JPH06285496A - Hollow fiber membrane separation biological treatment and device for organic drainage - Google Patents

Hollow fiber membrane separation biological treatment and device for organic drainage

Info

Publication number
JPH06285496A
JPH06285496A JP5103751A JP10375193A JPH06285496A JP H06285496 A JPH06285496 A JP H06285496A JP 5103751 A JP5103751 A JP 5103751A JP 10375193 A JP10375193 A JP 10375193A JP H06285496 A JPH06285496 A JP H06285496A
Authority
JP
Japan
Prior art keywords
hollow fiber
tank
aeration tank
fiber membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5103751A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP5103751A priority Critical patent/JPH06285496A/en
Publication of JPH06285496A publication Critical patent/JPH06285496A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To prevent the adhesion and solidification and press densification of sludge to membrane, keep the surface clean at all times and eliminate the necessity of maintenance work by coexisting biological granular solids in an aeration tank, keeping the solids in the suspension flowing state by aeration and discharing treated water through a hollow fiber membrane. CONSTITUTION:In the hollow fiber membrane separation biological treatment method, urethane foam square grains A, the gravity of which is almost equal to that of water, are fed into an aeration tank 1, and microbes such as BOD utilized bacteria are carried on microbe carriers composed of the grains A. Also water to be treated in the tank 1 is disturbed by diffused air exhausted from an air blower 7 through an air diffusion pipe 6, and the grains A are suspension flowed by the turbulence generated by the diffused air. A membrane module 2 fitted with hollow fiber membrane is immersed in the tank 1, and the water treated biologically in the tank 1 is sucked by a pump 4, passed through the membrane module 2, filtered by the hollow fiber membrane fitted thereon and flowed out of a treated water outflow pipe 3 in the form of cleaing treated water 5 completely free from SS.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水など各種有機性汚
水を微生物と中空糸膜分離によって高度に浄化する方法
および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for highly purifying various organic wastewater such as sewage by separating microorganisms and hollow fiber membranes.

【0002】[0002]

【従来の技術】従来より活性汚泥の曝気槽内に中空糸膜
の膜分離モジュールを浸漬し、浮遊微生物(活性汚泥フ
ロック)によってBODを除去しつつ、膜によって微生
物その他のSSを完全にろ過分離し、清澄処理水を得る
技術が公知である。しかし本発明者が、この従来技術に
よる下水など有機性汚水の処理を行ったところ、中空糸
膜の表面または膜の束の間に活性汚泥が強く付着し、付
着した汚泥が脱水されるため、ケーキ状となってますま
す強固にこびりつくという重大な欠点があることが認め
られた。この現象は、活性汚泥のMLSS濃度が増加す
るほど顕著になることもわかった。こうなってしまうと
膜のろ過抵抗が急増し、運転不能になる。しかし曝気槽
内に浸漬したまま膜をクリーニングすることは不可能で
あり、膜モジュールを外に取り出して、高圧スプレー水
を噴射しながら、膜に付着した汚泥を除去しなければな
らない。この作業は極めて面倒な作業であり、膜モジュ
ールが多数ある場合などは数日がかりの大作業となる。
実際上、このようなことは不可能である。
2. Description of the Related Art Conventionally, a hollow fiber membrane membrane separation module is immersed in an aeration tank for activated sludge to remove BOD by suspended microorganisms (activated sludge flocs), and microorganisms and other SS are completely filtered and separated by the membrane. However, a technique for obtaining clarified treated water is known. However, when the present inventor has treated organic sewage such as sewage according to this conventional technique, activated sludge strongly adheres to the surface of the hollow fiber membrane or between the bundles of membranes, and the attached sludge is dehydrated. It has been recognized that there is a serious drawback of sticking more and more. It was also found that this phenomenon becomes more remarkable as the MLSS concentration of the activated sludge increases. If this happens, the filtration resistance of the membrane will increase rapidly and operation will be impossible. However, it is impossible to clean the membrane while it is immersed in the aeration tank, and the membrane module must be taken out and the sludge attached to the membrane must be removed while jetting high-pressure spray water. This work is extremely troublesome, and takes a few days when there are many membrane modules.
In practice, this is not possible.

【0003】[0003]

【発明が解決しようとする課題】本発明者は、従来技術
により曝気槽内の有機性汚水中に含まれるBODなどを
生物処理により除去しつつ、分離膜によって浮遊活性汚
泥などをろ過分離し、清澄処理水を得る処理を実施し、
問題点の生じる原因を詳しく検討した結果から次の知見
を得た。 1)曝気槽内の浮遊活性汚泥濃度が高濃度になるほど、
膜への汚泥の付着、圧密化が起き易い。 2)曝気槽内の浮遊活性汚泥濃度が数百ミリグラム/リ
ットル以下ならば分離膜への汚泥の付着は著しく少なく
なる。 本発明は前記従来装置の重大欠点を完全に解決し、膜の
取り出し、清掃作業を不要にできる画期的技術を提供す
るものである。具体的には、膜への汚泥の付着、固着圧
密化を防止し、常に膜表面を清浄に保てる新技術を確立
し、メンテナンス作業の不要化を図るものである。
DISCLOSURE OF THE INVENTION The inventor of the present invention removes BOD and the like contained in organic wastewater in an aeration tank by biological treatment according to the prior art, and filters and separates suspended activated sludge with a separation membrane, Perform processing to obtain clarified treated water,
The following findings were obtained from the results of detailed examination of the causes of problems. 1) The higher the concentration of suspended activated sludge in the aeration tank,
Sludge is likely to adhere to the membrane and become compacted. 2) If the concentration of suspended activated sludge in the aeration tank is several hundred milligrams / liter or less, the adhesion of sludge to the separation membrane will be significantly reduced. The present invention completely solves the serious drawbacks of the conventional device and provides an epoch-making technique which makes it unnecessary to take out and clean the membrane. Specifically, it aims to eliminate the need for maintenance work by preventing sludge from adhering to the membrane and fixing and consolidating the membrane to establish a new technology that keeps the membrane surface clean.

【0004】[0004]

【課題を解決するための手段】本発明は、上記新知見に
次の新たな着想を統合して完成されたものである。すな
わち、(1)有機性排水を沈殿槽に導いて、汚泥などを
沈降により固液分離せしめた後、中空糸膜を浸漬した曝
気槽内に供給して、生物処理ならびに膜分離しつつ、該
曝気槽内の液を前記沈降分離工程に還流すると共に、前
記曝気槽内に生物付着粒状固体を共存させ、曝気によっ
て該粒状固体を懸濁流動状態に置き、前記中空糸膜を通
して処理水を取り出すことを特徴とする中空糸膜分離生
物処理方法。および、(2)有機性排水の沈澱槽と曝気
槽を有し、該沈澱槽処理水を前記曝気槽に導く配管、お
よび前記曝気槽内の水を前記沈澱槽に返送する配管を有
すると共に、前記曝気槽には曝気手段の他曝気槽内の水
をろ過する中空糸膜固液分離装置を配備し、さらに生物
付着粒状固体を前記曝気槽内水中に浮遊共存させたこと
を特徴とする中空糸膜分離生物処理装置である。
The present invention has been completed by integrating the following new ideas into the above new knowledge. That is, (1) the organic waste water is introduced into a settling tank, sludge and the like are subjected to solid-liquid separation by settling, and then supplied into the aeration tank in which the hollow fiber membrane is immersed for biological treatment and membrane separation. The liquid in the aeration tank is refluxed to the sedimentation separation step, the bioadhesive particulate solid is allowed to coexist in the aeration tank, the particulate solid is placed in a suspended fluidized state by aeration, and treated water is taken out through the hollow fiber membrane. A method for biological treatment of hollow fiber membrane separation, which is characterized in that: And (2) a settling tank for organic wastewater and an aeration tank, which has a pipe for guiding the treated water in the precipitation tank to the aeration tank and a pipe for returning the water in the aeration tank to the precipitation tank, In the aeration tank, a hollow fiber membrane solid-liquid separator for filtering water in the aeration tank is provided in addition to the aeration means, and further, biologically attached particulate solids are allowed to float and coexist in the water in the aeration tank. This is a biotreatment device for separating a thread membrane.

【0005】中空糸膜を装填した膜分離モジュールを浸
漬させた曝気槽内に、流動し易い微生物固定化担体粒子
を懸濁流動させて処理を行い、槽内の微生物濃度を高く
維持しつつ、曝気槽内液を前段の沈殿槽に循環させるこ
とによって、浮遊微生物を沈降分離し、浮遊状の微生物
(担体に付着していない微生物)濃度を数百ミリグラム
/リットル以下に維持でき、しかも微生物固定化担体粒
子が中空糸膜の表面と接触する時に、膜の表面をクリー
ニングするという重要な効果が得られた。この結果、膜
に活性汚泥が付着圧密化することがなくなり、膜を槽外
に取り出して清掃するという作業が要らなくなることが
判明した。
[0005] In the aeration tank in which the membrane separation module loaded with the hollow fiber membrane is immersed, the easily-movable microbial-immobilized carrier particles are suspended and processed for treatment to maintain a high microbial concentration in the tank. By circulating the liquid in the aeration tank to the previous settling tank, floating microorganisms can be settled and separated, and the concentration of floating microorganisms (microorganisms not attached to the carrier) can be maintained at several hundred milligrams / liter or less, and microorganisms can be fixed. When the modified carrier particles come into contact with the surface of the hollow fiber membrane, the important effect of cleaning the surface of the membrane was obtained. As a result, it was found that the activated sludge did not adhere to and consolidate on the membrane, and the work of taking the membrane out of the tank and cleaning it became unnecessary.

【0006】微生物固定化担体粒子としては、軽く、流
動し易いもの、微生物固定化能力が大きいこと、膜と接
触するときの膜の清掃作用が大きいものが好適であり、
これらの条件を満足する粒状物としては、プラスチック
担体や、軽量のゼオライトなど鉱物、軽量骨材などの無
機多孔性担体や、紐(繊維)状物の短束状物または塊状
物など、あるいはゲル包括微生物担体その他種々公知の
担体が使えるが、特に目の大きな立体網目構造の粒状ろ
材が好適な担体粒状物である。
As the microorganism-immobilized carrier particles, those which are light and easy to flow, have a large ability to immobilize microorganisms, and have a large cleaning effect on the membrane when contacting with the membrane are preferable.
Granules satisfying these conditions include plastic carriers, minerals such as lightweight zeolite, inorganic porous carriers such as lightweight aggregate, short bundles or agglomerates of strings (fibers), or gels. Although various well-known carriers can be used as the comprehensive microbial carrier, a granular filter medium having a three-dimensional network structure having a particularly large mesh is a preferable carrier granular material.

【0007】上記立体的網目状粒状体ろ材は、表面から
内部にかけて連続した穴を持つように形成され、公知の
発泡法等により製造できる。また、粒状体の素材として
は、上記性質を有するものであるならば特に制限され
ず、有機高分子、無機化合物等公知のものを使用できる
が、中でも素材自体に適度な弾性と強度とを有する素材
が好ましく、特にウレタン樹脂等が好ましい。例えば、
ポリウレタンフォーム等の弾性多孔性粒状物を、ウレタ
ン樹脂等のプラスチックスを連続気泡を造る発泡法で発
泡して作製して、そのまま使用するか所望の形状、サイ
ズに切断して使用する。
The three-dimensional mesh-like granular filter medium is formed so as to have continuous holes from the surface to the inside, and can be manufactured by a known foaming method or the like. The material of the granular material is not particularly limited as long as it has the above properties, and known materials such as organic polymers and inorganic compounds can be used, but among them, the material itself has appropriate elasticity and strength. A material is preferable, and a urethane resin is particularly preferable. For example,
An elastic porous granular material such as polyurethane foam is prepared by foaming plastics such as urethane resin by a foaming method for forming open cells, and is used as it is or cut into a desired shape and size for use.

【0008】その形状は角形、球状、その他種々の形状
がとれるが、角形が好ましい。 特に形状が角状で、粒
径が10×10×10mm位のサイコロ状あるいは10
×20×20mmの直方体、10×30×30mmの直
方体などが好適である。 粒状物の粒径があまり小粒径
であると、分離膜表面の清掃力が小さくなり、あまり大
粒径であると微生物の固定化量が少なくなり、粒状物内
部が腐敗し易いので好ましくない。その素材の比重は、
通常0.9〜1.2程度が好ましい。また空隙率は、9
0%以上が好ましい。気孔径、即ち、孔径は、0.1〜
6mm、好ましくは2〜4mmの範囲から選択すること
が望ましい。また、1cm長さ当たりの孔の数は、5〜
20個が好ましい。
The shape can be square, spherical, and various other shapes, but the square is preferable. In particular, the shape is angular, and the particle size is 10 × 10 × 10 mm or a dice shape or 10
A rectangular parallelepiped of × 20 × 20 mm, a rectangular parallelepiped of 10 × 30 × 30 mm, and the like are preferable. If the particle size of the granules is too small, the cleaning ability of the surface of the separation membrane will be small, and if the particle size is too large, the amount of microorganisms immobilized will be small, and the inside of the granules will easily decompose, which is not preferable. . The specific gravity of the material is
Usually, about 0.9 to 1.2 is preferable. The porosity is 9
0% or more is preferable. The pore size, that is, the pore size is 0.1 to
It is desirable to select from the range of 6 mm, preferably 2 to 4 mm. The number of holes per 1 cm length is 5 to
20 is preferable.

【0009】曝気槽内に投入する量としては、ポリウレ
タンフォーム製の粒径10×20×20mmの直方体粒
状物を使用する場合、曝気槽1m3 あたり20〜30V
/V%が適当であり、あまりぎっしりと投入しすぎると
担体が流動し難くなり、本発明の目的を達成できない。
また、少なすぎると微生物濃度を高く保てない。本発明
によって処理を続けると、微生物が繁殖し、その一部は
微生物固定化担体に保持され、一部は浮遊微生物となっ
て曝気槽内を浮遊するがこの浮遊微生物は前段の沈殿槽
に供給されて沈降分離される。従って、処理を長時間続
けても、曝気槽内の浮遊微生物濃度が増加しないので、
中空糸膜への汚泥固着トラブルが発生しない。
As the amount to be charged into the aeration tank, when using a rectangular parallelepiped granular material made of polyurethane foam and having a particle size of 10 × 20 × 20 mm, 20 to 30 V per 1 m 3 of the aeration tank is used.
/ V% is appropriate, and if it is charged too much, the carrier becomes difficult to flow and the object of the present invention cannot be achieved.
On the other hand, if the amount is too small, the microbial concentration cannot be kept high. When the treatment is continued according to the present invention, microorganisms propagate, some of which are retained by the microorganism-immobilized carrier, and some of them become suspended microorganisms and float in the aeration tank. These suspended microorganisms are supplied to the settling tank in the previous stage. It is separated by sedimentation. Therefore, even if the treatment is continued for a long time, the concentration of suspended microorganisms in the aeration tank does not increase,
No trouble of sticking sludge to the hollow fiber membrane.

【0010】[0010]

【実施例】次に本発明の代表的実施例を図1に基づいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a typical embodiment of the present invention will be described with reference to FIG.

【0011】(実施例1)以下に本発明の脱リン材の製
造方法を詳しく説明する。1は本発明の曝気槽であり、
曝気槽1内には、比重が水にほぼ等しい図2に示すウレ
タンフォーム角状粒状物Aが投入されており、これら粒
状物Aからなる微生物担体にはBODを資化するBOD
資化菌などの微生物が保持されている。空気源である空
気ブロワー7から散気管6を経て曝気槽1内に吐出され
る散気空気によって槽1内の被処理水は攪乱されてい
る。上記微生物を保持しているウレタンフォーム角状粒
状物Aは、上記散気空気が引き起こす乱流によって懸濁
流動している。また、曝気槽1内には中空糸膜を装填し
た膜モジュール2が浸漬されており、曝気槽1内で生物
学的に処理された処理水はポンプ4によって吸引されて
膜モジュール2を通り、膜モジュール2に装填した膜に
よってろ過されて処理水流出管3を通り、SSゼロの清
澄処理水5となって、系外に流出して行く。
(Example 1) The method for producing the dephosphorizing material of the present invention will be described in detail below. 1 is the aeration tank of the present invention,
In the aeration tank 1, the urethane foam horny granular material A shown in FIG. 2 having a specific gravity almost equal to that of water is charged, and the microbial carrier composed of these granular material A is a BOD that assimilates BOD.
Microbes such as assimilating bacteria are retained. The water to be treated in the tank 1 is disturbed by the diffused air discharged from the air blower 7, which is an air source, into the aeration tank 1 through the air diffuser 6. The urethane foam horny granular material A holding the microorganisms is suspended and flows by the turbulent flow caused by the diffused air. In addition, the membrane module 2 loaded with the hollow fiber membrane is immersed in the aeration tank 1, and the treated water biologically treated in the aeration tank 1 is sucked by the pump 4 and passes through the membrane module 2, It is filtered by the membrane loaded in the membrane module 2 and passes through the treated water outflow pipe 3 to become the clarified treated water 5 of SS zero and flows out of the system.

【0012】図1にBで示したものは、ポリウレタンフ
ォーム角状粒状物Aからなる担体に付着していない曝気
槽1内の被処理水中に浮遊している浮遊微生物である。
これら浮遊微生物Bは還流ポンプ10によって被処理水
と共に還流管9を通って沈殿槽11に還流される。また
この沈殿槽11には外部から下水など原水が原水流入管
8を通って流入する。上記還流ポンプ10によって曝気
槽1内の被処理水は浮遊微生物Bを伴って沈殿槽11に
還流するが、その際生物処理水中に懸濁流動している粒
状物Aが流出しないように目の大きいネット14が排出
管9の入口に張設してある。このネットは多孔板やスリ
ットなど通水性のものであれば何でも良い。また図1に
おいて、12は沈殿槽11の底部に沈殿した沈殿汚泥で
あり、13は沈殿汚泥12を排出する排泥管である。
What is shown by B in FIG. 1 is a floating microorganism floating in the water to be treated in the aeration tank 1 which is not attached to the carrier made of the polyurethane foam horny granular material A.
These floating microorganisms B are refluxed by the reflux pump 10 to the settling tank 11 through the reflux pipe 9 together with the water to be treated. Raw water such as sewage flows into the settling tank 11 from the outside through the raw water inflow pipe 8. By the reflux pump 10, the water to be treated in the aeration tank 1 is refluxed to the sedimentation tank 11 together with the suspended microorganisms B, but at this time, the particulate matter A suspended and flowing in the biologically treated water is prevented from flowing out. A large net 14 is stretched over the inlet of the discharge pipe 9. This net may be any perforated plate or slit as long as it is water permeable. Further, in FIG. 1, 12 is a settled sludge settled at the bottom of the settling tank 11, and 13 is a sludge pipe for discharging the settled sludge 12.

【0013】下水などの原水を本発明の方法で処理を行
った結果、ポリウレタンフォーム角状粒状物Aには15
000〜20000mg/リットルもの高濃度の微生物
が保持され、浮遊微生物を数百ミリグラム/リットルの
濃度と低く見積もっても、極めて高度に原水が浄化され
ることが認められる。本発明の生物処理装置は1年間連
続運転しても、汚泥が中空糸モジュール2に装填した膜
の表面に固着したり、汚泥が中空糸の束に食い込んでろ
過抵抗を急上昇させたりするトラブルは発生しなかっ
た。また、本発明の曝気槽1での生物処理工程では原水
中に毛髪、ビニール片などの夾雑物が含まれていると、
これらが粒状物Aや中空糸モジュール2に絡みつきトラ
ブルとなるが、本発明では、予め沈殿槽11で夾雑物を
除去できるのでこのようなトラブルを防止できる。
As a result of treating raw water such as sewage by the method of the present invention, 15
It is recognized that microorganisms having a high concentration of 000 to 20000 mg / liter are retained, and even if the concentration of suspended microorganisms is estimated as low as several hundred milligrams / liter, the raw water is highly purified. Even if the biological treatment apparatus of the present invention is continuously operated for one year, there is no problem that sludge sticks to the surface of the membrane loaded in the hollow fiber module 2 or sludge bites into the bundle of hollow fibers to rapidly increase the filtration resistance. Did not occur. Further, in the biological treatment process in the aeration tank 1 of the present invention, if raw water contains impurities such as hair and vinyl pieces,
These become entangled troubles with the granular material A and the hollow fiber module 2, but in the present invention, since the contaminants can be removed in advance in the settling tank 11, such troubles can be prevented.

【0014】(比較例1)比較例として、生物処理槽1
中にポリウレタンフォーム角状粒状物Aからなる微生物
担体を投入せず、また曝気槽内の被処理水を還流させる
ことなく、曝気槽内の浮遊微生物の濃度を18000m
g/リットルに維持して原水の生物学的処理を行ったと
ころ、中空糸膜の表面に汚泥が固着して、ほぼ15〜2
0日に1回の頻度で中空糸膜のろ過抵抗が急上昇し、そ
の度に中空糸モジュール2を取り外し人手で中空糸膜の
糸を一本一本ほぐしながら中空糸膜に付着・固着した汚
泥を洗浄しなければならなかった。
Comparative Example 1 As a comparative example, the biological treatment tank 1
The concentration of suspended microorganisms in the aeration tank was 18,000 m without introducing a microbial carrier consisting of the polyurethane foam horny granular material A and without causing the treated water in the aeration tank to recirculate.
When biological treatment of raw water was carried out while maintaining g / l, sludge adhered to the surface of the hollow fiber membrane, resulting in about 15 to 2
The filtration resistance of the hollow fiber membrane increases sharply once a day, and each time the hollow fiber module 2 is removed, the sludge adhered and fixed to the hollow fiber membrane while manually loosening the hollow fiber membranes one by one. Had to wash.

【0015】[0015]

【発明の効果】本発明の生物処理装置とそれを使用した
生物処理方法の実施により、以下に示す極めて大きな効
果が得られる。 中空糸膜の表面などに微生物汚泥が固着することがな
いので、中空糸モジュールのろ過抵抗を低く保つことが
でき、中空糸膜を取り外して洗浄する必要がない。従っ
て、著しく生物処理装置のメンテナンスが容易である。 微生物濃度を高めても中空糸膜への微生物汚泥が固着
を防ぐことができるので、生物反応速度を大きくでき、
生物処理装置をコンパクト化できる。
By implementing the biological treatment apparatus of the present invention and the biological treatment method using the same, the following great effects can be obtained. Since the microbial sludge does not adhere to the surface of the hollow fiber membrane, the filtration resistance of the hollow fiber module can be kept low, and it is not necessary to remove and wash the hollow fiber membrane. Therefore, maintenance of the biological treatment device is extremely easy. Since the microbial sludge can be prevented from sticking to the hollow fiber membrane even if the microbial concentration is increased, the biological reaction rate can be increased,
The biological treatment device can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物処理装置の1例を示す模式図。FIG. 1 is a schematic diagram showing an example of a biological treatment apparatus of the present invention.

【図2】本発明の生物処理に使用する粒状微生物担体の
1例を示す斜視図。
FIG. 2 is a perspective view showing an example of a granular microbial carrier used in the biological treatment of the present invention.

【符号の説明】[Explanation of symbols]

1 曝気槽 2 中空糸膜モジュール 3 処理水流出管 4 ポンプ 5 処理水 6 散気管 7 空気源(ブロワー) 8 原水供給管 9 被処理水還流管 10 還流ポンプ 11 沈殿槽 12 沈殿汚泥 13 排泥管 14 ネット A ウレタンフォーム角状粒状物 B 浮遊微生物 1 aeration tank 2 hollow fiber membrane module 3 treated water outflow pipe 4 pump 5 treated water 6 diffuser pipe 7 air source (blower) 8 raw water supply pipe 9 treated water reflux pipe 10 reflux pump 11 sedimentation tank 12 sedimentation sludge 13 drainage pipe 14 Net A Urethane foam Horny granular material B Suspended microorganisms

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機性排水を沈降により固液分離せしめ
た後、中空糸膜を浸漬した曝気槽内に供給して生物処理
ならびに膜分離しつつ、該曝気槽内の液を前記沈降分離
工程に還流すると共に、前記曝気槽内に生物付着粒状固
体を共存させ、曝気によって該粒状固体を懸濁流動状態
に置き、前記中空糸膜を通して処理水を取り出すことを
特徴とする中空糸膜分離生物処理方法。
1. An organic wastewater is subjected to solid-liquid separation by sedimentation, and then fed into an aeration tank in which a hollow fiber membrane is immersed for biological treatment and membrane separation, while the liquid in the aeration tank is subjected to the sedimentation separation step. A hollow fiber membrane-separating organism characterized in that the biological solid particles are allowed to coexist in the aeration tank while being aerated, and the granular solid material is placed in a suspended fluidized state by aeration, and treated water is taken out through the hollow fiber membrane. Processing method.
【請求項2】 有機性排水の沈澱槽と曝気槽を有し、該
沈澱槽処理水を前記曝気槽に導く配管、および前記曝気
槽内の水を前記沈澱槽に返送する配管を有すると共に、
前記曝気槽には曝気手段の他曝気槽内の水をろ過する中
空糸膜固液分離装置を配備し、さらに生物付着粒状固体
を前記曝気槽内水中に浮遊共存させたことを特徴とする
中空糸膜分離生物処理装置。
2. A settling tank for organic waste water and an aeration tank, and a pipe for guiding the treated water in the precipitation tank to the aeration tank, and a pipe for returning water in the aeration tank to the precipitation tank,
In the aeration tank, a hollow fiber membrane solid-liquid separator for filtering water in the aeration tank is provided in addition to the aeration means, and further, biologically attached particulate solids are allowed to float and coexist in the water in the aeration tank. Bioreactor for thread membrane separation.
JP5103751A 1993-04-07 1993-04-07 Hollow fiber membrane separation biological treatment and device for organic drainage Pending JPH06285496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103751A JPH06285496A (en) 1993-04-07 1993-04-07 Hollow fiber membrane separation biological treatment and device for organic drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103751A JPH06285496A (en) 1993-04-07 1993-04-07 Hollow fiber membrane separation biological treatment and device for organic drainage

Publications (1)

Publication Number Publication Date
JPH06285496A true JPH06285496A (en) 1994-10-11

Family

ID=14362278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103751A Pending JPH06285496A (en) 1993-04-07 1993-04-07 Hollow fiber membrane separation biological treatment and device for organic drainage

Country Status (1)

Country Link
JP (1) JPH06285496A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990016776A (en) * 1997-08-19 1999-03-15 김윤 Wastewater Treatment System Using Hollow Fiber Membrane Module
KR100294075B1 (en) * 1998-04-08 2001-10-25 공영조 System for treating landfill leachate
EP1101738A3 (en) * 1999-11-19 2003-09-10 Kuraray Co., Ltd. Apparatus and method for waste water treatment
US6964741B2 (en) 1995-08-11 2005-11-15 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fiber membranes
USRE39294E1 (en) 1995-08-11 2006-09-19 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7198721B2 (en) 1998-10-09 2007-04-03 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7288197B2 (en) * 2004-12-22 2007-10-30 Industrial Technology Research Institute Biological membrane filtration system for water treatment and a water treatment process
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
US20100326897A1 (en) * 1995-08-11 2010-12-30 Mailvaganam Mahendran Membrane filtration module with adjustable header spacing
CN103341285A (en) * 2013-07-16 2013-10-09 哈尔滨工业大学 Advection sedimentation/immersion type ultrafiltration integrated water treatment device
CN103435147A (en) * 2013-07-23 2013-12-11 天津工业大学 Self-cleaning submerged tubular membrane bioreactor
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
WO2015088353A1 (en) * 2013-12-09 2015-06-18 Biowater Technology AS Method for biological purification of water
WO2016017335A1 (en) * 2014-08-01 2016-02-04 住友電気工業株式会社 Water treatment system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
CN112830626A (en) * 2020-12-24 2021-05-25 郑玉珠 Prevent sewage treatment plant of jam
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
CN114163044A (en) * 2021-12-02 2022-03-11 苏州东大仁智能科技有限公司 Oily wastewater treatment device applying membrane technology
CN115745151A (en) * 2022-12-06 2023-03-07 福瑞莱环保科技(深圳)股份有限公司 Solid-liquid separation process based on dynamic biological filter membrane

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615157B2 (en) 1995-08-11 2009-11-10 Zenon Technology Partnership Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US6964741B2 (en) 1995-08-11 2005-11-15 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fiber membranes
US7063788B2 (en) 1995-08-11 2006-06-20 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
USRE39294E1 (en) 1995-08-11 2006-09-19 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
USRE42669E1 (en) 1995-08-11 2011-09-06 Zenon Technology Partnership Vertical cylindrical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
US20100326897A1 (en) * 1995-08-11 2010-12-30 Mailvaganam Mahendran Membrane filtration module with adjustable header spacing
KR19990016776A (en) * 1997-08-19 1999-03-15 김윤 Wastewater Treatment System Using Hollow Fiber Membrane Module
KR100294075B1 (en) * 1998-04-08 2001-10-25 공영조 System for treating landfill leachate
US7198721B2 (en) 1998-10-09 2007-04-03 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7922910B2 (en) 1998-10-09 2011-04-12 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7347942B2 (en) 1998-10-09 2008-03-25 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7625491B2 (en) 1998-10-09 2009-12-01 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
EP1101738A3 (en) * 1999-11-19 2003-09-10 Kuraray Co., Ltd. Apparatus and method for waste water treatment
US7344645B2 (en) 2002-06-18 2008-03-18 Siemens Water Technologies Corp. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
US7288197B2 (en) * 2004-12-22 2007-10-30 Industrial Technology Research Institute Biological membrane filtration system for water treatment and a water treatment process
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
CN103341285A (en) * 2013-07-16 2013-10-09 哈尔滨工业大学 Advection sedimentation/immersion type ultrafiltration integrated water treatment device
CN103435147A (en) * 2013-07-23 2013-12-11 天津工业大学 Self-cleaning submerged tubular membrane bioreactor
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
CN105813988A (en) * 2013-12-09 2016-07-27 生物水技术公司 Method for biological purification of water
WO2015088353A1 (en) * 2013-12-09 2015-06-18 Biowater Technology AS Method for biological purification of water
WO2016017335A1 (en) * 2014-08-01 2016-02-04 住友電気工業株式会社 Water treatment system
US10065153B2 (en) 2014-08-01 2018-09-04 Sumitomo Electric Industries, Ltd. Water treatment system
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
CN112830626A (en) * 2020-12-24 2021-05-25 郑玉珠 Prevent sewage treatment plant of jam
CN114163044A (en) * 2021-12-02 2022-03-11 苏州东大仁智能科技有限公司 Oily wastewater treatment device applying membrane technology
CN114163044B (en) * 2021-12-02 2023-06-27 苏州东大仁智能科技有限公司 Oily wastewater treatment device applying membrane technology
CN115745151A (en) * 2022-12-06 2023-03-07 福瑞莱环保科技(深圳)股份有限公司 Solid-liquid separation process based on dynamic biological filter membrane
CN115745151B (en) * 2022-12-06 2024-03-26 福瑞莱环保科技(深圳)股份有限公司 Solid-liquid separation process based on dynamic biological filter membrane

Similar Documents

Publication Publication Date Title
JPH06285496A (en) Hollow fiber membrane separation biological treatment and device for organic drainage
JP3430183B2 (en) Membrane separation biological treatment method
JP3452143B2 (en) Method and apparatus for biological purification of wastewater
KR100645952B1 (en) Hollow-fibre membrane filtration device for purifying waste water, filtration module and a method for traeting water or waste water using thereof
WO2001072643A1 (en) Method and apparatus for treating waste water
JP4492268B2 (en) Biological treatment equipment
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP2584386B2 (en) Biological filtration method and device
JPH0957289A (en) Biological treating device of fluidized bed type
JPH11104698A (en) Drainage treatment method
JPS61271090A (en) Treating device for waste water using immobilized microorganism
JPS645960B2 (en)
JPH10314791A (en) Waste water treating device
JPH06182396A (en) Biological treatment of waste water by membrane separation and equipment therefor
JP2000197895A (en) Water purifying treatment method and apparatus
JP2006055849A (en) Apparatus and method for treating organic waste water
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JPS61287494A (en) Method for continuously filtering water
JP3345732B2 (en) Water purification equipment
JPH0418988A (en) Biomembrane filter device for organic sewage
JPH0138557B2 (en)
JPS6351758B2 (en)
JPH07112191A (en) Biological filter
JPH0852497A (en) Treatment of phosphorus-containing organic sewage
JPH01210099A (en) Treatment of organic waste water