JPH06284309A - Monitor device - Google Patents

Monitor device

Info

Publication number
JPH06284309A
JPH06284309A JP5095396A JP9539693A JPH06284309A JP H06284309 A JPH06284309 A JP H06284309A JP 5095396 A JP5095396 A JP 5095396A JP 9539693 A JP9539693 A JP 9539693A JP H06284309 A JPH06284309 A JP H06284309A
Authority
JP
Japan
Prior art keywords
signal
video signal
scanning
modulation
monitor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5095396A
Other languages
Japanese (ja)
Inventor
Junzo Watabe
純三 渡部
Akihiro Kamiyama
明裕 上山
Yorozu Kawamura
万 河村
Osamu Maekawa
治 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5095396A priority Critical patent/JPH06284309A/en
Publication of JPH06284309A publication Critical patent/JPH06284309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Television Scanning (AREA)

Abstract

PURPOSE:To obtain a monitor device having simple constitution in which picture quality can be improved by switching the polarity of a modulation magnetic field according to a back-and-forth path to modulate a speed according to bidirectional deflection. CONSTITUTION:This device is equipped with a modulating coil 10 which forms the modulation magnetic field for accelerating and decelerating the scanning speed of the beam of a cathode ray tube 2, and speed modulating means 11, 12, and 21-26 which obtain a differentiated signal S1 by differentiating a video signal SV1, generate a driving signal by using the differentiated signal S1 as a reference, and drive the modulating coil 10 by impressing the driving signal to the modulating coil 10. Then, the polarity of the driving signal to be impressed to the modulating coil 10 is switched by the speed modulating means 11, 12, and 21-26 according to the scanning of the back-and-forth path. Thus, the polarity of the driving signal to be impressed to the modulating coil 10 is switched according to the scanning of the back-and-forth path, so that even when the scanning direction is switched on the back-and-forth path, the scanning speed of the beam of the cathode ray tube 2 can be accelerated and decelerated corresponding to the switching of the scanning direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術(図6及び図7) 発明が解決しようとする課題(図8〜図10) 課題を解決するための手段(図1及び図2) 作用(図1及び図2) 実施例 (1)実施例の構成(図1〜図5) (2)実施例の効果 (3)他の実施例 発明の効果[Table of Contents] The present invention will be described in the following order. Industrial Application Conventional Technology (FIGS. 6 and 7) Problem to be Solved by the Invention (FIGS. 8 to 10) Means for Solving the Problem (FIGS. 1 and 2) Action (FIGS. 1 and 2) ) Example (1) Configuration of Example (FIGS. 1 to 5) (2) Effect of Example (3) Other Example Effect of Invention

【0002】[0002]

【産業上の利用分野】本発明はモニタ装置に関し、特に
双方向偏向の水平偏向回路を適用したモニタ装置に適用
して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monitor device, and particularly to a monitor device to which a horizontal deflection circuit for bidirectional deflection is applied.

【0003】[0003]

【従来の技術】従来、モニタ装置においては、速度変調
の手法を適用して陰極線管のフオーカス特性を改善する
ようになされたものがある。すなわち図6に示すよう
に、例えば1水平走査期間の間で映像信号SVの輝度レ
ベルが急激に変化する場合、この輝度レベルの変化に追
従して表示画面の輝度レベルが急激に変化すればシヤー
プな表示画像を得ることができる(図6(A))。ちな
みにこの1水平走査期間の映像信号が水平走査期間で連
続すれば、図6(B)に示すような表示画像が形成され
る。
2. Description of the Related Art Conventionally, there has been a monitor device adapted to improve a focus characteristic of a cathode ray tube by applying a velocity modulation method. That is, as shown in FIG. 6, for example, when the brightness level of the video signal SV changes rapidly during one horizontal scanning period, if the brightness level of the display screen changes rapidly following the change of the brightness level, the sharp Such a display image can be obtained (FIG. 6 (A)). By the way, if the video signal in one horizontal scanning period is continuous in the horizontal scanning period, a display image as shown in FIG. 6B is formed.

【0004】ところが陰極線管は、ビーム径を所定値以
下に小さくすることが困難で、さらにカソード電圧を急
激に変化させてもこれに追従してビーム電流が急激に変
化しない特徴がある。このため図7にこの映像信号SV
の信号レベルが急激に変化する部分を拡大して示すよう
に(図7(A))、単にビームをラスタ走査しただけで
は、映像信号SVの信号レベルが急激に変化しても、陰
極線管の表示画面は、除々にしか明るさが変化しない特
徴がある(図7(B))。
However, the cathode ray tube has a feature that it is difficult to reduce the beam diameter to a predetermined value or less, and further, even if the cathode voltage is rapidly changed, the beam current does not follow the rapid change and the beam current is not rapidly changed. Therefore, this video signal SV is shown in FIG.
As shown in an enlarged view of a portion in which the signal level of (1) is rapidly changed (FIG. 7A), even if the signal level of the video signal SV is rapidly changed by simply performing the raster scan of the beam, The display screen has a characteristic that the brightness changes only gradually (FIG. 7B).

【0005】このため速度変調の手法を適用したモニタ
装置は、映像信号SVを微分することにより、映像信号
SVの信号レベルの立ち上がり及び立ち下がりで信号レ
ベルが変化する微分信号S1を得(図7(C))、この
微分信号S1を基準にしてラスタ走査するビームの走査
速度を可変する(図7(D))。すなわちこの種のモニ
タ装置は、映像信号SVの信号レベルが急激に立ち上が
る場合、この立ち上がりの直前で走査速度を速くし、そ
の分信号レベルが立ち上がつた直後走査速度を遅くす
る。
Therefore, the monitor device to which the velocity modulation method is applied differentiates the video signal SV to obtain the differential signal S1 whose signal level changes at the rising and falling of the signal level of the video signal SV (see FIG. 7). (C)), the scanning speed of the raster scanning beam is varied with reference to the differential signal S1 (FIG. 7D). That is, when the signal level of the video signal SV rises abruptly, this type of monitor device increases the scanning speed immediately before the rising edge and decreases the scanning speed immediately after the rising signal level.

【0006】これとは逆に映像信号SVの信号レベルが
急激に立ち下がる場合、この立ち下がりの直前で走査速
度を遅くし、その分信号レベルが立ち下がつた直後走査
速度を速くする。このようにすればこの信号レベルの立
ち上がり及び立ち下がりの前後であたかもビーム電流が
急激に変化した場合と同様の状態を形成し得、これによ
り表示画面の明るさを急激に立ち上げ及び立ち下げるこ
とができ、表示画面のフオーカス特性を見かけ上改善す
ることができる。
On the contrary, when the signal level of the video signal SV suddenly falls, the scanning speed is slowed down just before this trailing edge, and the scanning speed is increased immediately after the trailing signal level. By doing so, it is possible to form the same state as when the beam current changes abruptly before and after the rise and fall of the signal level, and thereby the brightness of the display screen can be rapidly raised and lowered. The focus characteristic of the display screen can be apparently improved.

【0007】このためこの種のモニタ装置は、映像信号
から生成した微分信号を基準にして所定の駆動信号を形
成し、この駆動信号で速度変調用コイルを駆動する。こ
の速度変調用コイルは、陰極線管のネツクの部分に配置
され、例えば赤色、青色、緑色の各ビームが一旦クロス
して管面に向けて射出される位置に、ネツクを上下に貫
くように変調磁界を形成する。
Therefore, this type of monitor device forms a predetermined drive signal with reference to the differential signal generated from the video signal, and drives the velocity modulation coil with this drive signal. This velocity modulation coil is arranged in the neck portion of the cathode ray tube, and modulates the red, blue, and green beams so that they cross each other once and are emitted toward the tube surface so as to vertically penetrate the neck. Create a magnetic field.

【0008】これによりモニタ装置は、ビームがラスタ
走査する走査速度V1を中心にして映像信号の信号レベ
ルの変化に応じてこの走査速度を加減速するように、微
分信号を基準にして変調コイルを駆動するようになさ
れ、これにより図7(E)において破線で示すように、
表示画面の明るさを急激に立ち上げ立ち下げ得るように
なされている。
As a result, the monitor device adjusts the modulation coil based on the differential signal so as to accelerate or decelerate the scanning speed V1 for raster scanning of the beam in accordance with the change in the signal level of the video signal. It is driven so that, as shown by a broken line in FIG.
The brightness of the display screen can be rapidly raised and lowered.

【0009】[0009]

【発明が解決しようとする課題】ところでこの種のモニ
タ装置においては、図8及び図9にラスタ走査による偏
向方式と対比して示すように、例えば正弦波信号のよう
に所定の時点を基準にして、この時点の前後で対称に信
号レベルが変化する駆動信号を用いて水平偏向コイルを
駆動する偏向回路(以下双方向偏向の偏向回路と呼ぶ)
が提案されている(米国特許第 4,672,449号)。
By the way, in this type of monitor device, as shown in comparison with the deflection system by raster scanning in FIGS. 8 and 9, for example, a sine wave signal is used as a reference at a predetermined time point. Then, a deflection circuit that drives the horizontal deflection coil using a drive signal whose signal level changes symmetrically before and after this point (hereinafter referred to as a bidirectional deflection deflection circuit).
Have been proposed (US Pat. No. 4,672,449).

【0010】この偏向回路によれば、画面の左から右に
向かう走査(以下往路の走査と呼ぶ)と、その逆に画面
の右から左に向かう走査(以下復路の走査と呼ぶ)と
で、共に表示画像を形成し得、偏向周波数を 1/2に低減
し得る。また鋸歯状波信号のような偏向電流の急激な変
化を防止し得ることから、不要輻射等を低減することが
でき、偏向回路素子の負担も軽減し得る。
According to this deflection circuit, scanning from left to right of the screen (hereinafter referred to as forward scanning) and conversely, scanning from right to left of the screen (hereinafter referred to as backward scanning) are performed. Together they can form a display image and reduce the deflection frequency by half. Further, since it is possible to prevent a sharp change in the deflection current such as a saw-tooth wave signal, it is possible to reduce unnecessary radiation and the like, and it is possible to reduce the load on the deflection circuit element.

【0011】ところが双方向偏向を適用したモニタ装置
には、従来のラスタ走査に適用した速度変調の手法をそ
のまま適用し得ない問題がある。すなわち図10に時間
軸及び走査方向を逆向きにして示すように、双方向偏向
の場合、復路の走査は、従来のラスタ走査の場合と逆向
きに映像信号の時間軸を反転させて走査させることによ
り、水平偏向コイルの磁界形成方向が往路の場合と逆向
きになる。
However, the monitor device to which the bidirectional deflection is applied has a problem that the conventional velocity modulation method applied to the raster scanning cannot be applied as it is. That is, as shown in FIG. 10 in which the time axis and the scanning direction are opposite, in the case of bidirectional deflection, the backward scan is performed by inverting the time axis of the video signal in the opposite direction to the case of the conventional raster scan. As a result, the magnetic field forming direction of the horizontal deflection coil is opposite to that in the forward path.

【0012】これにより双方向偏向回路に速度変調の手
法を適用すると、往路で走査速度を加速するように形成
される変調磁界が、復路ではこれとは逆に走査速度を減
速させる方向に働く。従つてラスラ走査の速度変調の手
法をそのまま適用して映像信号SV(図10(A)及び
(B))から微分信号S1(図10(C))を生成し、
この微分信号S1を基準にして変調磁界を形成した場
合、ビームの走査速度は、信号レベルが立ち上がる直前
で遅くなり、信号レベルが立ち上がつた直後で速くなり
(図10(D))、結局破線で示すように強調すべき表
示画面の輝度変化が逆に抑圧されて表示されるようにな
る(図10(E))。
Thus, when the velocity modulation method is applied to the bidirectional deflection circuit, the modulation magnetic field formed so as to accelerate the scanning speed on the forward path acts in the direction of decelerating the scanning speed on the reverse path. Therefore, the differential modulation S1 (FIG. 10 (C)) is generated from the video signal SV (FIGS. 10 (A) and (B)) by directly applying the velocity modulation method of Lathra scanning.
When the modulation magnetic field is formed on the basis of the differential signal S1, the beam scanning speed becomes slow immediately before the signal level rises and becomes high immediately after the signal level rises (FIG. 10 (D)). As shown by the broken line, the luminance change of the display screen to be emphasized is suppressed and displayed (FIG. 10 (E)).

【0013】ちなみに往路においては、ラスタ走査の場
合と同様に映像信号の信号レベルの変化に追従して走査
速度を加減速し得ることにより、表示画面の明るさの変
化が強調されて表示されるようになる。これでは、往路
及び復路で画質が大きく異なるようになり、全体として
却つて表示画面の画質が劣化する。
Incidentally, on the outward path, the scanning speed can be accelerated and decelerated by following the change in the signal level of the video signal as in the case of the raster scanning, so that the change in the brightness of the display screen is emphasized and displayed. Like In this case, the image quality is greatly different between the forward pass and the return pass, and as a whole, the image quality of the display screen deteriorates.

【0014】本発明は以上の点を考慮してなされたもの
で、双方向偏向の場合に適用して速度変調して画質を改
善することができる簡易な構成のモニタ装置を提案しよ
うとするものである。
The present invention has been made in consideration of the above points, and is intended to propose a monitor device having a simple structure which can be applied to the case of bidirectional deflection to improve the image quality by speed modulation. Is.

【0015】[0015]

【課題を解決するための手段】かかる課題を解決するた
め第1の発明においては、所定の映像信号SV1を基準
にして往路及び復路の走査を繰り返し、陰極線管2に映
像信号SV1の表示画面を形成するモニタ装置1におい
て、陰極線管2のビームの走査速度を加速及び減速させ
る変調磁界を形成する変調コイル10と、映像信号SV
1を微分して微分信号S1を得、微分信号S1を基準に
して駆動信号を生成し、駆動信号を変調コイル10に印
加して変調コイル10を駆動する速度変調手段11、1
2、21、22、23、24、25、26とを備え、速
度変調手段11、12、21、22、23、24、2
5、26は、往路及び復路の走査で、変調コイル10に
印加する駆動信号の極性を切り換える。
In order to solve such a problem, in the first invention, the forward and backward scans are repeated with reference to a predetermined video signal SV1, and a display screen of the video signal SV1 is displayed on the cathode ray tube 2. In the monitor device 1 to be formed, a modulation coil 10 which forms a modulation magnetic field for accelerating and decelerating the scanning speed of the beam of the cathode ray tube 2, and a video signal SV.
1 is differentiated to obtain a differential signal S1, a drive signal is generated with the differential signal S1 as a reference, and the drive signal is applied to the modulation coil 10 to drive the modulation coil 10.
2, 21, 22, 23, 24, 25, and 26, and velocity modulation means 11, 12, 21, 22, 23, 24, 2
Reference numerals 5 and 26 switch the polarity of the drive signal applied to the modulation coil 10 in the forward and backward scans.

【0016】さらに第2の発明において、速度変調手段
11、12、21、22、23、24、25、26は、
反転増幅回路12及び非反転増幅回路11に映像信号S
V1を受け、反転増幅回路12及び非反転増幅回路12
の出力信号を選択的に微分して微分信号S1を生成する
ことにより、往路及び復路の走査で、変調コイル10に
印加する駆動信号の極性を切り換える。
Further, in the second invention, the velocity modulation means 11, 12, 21, 22, 23, 24, 25, 26 are:
The video signal S is applied to the inverting amplifier circuit 12 and the non-inverting amplifier circuit 11.
Upon receiving V1, the inverting amplifier circuit 12 and the non-inverting amplifier circuit 12
By selectively differentiating the output signal of 1 to generate the differentiated signal S1, the polarity of the drive signal applied to the modulation coil 10 is switched in the forward and backward scans.

【0017】さらに第3の発明において、映像信号SV
1は、往路及び復路の走査で時間軸が反転した映像信号
でなる。
Further, in the third invention, the video signal SV
Reference numeral 1 is a video signal whose time axis is reversed in the forward and backward scanning.

【0018】[0018]

【作用】往路及び復路の走査で、変調コイル10に印加
する駆動信号の極性を切り換えれば、往路及び復路で走
査方向が切り換わる場合でも、走査方向の切り換えに対
応して陰極線管2のビームの走査速度を加減速させるこ
とができる。
By switching the polarity of the drive signal applied to the modulation coil 10 during the forward and backward scans, the beam of the cathode ray tube 2 can be changed in response to the switching of the scanning directions even when the scanning directions are switched between the forward and backward paths. The scanning speed of can be accelerated or decelerated.

【0019】[0019]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0020】(1)実施例の構成 図1において、1は全体としてモニタ装置を示し、双方
向偏向の手法を適用して陰極線管2を駆動し、これによ
り所望の表示画像を形成する。すなわちモニタ装置1
は、双方向偏向回路3で水平偏向コイル4を駆動すると
共に、垂直偏向回路5で垂直偏向コイル6を駆動し、こ
れにより双方向偏向の手法を適用して表示画面を形成す
る。
(1) Structure of the Embodiment In FIG. 1, reference numeral 1 denotes a monitor device as a whole, which drives a cathode ray tube 2 by applying a bidirectional deflection method, thereby forming a desired display image. That is, the monitor device 1
Drives the horizontal deflection coil 4 with the bidirectional deflection circuit 3 and drives the vertical deflection coil 6 with the vertical deflection circuit 5, whereby a bidirectional deflection method is applied to form a display screen.

【0021】さらに図2に示すようにモニタ装置1は、
この双方向偏向に対応するため、順次入力される映像信
号SVから水平同期信号及び垂直同期信号を分離して双
方向偏向回路3及び垂直偏向回路5に出力するのに対し
(図2(A))、さらにこの映像信号SVを時間軸反転
回路7に入力し、この映像信号SVの時間軸を1水平走
査期間毎に反転させる(図2(B))。これによりモニ
タ装置1は、時間軸反転回路7で往路及び復路の走査に
対応するように映像信号の時間軸を変換して映像信号S
V1を生成し、この映像信号SV1に基づいて駆動回路
8で陰極線管2を駆動する。
Further, as shown in FIG.
In order to deal with this bidirectional deflection, the horizontal synchronizing signal and the vertical synchronizing signal are separated from the sequentially input video signal SV and output to the bidirectional deflecting circuit 3 and the vertical deflecting circuit 5 (FIG. 2A). ) Further, the video signal SV is input to the time axis inversion circuit 7, and the time axis of the video signal SV is inverted every horizontal scanning period (FIG. 2 (B)). As a result, the monitor device 1 converts the time axis of the video signal by the time axis inverting circuit 7 so as to correspond to the forward and backward scans, and converts the video signal S.
V1 is generated, and the drive circuit 8 drives the cathode ray tube 2 based on the video signal SV1.

【0022】さらにこの実施例の場合、モニタ装置1
は、陰極線管2のネツク、3本のビームがクロスして管
面に射出される領域(すなわちG4 電極上でなる)に、
上下一対のコイルで形成された変調コイル10を配置
し、この変調コイル10で変調磁界を形成して速度変調
し得るようになされている。このためモニタ装置1は、
時間軸反転回路7から出力される映像信号SV1を反転
アンプ11及び非反転アンプ12に与え、ここでそれぞ
れ利得1及び−1で映像信号SV1を増幅して出力す
る。
Further, in the case of this embodiment, the monitor device 1
Is a region of the cathode of the cathode ray tube 2 where three beams are crossed and emitted to the tube surface (that is, on the G 4 electrode),
A modulation coil 10 formed of a pair of upper and lower coils is arranged, and a modulation magnetic field is formed by this modulation coil 10 so that velocity modulation can be performed. Therefore, the monitor device 1
The video signal SV1 output from the time axis inverting circuit 7 is applied to the inverting amplifier 11 and the non-inverting amplifier 12, where the video signal SV1 is amplified and output with gains of 1 and -1, respectively.

【0023】すなわち図3に示すように反転アンプ11
は、抵抗13〜15及びトランジスタ16で形成された
エミツタ接地型の増幅回路でなり、利得1で映像信号を
増幅して、かつ極性の反転した映像信号をこのトランジ
スタ16のコレクタから出力するようになされている。
これに対して図4に示すように非反転アンプ12は、抵
抗17〜19及びトランジスタ20で形成されたエミツ
タ接地型の増幅回路でなり、このトランジスタ16のエ
ミツタ出力を出力することにより、利得1で増幅して、
かつ入力と極性の一致した映像信号を出力するようにな
されている。
That is, as shown in FIG. 3, the inverting amplifier 11
Is a grounded-emitter amplifier circuit composed of resistors 13 to 15 and a transistor 16, which amplifies a video signal with a gain of 1 and outputs a video signal whose polarity is inverted from the collector of the transistor 16. Has been done.
On the other hand, as shown in FIG. 4, the non-inverting amplifier 12 is a grounded-emitter amplifier circuit formed by resistors 17 to 19 and a transistor 20, and outputs the emitter output of the transistor 16 to obtain a gain of 1 Amplify with
Moreover, the video signal having the same polarity as the input is output.

【0024】位相補正回路22及び23は、ぞれぞれ反
転アンプ11及び非反転アンプ12の出力信号を受け、
ここで位相補正した後、コンデンサ24及び25を介し
て映像信号の直流成分をカツトして出力する。選択回路
21は、コンデンサ24及び25を入力し、往路及び復
路の走査に同期して接点を切り換えることにより、反転
アンプ11及び非反転アンプ12の出力信号を交互に選
択出力する。
The phase correction circuits 22 and 23 receive the output signals of the inverting amplifier 11 and the non-inverting amplifier 12, respectively,
Here, after the phase correction, the DC component of the video signal is cut and output via the capacitors 24 and 25. The selection circuit 21 inputs the capacitors 24 and 25, and switches the contacts in synchronization with the forward scan and the backward scan to alternately select and output the output signals of the inverting amplifier 11 and the non-inverting amplifier 12.

【0025】これによりモニタ装置1は、往路の走査に
おいては、このモニタ装置1に入力された映像信号SV
と極性の一致した映像信号SV2を生成して速度変調回
路26に出力する(図2(C))。これに対して復路の
走査期間のうち、有効表示画面を形成する期間T1の
間、選択回路21は、反転アンプ12の出力信号を選択
出力し、これによりモニタ装置1は、この期間T1の
間、映像信号SVに対して極性の反転した映像信号SV
2を生成して速度変調回路26に出力する。
As a result, the monitor device 1 makes the video signal SV input to the monitor device 1 in the forward scan.
A video signal SV2 having the same polarity as that of is generated and output to the speed modulation circuit 26 (FIG. 2C). On the other hand, during the period T1 of forming the effective display screen in the backward scanning period, the selection circuit 21 selectively outputs the output signal of the inverting amplifier 12, whereby the monitor device 1 receives the output signal during this period T1. , A video signal SV whose polarity is inverted with respect to the video signal SV
2 is generated and output to the speed modulation circuit 26.

【0026】速度変調回路26は、通常のラスタ走査の
速度変調の場合と同様に、順次入力される映像信号SV
2から微分信号を生成し、この微分を信号基準にして変
調コイル10を駆動する。これによりモニタ装置1は、
往路の走査については、映像信号SVの信号レベルが急
激に立ち上がる場合、その立ち上がりの前後で走査速度
を加速及び減速し得、またこれとは逆に映像信号SVを
信号レベルが急激に立ち下がる場合、その立ち下がりの
前後で走査速度を減速及び加速し得、これにより表示画
面の明暗を強調することができる。
The speed modulation circuit 26 receives the sequentially input video signal SV as in the case of the speed modulation of normal raster scanning.
A differential signal is generated from 2, and the modulation coil 10 is driven by using this differential as a signal reference. As a result, the monitor device 1
Regarding forward scanning, when the signal level of the video signal SV sharply rises, the scanning speed can be accelerated and decelerated before and after the rising, and conversely, when the signal level of the video signal SV sharply falls. The scanning speed can be decelerated and accelerated before and after the trailing edge, whereby the contrast of the display screen can be emphasized.

【0027】これに対して復路の走査の場合、図5に示
すように、映像信号SV(図5(A))に対して極性の
反転した映像信号SV2(図5(B))を微分して微分
信号S1を形成することにより、速度変調回路26は、
往路の場合とは逆に表示画面の輝度レベルが急激に立ち
上がり及び立ち下がるとき(図5(C))、信号レベル
が下がり及び立ち上がる微分信号S1(図5(D))を
得ることができる。なお図5においては、図11に対応
して走査方向及び時間軸を反転して表す。
On the other hand, in the case of the backward scan, as shown in FIG. 5, the video signal SV2 (FIG. 5B) whose polarity is inverted with respect to the video signal SV (FIG. 5A) is differentiated. By forming the differential signal S1 by
On the contrary to the case of the outward path, when the brightness level of the display screen rises and falls sharply (FIG. 5C), the differential signal S1 (FIG. 5D) where the signal level falls and rises can be obtained. Note that, in FIG. 5, the scanning direction and the time axis are inverted to correspond to FIG. 11.

【0028】これによりモニタ装置1は、復路の走査に
おいて、往路と逆極性の変調磁界を形成し得、これによ
り往路の場合と同様に表示画面の輝度レベルが急激に立
ち上がるとき、その立ち上がりの前後で走査速度を加速
及び減速し得、またこれとは逆に輝度レベルが急激に立
ち下るとき、その立ち下がりの前後で走査速度を減速及
び加速し得、これにより表示画面の明暗を強調すること
ができる(図5(E)及び(F))。これによりモニタ
装置1は、反転アンプ12及び選択回路21を加えるだ
けの簡易な構成でラスタ走査の速度変調回路を流用して
速度変調し得、これにより双方向変調に適用して簡易な
構成で表示画面のフオーカス特性を改善することができ
る。
As a result, the monitor device 1 can form a modulation magnetic field having a polarity opposite to that of the outward path in the backward scan, and when the brightness level of the display screen suddenly rises in the same way as in the outward path, before and after the rise. The scanning speed can be accelerated and decelerated by, and on the contrary, when the brightness level sharply falls, the scanning speed can be decelerated and accelerated before and after the fall, thereby enhancing the brightness of the display screen. (Figs. 5 (E) and (F)). As a result, the monitor device 1 can use the raster scanning speed modulation circuit to perform speed modulation with a simple structure in which only the inverting amplifier 12 and the selection circuit 21 are added, and thus the monitor device 1 can be applied to bidirectional modulation with a simple structure. The focus characteristics of the display screen can be improved.

【0029】(2)実施例の効果 以上の構成によれば、往路及び復路で極性を切り換えて
速度変調回路に映像信号の供給することにより、選択回
路及び反転アンプを加えるだけの簡易な構成で、双方向
偏向の場合に適用して速度変調して画質を改善すること
ができる。
(2) Effects of the Embodiments According to the above configuration, the polarity is switched in the forward path and the backward path and the video signal is supplied to the speed modulation circuit, so that the selection circuit and the inverting amplifier are simply added. It is possible to improve the image quality by applying speed modulation to the case of bidirectional deflection.

【0030】(3)他の実施例 なお上述の実施例においては、反転アンプ及び非反転ア
ンプを用いて、予め映像信号の極性を往路及び復路で切
り換えることにより、変調コイルに印加する変調磁界を
往路及び復路で切り換える場合について述べたが、本発
明はこれに限らず、例えば微分信号の極性を切り換えて
変調コイルに印加する変調磁界を往路及び復路で切り換
えてもよく、さらには直接変調コイルに印加する駆動信
号の極性を切り換えて変調磁界の極性を往路及び復路で
切り換えるようにしてもよい。
(3) Other Embodiments In the above embodiment, the inverting amplifier and the non-inverting amplifier are used to switch the polarity of the video signal in advance between the forward path and the backward path, thereby changing the modulation magnetic field applied to the modulation coil. Although the case of switching between the forward path and the return path has been described, the present invention is not limited to this. For example, the polarity of the differential signal may be switched to switch the modulation magnetic field applied to the modulation coil between the forward path and the return path. The polarity of the drive signal to be applied may be switched to switch the polarity of the modulation magnetic field between the forward path and the return path.

【0031】[0031]

【発明の効果】上述のように本発明によれば、往路及び
復路で変調磁界の極性を切り換えることにより、双方向
偏向の場合に適用して速度変調して画質を改善すること
ができる簡易な構成のモニタ装置を得ることができる。
As described above, according to the present invention, by switching the polarity of the modulation magnetic field in the forward and backward paths, it can be applied to the case of bidirectional deflection and speed modulation can be performed to improve the image quality. A monitor device having a configuration can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるモニタ装置を示すブロ
ツク図である。
FIG. 1 is a block diagram showing a monitor device according to an embodiment of the present invention.

【図2】その映像信号の処理を示す信号波形図である。FIG. 2 is a signal waveform diagram showing processing of the video signal.

【図3】反転アンプを示す接続である。FIG. 3 is a connection showing an inverting amplifier.

【図4】非反転アンプを示す接続である。FIG. 4 is a connection showing a non-inverting amplifier.

【図5】変調磁界形成の説明に供する信号波形図であ
る。
FIG. 5 is a signal waveform diagram for explaining modulation magnetic field formation.

【図6】映像信号を示す信号波形図である。FIG. 6 is a signal waveform diagram showing a video signal.

【図7】ラスタ走査の速度変調の説明に供する信号波形
図である。
FIG. 7 is a signal waveform diagram for explaining velocity modulation of raster scanning.

【図8】ラスタ走査の説明に供する略線図である。FIG. 8 is a schematic diagram for explaining raster scanning.

【図9】双方向偏向の説明に供する略線図である。FIG. 9 is a schematic diagram for explaining bidirectional deflection.

【図10】ラスタ走査の速度変調を双方向偏向に適用し
た場合の説明に供する信号波形図である。
FIG. 10 is a signal waveform diagram for explaining a case where velocity modulation of raster scanning is applied to bidirectional deflection.

【符号の説明】[Explanation of symbols]

1……モニタ装置、2……陰極線管、3……双方向偏向
回路、10……変調コイル、11……反転アンプ、12
……非反転アンプ、21……選択回路、26……速度変
調回路。
1 ... Monitor device, 2 ... Cathode ray tube, 3 ... Bidirectional deflection circuit, 10 ... Modulation coil, 11 ... Inversion amplifier, 12
...... Non-inverting amplifier, 21 …… Selection circuit, 26 …… Velocity modulation circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 治 東京都品川区北品川6丁目7番35号ソニー 株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Osamu Maekawa 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Sony Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】所定の映像信号を基準にして往路及び復路
の走査を繰り返し、陰極線管に上記映像信号の表示画面
を形成するモニタ装置において、 上記陰極線管のビームの走査速度を加速及び減速させる
変調磁界を形成する変調コイルと、 上記映像信号を微分して微分信号を得、上記微分信号を
基準にして駆動信号を生成し、上記駆動信号を上記変調
コイルに印加して上記変調コイルを駆動する速度変調手
段とを具え、 上記速度変調手段は、上記往路及び復路の走査で、上記
変調コイルに印加する上記駆動信号の極性を切り換える
ことを特徴とするモニタ装置。
1. A monitor device for repeating forward and backward scanning on the basis of a predetermined video signal to form a display screen of the video signal on a cathode ray tube, wherein a scanning speed of a beam of the cathode ray tube is accelerated and decelerated. A modulation coil that forms a modulation magnetic field and a differential signal that is obtained by differentiating the video signal, generates a drive signal based on the differential signal, and applies the drive signal to the modulation coil to drive the modulation coil. The monitor device is characterized in that the speed modulation means switches the polarity of the drive signal applied to the modulation coil during the forward scan and the backward scan.
【請求項2】上記速度変調手段は、反転増幅回路及び非
反転増幅回路に上記映像信号を受け、上記反転増幅回路
及び非反転増幅回路の出力信号を選択的に微分して上記
微分信号を生成することにより、上記往路及び復路の走
査で、上記変調コイルに印加する上記駆動信号の極性を
切り換えることを特徴とする請求項1に記載のモニタ装
置。
2. The speed modulation means receives the video signal in an inverting amplifier circuit and a non-inverting amplifier circuit and selectively differentiates output signals of the inverting amplifier circuit and the non-inverting amplifier circuit to generate the differentiated signal. The monitor device according to claim 1, wherein the polarity of the drive signal applied to the modulation coil is switched by performing the forward scan and the backward scan.
【請求項3】上記映像信号は、上記往路及び復路の走査
で時間軸が反転した映像信号でなることを特徴とする請
求項1又は請求項2に記載のモニタ装置。
3. The monitor device according to claim 1, wherein the video signal is a video signal whose time axis is inverted in the scanning of the forward and backward paths.
JP5095396A 1993-03-29 1993-03-29 Monitor device Pending JPH06284309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5095396A JPH06284309A (en) 1993-03-29 1993-03-29 Monitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5095396A JPH06284309A (en) 1993-03-29 1993-03-29 Monitor device

Publications (1)

Publication Number Publication Date
JPH06284309A true JPH06284309A (en) 1994-10-07

Family

ID=14136501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5095396A Pending JPH06284309A (en) 1993-03-29 1993-03-29 Monitor device

Country Status (1)

Country Link
JP (1) JPH06284309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471077A1 (en) * 1989-12-11 1992-02-19 Fanuc Ltd. Sliding mode control system including feedback of amount of twist
WO1999055084A1 (en) * 1998-04-17 1999-10-28 Matsushita Electric Industrial Co., Ltd. Image display and horizontal speed modulator
WO1999065227A1 (en) * 1998-06-12 1999-12-16 Matsushita Electric Industrial Co., Ltd. Video display apparatus with vertical scan velocity modulation and video display method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471077A1 (en) * 1989-12-11 1992-02-19 Fanuc Ltd. Sliding mode control system including feedback of amount of twist
WO1999055084A1 (en) * 1998-04-17 1999-10-28 Matsushita Electric Industrial Co., Ltd. Image display and horizontal speed modulator
AU744436B2 (en) * 1998-04-17 2002-02-21 Matsushita Electric Industrial Co., Ltd. Image display and horizontal speed modulator
US6529176B1 (en) 1998-04-17 2003-03-04 Matsushita Electric Industrial Co., Ltd. Image display and horizontal speed modulator
WO1999065227A1 (en) * 1998-06-12 1999-12-16 Matsushita Electric Industrial Co., Ltd. Video display apparatus with vertical scan velocity modulation and video display method therefor
EP1225759A1 (en) * 1998-06-12 2002-07-24 Matsushita Electric Industrial Co., Ltd. Video display apparatus with vertical scan velocity modulation and video display method therefor
EP1225760A1 (en) * 1998-06-12 2002-07-24 Matsushita Electric Industrial Co., Ltd. Video display apparatus with vertical scan velocity modulation and video display method therefor
AU758850B2 (en) * 1998-06-12 2003-04-03 Matsushita Electric Industrial Co., Ltd. Video display apparatus with vertical scan velocity modulation and video display method therefor
US6912015B1 (en) 1998-06-12 2005-06-28 Matsushita Electric Industrial Co., Ltd. Video display apparatus with vertical scan velocity modulation and video display method thereof

Similar Documents

Publication Publication Date Title
RU99127469A (en) SCAN SPEED MODULATION DEVICE
US4183064A (en) Video signal reproducing apparatus with electron beam scanning velocity modulation
GB1565570A (en) Video signal reproducing apparatus with electron beam scanning velocity modulation
US4261014A (en) Spot arrest system
KR920005587A (en) Deflection System for Beam Scanning Speed Modulation
JPH06284309A (en) Monitor device
JPS581593B2 (en) TV program
JPS5951796B2 (en) Scan speed modulation circuit
JPS63123275A (en) Outline correcting device for video
US6549244B1 (en) Scanning speed modulating circuit for picture display
JPS62279783A (en) Contour correcting device
JPH0715613A (en) Monitor device
JP3369171B2 (en) Circuit for generating dynamic focusing voltage in television equipment
US6377317B1 (en) Method and apparatus for correcting color component focusing in a rear-projection television set
JP3407677B2 (en) Speed modulation circuit
JP2640046B2 (en) Contour correction device for television receiver
JPH05145782A (en) Scanning speed modulating circuit for television set
JPH0715618A (en) Speed modulating device
JPH05122629A (en) Television receiver
JPS62254576A (en) Picture quality adjusting circuit
JPS6169279A (en) Television receiver
JPS6041912B2 (en) Sharpness improvement circuit
JPS61210769A (en) Video reproducing device
JPH0334184B2 (en)
JPS59125056U (en) scanning electron microscope

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040413