecting the laser beam toward
The laser light reflected by the optical surface 9a at the tip of the optical element 9 is arranged to face the optical element 9 with a predetermined gap therebetween, and the incident light is reflected toward the base end side of the spark plug 6. An optical element 10 on the light-receiving side is provided with an optical surface 10a for allowing the optical surface 10a to face the inside of the combustion chamber 5 and guides the laser light reflected by the optical surface 10a to the outside.

【0014】即ち、前記一対の光学素子9,10は、その
先端がそれぞれ燃焼室5内に臨み、かかる先端部が所定
間隙を有して対向配置され、それぞれの先端部に設けら
れた光学面9a,10aによって、レーザ源8で発光した
レーザ光を光学素子9,10の間隙空間(燃焼室内の空
間)に透過させた後、かかる透過光を外部に取り出すも
のである。
That is, the tip of each of the pair of optical elements 9 and 10 faces the inside of the combustion chamber 5, and the tips are arranged so as to face each other with a predetermined gap, and the optical surfaces provided at the tips. The laser light emitted from the laser source 8 is transmitted to the gap space (the space inside the combustion chamber) between the optical elements 9 and 10 by 9a and 10a, and then the transmitted light is extracted to the outside.

【0015】前記光学素子10を介して燃焼室5内から外
部に取り出されたレーザ光は、光電変換素子11に入射
し、この光電変換素子11によって、レーザ光の透過光強
度が検出される構成となっている。ここで、前記光学素
子9,10は、点火栓6の中心電極6aを中心にして対向
配置されており、かかる構成によって、前記一対の光学
素子9,10の間隙は、点火栓6における中心電極6aと
接地電極6bとで挟まれる火花間隙を横切るようになっ
ている。従って、光学素子9から光学素子10に向けて燃
焼室空間を透過するレーザ光は、前記火花間隙を横切っ
て進むことになる。
The laser light extracted from the inside of the combustion chamber 5 through the optical element 10 is incident on the photoelectric conversion element 11, and the photoelectric conversion element 11 detects the transmitted light intensity of the laser light. Has become. Here, the optical elements 9 and 10 are arranged so as to face each other with the center electrode 6a of the spark plug 6 as the center, and with this configuration, the gap between the pair of optical elements 9 and 10 is the center electrode of the spark plug 6. It crosses the spark gap sandwiched between 6a and the ground electrode 6b. Therefore, the laser light passing through the combustion chamber space from the optical element 9 toward the optical element 10 travels across the spark gap.

【0016】尚、図2において、12は、レーザ源8が発
光したレーザ光を光学素子9側に反射させ、また、光学
素子10を介して取り出されたレーザ光を光電変換素子11
に向かって反射させるミラーやプリズムからなる光学部
品であり、上記のレーザ源8、光学素子9,10、光学部
品12、光電変換素子11によって本実施例の透過光強度検
出手段が構成される。
In FIG. 2, reference numeral 12 denotes the laser light emitted from the laser source 8 which is reflected by the optical element 9 side, and the laser light extracted through the optical element 10 is converted into a photoelectric conversion element 11.
The laser source 8, the optical elements 9 and 10, the optical component 12, and the photoelectric conversion element 11 constitute an transmitted light intensity detecting means of this embodiment.

【0017】前記光学素子9,10の材料としては、石英
やサファイヤなどを用いることができるが、耐熱,耐圧
を考慮すると、サファイヤを用いることが好ましい。更
に、光学素子9,10の配置によって決定される燃焼室5
内におけるレーザ光の透過空間は、点火栓6の火花間隙
の近傍であることが好ましいが、レーザ光の光路が火花
間隙を横切る光学素子の配置に限定するものではなく、
また、点火栓6と別体に光学素子9,10を設ける構成で
あっても良い。
Quartz, sapphire or the like can be used as the material of the optical elements 9 and 10, but sapphire is preferably used in consideration of heat resistance and pressure resistance. Furthermore, the combustion chamber 5 determined by the arrangement of the optical elements 9 and 10
It is preferable that the laser light transmission space inside the spark plug be near the spark gap of the spark plug 6, but the optical path of the laser light is not limited to the arrangement of the optical elements that cross the spark gap.
Alternatively, the optical elements 9 and 10 may be provided separately from the spark plug 6.

【0018】前記レーザ源8で発光させる光ビームとし
ては、使用するガソリン燃料が選択的に吸収する波長の
レーザ光を用いる。具体的には赤外光であり、本実施例
では、波長が赤外光領域に含まれる3.39μmのレーザ光
を用いている。機関1に使用されるガソリン燃料は、一
般的に、赤外光を選択的に吸収する性質があり、混合気
においては該混合気中におけるガソリン濃度に略比例し
て前記吸収量が増大する。即ち、入射光強度をIO 、ガ
ソリン濃度をC、吸収係数をKとすると、ガソリンによ
る赤外光の吸収量Iは、I=IO exp -KC として表すこ
とができる。
As the light beam emitted by the laser source 8, a laser beam having a wavelength which is selectively absorbed by the gasoline fuel used is used. Specifically, it is infrared light, and in this embodiment, laser light having a wavelength of 3.39 μm included in the infrared light region is used. The gasoline fuel used in the engine 1 generally has a property of selectively absorbing infrared light, and in the air-fuel mixture, the absorption amount increases substantially in proportion to the gasoline concentration in the air-fuel mixture. That is, when the incident light intensity is I O , the gasoline concentration is C, and the absorption coefficient is K, the absorption amount I of infrared light by gasoline can be expressed as I = I O exp -KC .

【0019】従って、混合気に対して所定強度の赤外光
を照射し、ガソリンによって赤外光がどの程度吸収され
たかを検出できれば、混合気中のガソリン濃度、換言す
れば、混合気の空燃比を検出できることになる。ここ
で、本実施例では、前記一対の光学素子9,10は、燃焼
室5内の空間を間隙として対向配置され、かかる間隙を
レーザ光が通過し、最終的に光電変換素子11に入射する
構成であり、然も、レーザ光は点火栓6の火花間隙を横
切って進むから、前記火花間隙部に存在する混合気中の
ガソリン濃度に見合う量だけレーザ光が吸収され、かか
る吸収によって減衰したレーザ光が光電変換素子11に入
射することになる。
Therefore, if it is possible to irradiate the air-fuel mixture with infrared light of a predetermined intensity and detect how much the infrared light is absorbed by the gasoline, the concentration of gasoline in the air-fuel mixture, in other words, the air-fuel ratio of the air-fuel mixture, can be detected. The fuel ratio can be detected. Here, in this embodiment, the pair of optical elements 9 and 10 are arranged so as to face each other with a space in the combustion chamber 5 as a gap, and the laser light passes through the gap and finally enters the photoelectric conversion element 11. Since the laser light travels across the spark gap of the spark plug 6, the laser light is absorbed by an amount commensurate with the gasoline concentration in the air-fuel mixture existing in the spark gap and is attenuated by the absorption. The laser light will enter the photoelectric conversion element 11.

【0020】また、レーザ光(赤外光)の吸収量がガソ
リン濃度に比例するということは、燃焼室内における圧
力(筒内圧)変化によっても吸収量が変化することにな
る。そこで、筒内圧によるキャリブレーション特性を予
め測定しておき(図5参照)、前記光電変換素子11の出
力と、筒内圧センサ7で検出された筒内圧とをパラメー
タとする空燃比の演算特性(変換マップ)を予め設定し
ておくことで、混合気が吸入される吸気行程から点火時
期まで間において、点火栓6の火花間隙周辺の空燃比を
演算できることになる(図6参照)。
Further, the fact that the absorption amount of laser light (infrared light) is proportional to the gasoline concentration means that the absorption amount also changes depending on the change in pressure (cylinder pressure) in the combustion chamber. Therefore, the calibration characteristic based on the in-cylinder pressure is measured in advance (see FIG. 5), and the calculation characteristic of the air-fuel ratio using the output of the photoelectric conversion element 11 and the in-cylinder pressure detected by the in-cylinder pressure sensor 7 as parameters ( By setting the conversion map) in advance, the air-fuel ratio around the spark gap of the spark plug 6 can be calculated from the intake stroke when the mixture is sucked to the ignition timing (see FIG. 6).

【0021】コントロールユニット13は、前記光電変換
素子11の出力信号及び筒内圧センサ7の検出信号を入力
し、図5に示すような特性に従って点火栓6の火花間隙
周辺の空燃比を演算する一方、該演算結果に基づいて燃
料噴射弁3の噴射時期を制御する。即ち、点火時期にお
ける点火栓近傍の空燃比は、点火限界を決定することに
なり、特に、着火性が悪化する希薄燃焼機関では重要な
要素となるが、燃焼室5内におけるガス流動の影響によ
って点火栓近傍の空燃比は一定せずに変動を生じる。こ
こで、前記空燃比変動のリッチピークのときに点火時期
になると、平均空燃比としてはリーン空燃比であっても
高い着火性能を得られることになるが、逆に、リーンピ
ークのときに点火時期になってしまうと、着火が不安定
になり失火が発生する惧れもある。
The control unit 13 inputs the output signal of the photoelectric conversion element 11 and the detection signal of the in-cylinder pressure sensor 7, and calculates the air-fuel ratio around the spark gap of the spark plug 6 according to the characteristics shown in FIG. The injection timing of the fuel injection valve 3 is controlled based on the calculation result. That is, the air-fuel ratio in the vicinity of the spark plug at the ignition timing determines the ignition limit, which is an important factor especially in a lean burn engine in which the ignitability deteriorates, but it is affected by the gas flow in the combustion chamber 5. The air-fuel ratio near the spark plug is not constant and fluctuates. Here, at the ignition timing at the rich peak of the air-fuel ratio fluctuation, a high ignition performance can be obtained even if the average air-fuel ratio is a lean air-fuel ratio, but conversely, at the lean peak, the ignition is performed. When the time comes, ignition may become unstable and misfire may occur.

【0022】一方、前記空燃比の変動は燃料噴射弁3に
よる噴射時期の変化によって位相が変化するから(図6
参照)、前記光電変換素子11の出力と筒内圧検出値を用
いて演算される点火前の点火栓6近傍の空燃比に基づき
噴射時期を進・遅角制御することで、空燃比変動のリッ
チピークのときに点火時期を迎えるように噴射時期を制
御することが可能になる。
On the other hand, the phase of the fluctuation of the air-fuel ratio changes with the change of the injection timing by the fuel injection valve 3 (FIG. 6).
(See), the advance / retard control of the injection timing is performed based on the air-fuel ratio in the vicinity of the spark plug 6 before ignition, which is calculated using the output of the photoelectric conversion element 11 and the in-cylinder pressure detection value. It becomes possible to control the injection timing so that the ignition timing is reached at the peak.

【0023】かかるコントロールユニット13による噴射
時期の進・遅角制御を、図7のフローチャートに従って
説明する。尚、本実施例において、空燃比演算手段及び
噴射時期制御手段としての機能は、前記図7のフローチ
ャートに示すように、コントロールユニット13がソフト
ウェア的に備えている。図7のフローチャートにおい
て、まず、S1では、運転条件に応じて予め設定されて
いる基本噴射タイミング(噴射開始クランク角又は噴射
終了クランク角)をマップから読み取る。
The advance / retard control of the injection timing by the control unit 13 will be described with reference to the flowchart of FIG. In the present embodiment, the functions of the air-fuel ratio calculation means and the injection timing control means are provided by the control unit 13 as software, as shown in the flowchart of FIG. In the flowchart of FIG. 7, first, in S1, the basic injection timing (injection start crank angle or injection end crank angle) preset according to the operating conditions is read from the map.

【0024】そして、S2では、かかる基本噴射タイミ
ングに応じた燃料噴射を行って、次のS3では、かかる
燃料噴射によって形成された混合気の点火時期における
空燃比を、前述のように光電変換素子11で検出される透
過光強度と筒内圧センサ7で検出される筒内圧とに基づ
いて演算する(図5参照)。S4では、前記S3で演算
された点火時期における点火栓6近傍の空燃比と、前回
の点火時期における空燃比とを比較し、前回に比べて点
火時期における空燃比がリッチ方向に変化しているか否
かを判別する。
Then, in S2, fuel injection is performed in accordance with the basic injection timing, and in the next S3, the air-fuel ratio at the ignition timing of the air-fuel mixture formed by the fuel injection is converted into the photoelectric conversion element as described above. Calculation is performed based on the transmitted light intensity detected at 11 and the in-cylinder pressure detected by the in-cylinder pressure sensor 7 (see FIG. 5). At S4, the air-fuel ratio in the vicinity of the spark plug 6 at the ignition timing calculated at S3 is compared with the air-fuel ratio at the previous ignition timing, and the air-fuel ratio at the ignition timing is changing in the rich direction compared to the previous time. Determine whether or not.

【0025】尚、S3からS4へ進んだ初回、即ち、基
本噴射タイミングで噴射させた場合には、例えばS4に
おいてリッチ変化していると判断させ、取敢えず後述す
る噴射タイミングの進角制御を行わせるようにする。点
火時期における空燃比がリッチ方向に変化しているとき
には、S5に進み、今回の点火時期で演算された空燃比
を前回空燃比として記憶させる。
When the fuel is injected for the first time from S3 to S4, that is, when the injection is performed at the basic injection timing, for example, it is determined that the rich change has been made at S4, and the advance timing control of the injection timing is described for the time being. To do. When the air-fuel ratio at the ignition timing is changing in the rich direction, the routine proceeds to S5, where the air-fuel ratio calculated at this ignition timing is stored as the previous air-fuel ratio.

【0026】次いで、S6では、前回の噴射タイミング
補正で噴射タイミングを進めたか否かを判別する。ここ
で、噴射タイミングを進めた結果、点火時期の空燃比が
リッチ方向に変化したと判別されるときには、更に、噴
射タイミングを進めることで、点火時期の空燃比がより
リッチ側に変化する可能性があるので、S7へ進んで、
噴射タイミングを所定微小角(例えば1°CA)だけ進
ませる噴射タイミングの補正を行う。そして、S8で
は、噴射タイミングを進める補正を行った来歴を記憶さ
せる。
Next, in S6, it is determined whether or not the injection timing was advanced by the previous injection timing correction. Here, when it is determined that the air-fuel ratio of the ignition timing has changed to the rich direction as a result of advancing the injection timing, the air-fuel ratio of the ignition timing may change to the rich side by further advancing the injection timing. There is, so proceed to S7,
The injection timing is advanced to advance the injection timing by a predetermined minute angle (for example, 1 ° CA). Then, in S8, the history of the correction for advancing the injection timing is stored.

【0027】一方、S4で、点火時期における空燃比が
前回に比べてリッチ方向に変化していないと判別された
ときには、S9へ進み、前回噴射タイミングを進める補
正を行ったかを判別する。噴射タイミングを進めた結
果、空燃比がリッチ方向に変化しなくなった場合には、
S10へ進み、逆に噴射タイミングを所定微小角度(例え
ば1°CA)だけ遅らせる補正を行い、次のS11では噴
射タイミングを遅らせる補正を行った来歴を記憶させ
る。
On the other hand, when it is determined in S4 that the air-fuel ratio at the ignition timing has not changed in the rich direction as compared with the previous time, the process proceeds to S9, and it is determined whether or not the previous correction of advancing the injection timing has been performed. As a result of advancing the injection timing, if the air-fuel ratio does not change in the rich direction,
Proceeding to S10, on the contrary, the injection timing is corrected by delaying it by a predetermined minute angle (for example, 1 ° CA), and in S11, the history of the correction of delaying the injection timing is stored.

【0028】また、S9で、噴射タイミングを遅らせた
結果、空燃比のリッチ方向への変化がなくなったと判別
された場合には、逆に、噴射タイミングを進めるべくS
7へ進む。即ち、例えば噴射タイミングを進めることに
よって点火時期における点火栓近傍の空燃比がリッチ方
向に変化する場合には、リッチ方向への変化が停止する
まで徐々に噴射タイミングを進めて行き、リッチ方向へ
の変化が停止すると今度は逆に遅らせることで、空燃比
変動のリッチピーク付近が点火時期に一致するように噴
射タイミングを制御するものである(図6参照)。
When it is determined in S9 that the change in the air-fuel ratio in the rich direction has disappeared as a result of delaying the injection timing, conversely, in order to advance the injection timing, S
Proceed to 7. That is, for example, when the air-fuel ratio near the spark plug at the ignition timing changes in the rich direction by advancing the injection timing, the injection timing is gradually advanced until the change in the rich direction stops and When the change is stopped, the injection timing is controlled so that it is delayed in the opposite direction, so that the vicinity of the rich peak of the air-fuel ratio fluctuation coincides with the ignition timing (see FIG. 6).

【0029】ここで、前述の構成により前記光電変換素
子11で検出される透過光強度は、一対の光学素子9,10
の間隙における空燃比状態のみに影響されるから、点火
栓6近傍の局所的な空燃比を点火前に他の燃焼室内領域
での空燃比に影響されずに、高精度に検出できる。そし
て、かかる空燃比の検出結果に基づき、ガス流動の影響
で点火前に変動する空燃比のリッチピーク時期に点火時
期を迎えられるように、噴射時期が制御されるから、特
に希薄燃焼機関において、運転条件や機関ばらつきなど
に影響されずに常に高い着火性を得ることが可能とな
る。
Here, the transmitted light intensity detected by the photoelectric conversion element 11 having the above-described structure is determined by the pair of optical elements 9 and 10.
Since it is affected only by the air-fuel ratio state in the gap of 1, the local air-fuel ratio in the vicinity of the spark plug 6 can be detected with high accuracy without being affected by the air-fuel ratio in other combustion chamber regions before ignition. Then, based on the detection result of the air-fuel ratio, so that the ignition timing is reached at the rich peak timing of the air-fuel ratio that changes before ignition due to the influence of gas flow, the injection timing is controlled, especially in a lean burn engine, High ignitability can always be obtained without being affected by operating conditions and engine variations.

【0030】尚、上記のような噴射タイミングの進・遅
角補正が収束したときに、そのときの噴射タイミングを
運転条件別に学習記憶させるようにしても良い。また、
基本噴射タイミングに対して噴射時期を変更できる範囲
を予め設定しておき、該制御可能範囲を越える場合に
は、制御可能範囲内で最もリッチ空燃比で点火時期を迎
えられる噴射時期に制御させるようにすると良い。
When the advance / retard correction of the injection timing converges as described above, the injection timing at that time may be learned and stored for each operating condition. Also,
A range in which the injection timing can be changed with respect to the basic injection timing is set in advance, and if the controllable range is exceeded, the injection timing is controlled to reach the ignition timing at the richest air-fuel ratio within the controllable range. It is good to

【0031】更に、噴射タイミングをステップ的に変化
させる角度は、固定値としても良いが、噴射タイミング
制御に伴う空燃比の変化幅に応じて変化させる構成とし
ても良い。
Further, the angle at which the injection timing is changed stepwise may be a fixed value, or may be changed according to the change width of the air-fuel ratio accompanying the injection timing control.

【0032】[0032]

【発明の効果】以上説明したように本発明によると、点
火前における点火栓近傍の空燃比を検出し、該検出結果
に基づいて燃料噴射弁による噴射時期を制御することに
より、空燃比変動のリッチピーク時期に点火時期を迎え
ることができるように燃料噴射を行わせることができ、
これにより、常に高い着火安定性を得ることができるよ
うになるという効果がある。
As described above, according to the present invention, the air-fuel ratio in the vicinity of the spark plug before ignition is detected, and the injection timing by the fuel injection valve is controlled based on the detection result, so that the fluctuation of the air-fuel ratio can be reduced. Fuel injection can be performed so that the ignition timing can be reached at the rich peak timing,
As a result, there is an effect that high ignition stability can always be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の一実施例を示すシステム概略図。FIG. 2 is a system schematic diagram showing an embodiment of the present invention.

【図3】同上実施例における点火栓先端部の側面拡大
図。
FIG. 3 is an enlarged side view of the spark plug tip portion according to the embodiment.

【図4】同上実施例における点火栓先端部の底面拡大
図。
FIG. 4 is an enlarged bottom view of a spark plug tip portion according to the embodiment.

【図5】透過光強度と筒内圧とに対応する空燃比を示す
線図。
FIG. 5 is a diagram showing an air-fuel ratio corresponding to transmitted light intensity and in-cylinder pressure.

【図6】点火前の空燃比変動の様子を示す線図。FIG. 6 is a diagram showing how the air-fuel ratio changes before ignition.

【図7】同上実施例における噴射タイミング制御を示す
フローチャート。
FIG. 7 is a flowchart showing injection timing control in the embodiment.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 吸気ポート 3 燃料噴射弁 4 吸気弁 5 燃焼室 6 点火栓 6a 中心電極 6b 接地電極 7 筒内圧センサ 8 レーザ源 9,10 光学素子 11 光電変換素子 13 コントロールユニット 1 Internal Combustion Engine 2 Intake Port 3 Fuel Injection Valve 4 Intake Valve 5 Combustion Chamber 6 Spark Plug 6a Center Electrode 6b Ground Electrode 7 Cylinder Pressure Sensor 8 Laser Source 9, 10 Optical Element 11 Photoelectric Conversion Element 13 Control Unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 368 S 7536−3G G01N 21/59 Z 7370−2J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 45/00 368 S 7536-3G G01N 21/59 Z 7370-2J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】点火栓近傍の燃焼室内に臨ませて発光側と
受光側とからなる一対の光学素子を所定間隙をもって対
向配置し、光源で発光した光を前記一対の光学素子を介
して光電変換素子に導く透過光強度検出手段と、 機関の筒内圧を検出する筒内圧検出手段と、 前記透過光強度検出手段における前記光電変換素子の出
力と前記筒内圧検出手段で検出された筒内圧とに基づい
て点火栓近傍の空燃比を演算する空燃比演算手段と、 該空燃比演算手段で演算される空燃比に基づいて点火時
期における点火栓近傍の空燃比がより濃くなる方向に燃
料噴射弁による噴射時期を制御する噴射時期制御手段
と、 を含んで構成されたことを特徴とする内燃機関の燃料噴
射制御装置。
1. A pair of optical elements consisting of a light emitting side and a light receiving side are arranged facing each other with a predetermined gap so as to face a combustion chamber near the spark plug, and light emitted from a light source is photoelectrically transmitted through the pair of optical elements. Transmitted light intensity detection means for guiding to the conversion element, in-cylinder pressure detection means for detecting in-cylinder pressure of the engine, output of the photoelectric conversion element in the transmitted light intensity detection means, and in-cylinder pressure detected by the in-cylinder pressure detection means Air-fuel ratio calculating means for calculating the air-fuel ratio near the spark plug based on the above, and a fuel injection valve for increasing the air-fuel ratio near the spark plug at the ignition timing based on the air-fuel ratio calculated by the air-fuel ratio calculating means. And a fuel injection control device for an internal combustion engine, comprising:
JP8091893A 1993-04-07 1993-04-07 Fuel injection control device for internal combustion engine Expired - Lifetime JP2921325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8091893A JP2921325B2 (en) 1993-04-07 1993-04-07 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8091893A JP2921325B2 (en) 1993-04-07 1993-04-07 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06288283A true JPH06288283A (en) 1994-10-11
JP2921325B2 JP2921325B2 (en) 1999-07-19

Family

ID=13731795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8091893A Expired - Lifetime JP2921325B2 (en) 1993-04-07 1993-04-07 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2921325B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145268A (en) * 2004-11-17 2006-06-08 Yamaha Motor Co Ltd Air/fuel ratio detector, engine equipped therewith and vehicle equipped with them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145268A (en) * 2004-11-17 2006-06-08 Yamaha Motor Co Ltd Air/fuel ratio detector, engine equipped therewith and vehicle equipped with them

Also Published As

Publication number Publication date
JP2921325B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
USRE34234E (en) Control apparatus for internal combustion engines
US5076237A (en) Means and method for measuring and controlling smoke from an internal combustion engine
US5050556A (en) Control system for an internal combustion engine
CA1338205C (en) Method of operating an engine and measuring certain operating parameters
US4930478A (en) Method of operating an engine
US5113828A (en) Method and apparatus for determining combustion conditions and for operating an engine
KR890017448A (en) Adaptive control system for internal combustion engine and operating method of internal combustion engine
US20020196443A1 (en) Apparatus for and method of measuring fuel density in an engine
JP2921325B2 (en) Fuel injection control device for internal combustion engine
JP2917737B2 (en) Direct injection spark ignition engine
JP3603341B2 (en) In-cylinder state detection device for internal combustion engine
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2932887B2 (en) Air-fuel ratio detection device for internal combustion engine
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
JPH07180645A (en) Spark-ignition engine and ignition timing optimum control method thereof
JP2005233694A (en) Gas concentration detector of internal combustion engine
JPH0742592A (en) Fuel injection quantity control device
JPH048285Y2 (en)
JP2950107B2 (en) Control device for spark ignition engine
JP4274966B2 (en) Control device for internal combustion engine
JP2002340800A (en) Apparatus for measuring fuel concentration of engine
JP2003014640A (en) Fuel concentration measuring apparatus of engine
JPH01305342A (en) Measuring device for air fuel ratio of engine
JP2021124071A (en) Control device of internal combustion engine
JPH11229949A (en) Fuel concentration detector for internal combustion engine