JPH06273641A - Optical connector and optical coupler used therefor - Google Patents

Optical connector and optical coupler used therefor

Info

Publication number
JPH06273641A
JPH06273641A JP6049796A JP4979694A JPH06273641A JP H06273641 A JPH06273641 A JP H06273641A JP 6049796 A JP6049796 A JP 6049796A JP 4979694 A JP4979694 A JP 4979694A JP H06273641 A JPH06273641 A JP H06273641A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
oed
transmission line
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6049796A
Other languages
Japanese (ja)
Other versions
JP3540834B2 (en
Inventor
John J Deandrea
ジョセフ デアンドリア ジョン
Francis T Delahanty
トーマス デラハンテイ フランシス
Allan Heiney
ハイニー アレン
Bill H Reysen
ヘンリー レイセン ビル
Richard G Wheeler
グレゴリー ウエラー リチャード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitaker LLC
Original Assignee
Whitaker LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitaker LLC filed Critical Whitaker LLC
Publication of JPH06273641A publication Critical patent/JPH06273641A/en
Application granted granted Critical
Publication of JP3540834B2 publication Critical patent/JP3540834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4245Mounting of the opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • G02B6/4261Packages with mounting structures to be pluggable or detachable, e.g. having latches or rails
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4262Details of housings characterised by the shape of the housing
    • G02B6/4265Details of housings characterised by the shape of the housing of the Butterfly or dual inline package [DIP] type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Abstract

PURPOSE: To provide an optical coupler of a simple structure with high assembly accuracy and an optical connector for efficiently connecting an arbitrarily arranged optoelectric device(OED) and an optical fiber transmission line by using it. CONSTITUTION: This optical connector 10 is a device for optically connecting a light emission/reception device (OED) 30 connected to a substrate 15 along with a related circuit element and the optical fiber transmission line. Preferably, the OED 30 is surface-mounted to the surface 17 of the substrate 15 and the transmission axis X of the optical fiber transmission line is in almost parallel relation with the surface 17 of the substrate 15. In order to connect the light emission/reception surface 35 of the OED 30 and the transmission axis X of the optical fiber transmission line in optical operation relation, preferably, the optical coupler or an optical axis change means 150 formed by integral molding is arranged between them. Thus, the OED 30 and the optical fiber transmission line are highly accurately connected with the high degree of freedom.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光コネクタ、特に光ファ
イバケーブルと光電素子を光学的に結合する光コネクタ
及びそれに使用する光結合装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical connector, and more particularly to an optical connector for optically coupling an optical fiber cable and a photoelectric element and an optical coupling device used therefor.

【0002】[0002]

【従来の技術】光ファイバ伝送線又は光ファイバケーブ
ルは一般には夫々アナログ及びデジタル信号である電気
通信及びデータ伝送用に益々使用されている。斯る光フ
ァイバ伝送線の従来の電気ケーブルに対する利点は多
い。例えば、光ファイバ材料は電気ケーブルに対して安
価である。更に、光信号の駆動に必要とする電力は多く
の電気ケーブルに要する電力よりも少ない。また、デー
タの光伝送は長距離にわたり情報伝送速度が増強でき
る。
Fiber optic transmission lines or fiber optic cables are increasingly used for telecommunications and data transmission, which are generally analog and digital signals, respectively. The advantages of such fiber optic transmission lines over conventional electrical cables are many. For example, fiber optic materials are less expensive than electrical cables. Moreover, the power required to drive the optical signal is less than that required by many electrical cables. Further, the optical transmission of data can increase the information transmission speed over a long distance.

【0003】典型的な用途では、光ファイバコネクタは
光ファイバ伝送線を光電素子(OED)と光学的に効率
よく結合するカップリング装置を必要とする。OEDは
更にこれと一体に動作する電子回路と2本以上のワイヤ
で電気的に結合される。多くの重要な用途では、集積回
路(IC)を含む電子回路はプリント基板又はセラミッ
クサブストレートに取付けられる。更に、コンピュー
タ、診断デバイス、分析機器等の電子機器はしばしば2
枚以上のプリント基板を高密度で平行に重ねられ、電子
機器の限りない小型化の要求を満足する。回路板を高密
度で平行配置した光伝送デバイスを使用可能にする為
に、光ファイバケーブルをプリント基板と略平行状態で
プリント基板に入れることが必要となるのが普通であ
る。
In typical applications, fiber optic connectors require a coupling device that optically couples a fiber optic transmission line with an optoelectronic device (OED). The OED is also electrically coupled to the electronic circuitry that operates with it by two or more wires. In many important applications, electronic circuits, including integrated circuits (ICs), are mounted on printed circuit boards or ceramic substrates. Furthermore, electronic devices such as computers, diagnostic devices, and analytical instruments are often 2
One or more printed circuit boards can be stacked in high density in parallel, satisfying the demand for unlimited miniaturization of electronic devices. In order to enable the use of an optical transmission device in which circuit boards are arranged in high density in parallel, it is usually necessary to put an optical fiber cable in a printed board in a state substantially parallel to the printed board.

【0004】光ファイバケーブルと関連するプリント基
板間を平行状態とする為に、従来のコネクタは光ファイ
バケーブルのフェルールと同軸状に嵌合するよう構成さ
れる筒状ハウジング内にOEDが取付けられているパッ
ケージ構成を採用していた。斯る筒状ハウジングは一般
にケースに取付けられ、これは更に関連する電子回路を
含むプリント基板に取付けられる。
In order to maintain parallelism between the fiber optic cable and the associated printed circuit board, conventional connectors have an OED mounted within a cylindrical housing configured to mate coaxially with the ferrule of the fiber optic cable. It has adopted the package structure that has. Such a tubular housing is typically mounted on a case, which in turn is mounted on a printed circuit board containing the associated electronic circuitry.

【0005】従来の光ファイバコネクタは米国特許第
4,186,995号、同第4,222,629号、同
第4,273,413号、同第4,307,934号及
び同第4,911,519号等に開示されている。
Conventional optical fiber connectors are disclosed in US Pat. Nos. 4,186,995, 4,222,629, 4,273,413, 4,307,934 and 4,4. No. 911,519.

【0006】OEDを光ファイバ伝送線に光学的に結合
する典型的な従来例を図1に示す。ここで「光ファイバ
伝送線」又は「光ファイバ」の用語は単一又は多芯光ガ
イドの総称と解すべきである。光ファイバは例えばガラ
ス又は適当なプラスチッククラッドに、光ファイバ自体
の屈折率より低い屈折率の材料をコーティングして構成
される。これにより光はファイバコアの屈折率の変化に
よりすべて全反射又は屈折され、光の損失が実質的に生
じないこと周知のとおりである。
A typical conventional example of optically coupling an OED to an optical fiber transmission line is shown in FIG. Here, the terms "optical fiber transmission line" or "optical fiber" should be understood as a generic term for single or multicore optical guides. The optical fiber is constructed, for example, by coating glass or a suitable plastic cladding with a material having a refractive index lower than that of the optical fiber itself. It is well known that, as a result, light is totally reflected or refracted by the change in the refractive index of the fiber core, and light is not substantially lost.

【0007】斯る従来の構成によると、「能動デバイス
マウント」又は「ADM」と称されることもある筒状ス
リーブ200は端部201を有し、それに同軸(又は同
心)状に取付けられた光ファイバ伝送線203を有する
光フェルール202が挿入される。端部201は精密加
工され、フェルール端217を保持することによりファ
イバ端205を位置決めする。
According to such a conventional arrangement, a tubular sleeve 200, sometimes referred to as an "active device mount" or "ADM", has an end 201 and is coaxially (or concentrically) attached thereto. An optical ferrule 202 having an optical fiber transmission line 203 is inserted. The end 201 is precision machined and holds the ferrule end 217 to position the fiber end 205.

【0008】また、ADM200はフランジ端206を
有する。これは図中ハッチングを施して示す。このフラ
ンジ端206はキャップ207とヘッダ組立体208と
を有する「TO組立体」と称されることもある組立体を
永久的に取付けるよう構成されている。ヘッダ組立体2
08はハイブリッド型マイクロエレクトロニクス(I
C)組立体であってもよく、OED以外に1個以上のI
Cや受動部品209を含んでいる。このICはプレ又は
ポスト(前段又は後段)増幅器であってもよく、フォト
ダイオード等の光電素子から入力される信号電流を増幅
又は量子化する。また、このICは駆動回路であっても
よく、発光ダイオード等を変調又は制御する。受動部品
は抵抗やコンデンサ等の電気部品であってもよい。ヘッ
ダ組立体はセラミック製サブマウント等の絶縁板211
を含み、その上にICやOEDをマウントする。この絶
縁板211は次にリード213が貫通する金属ヘッダ2
12に取付ける。リード213のうちの一部はベース板
(金属ヘッダ)212の開口を介して延びる絶縁スリー
ブ215により絶縁される。3本のリード又はピン21
3のすべてでなくともよいが、少なくとも1本は入出力
信号用に使用され、1本は電力用、1本は接地用に使用
される。
The ADM 200 also has a flange end 206. This is shown by hatching in the figure. The flange end 206 is configured to permanently attach an assembly, sometimes referred to as a "TO assembly" having a cap 207 and a header assembly 208. Header assembly 2
08 is a hybrid microelectronics (I
C) It may be an assembly, and one or more I
It includes C and passive components 209. This IC may be a pre- or post (pre-stage or post-stage) amplifier, which amplifies or quantizes a signal current input from a photoelectric element such as a photodiode. Further, this IC may be a drive circuit and modulates or controls a light emitting diode or the like. The passive components may be electrical components such as resistors and capacitors. The header assembly is an insulating plate 211 such as a ceramic submount.
, And mount the IC and OED on it. This insulating plate 211 is connected to the metal header 2 through which the lead 213 passes next.
Attach to 12. Some of the leads 213 are insulated by an insulating sleeve 215 extending through the opening of the base plate (metal header) 212. 3 leads or pins 21
Although not all three, at least one is used for input / output signals, one for power, and one for ground.

【0009】[0009]

【発明が解決しようとする課題】図1に示す従来の結合
(カップリング)装置はいくつかの欠点を有する。例え
ば斯る従来の結合装置は多くの部品を組立てる必要があ
り、また相互に精密に位置合せ(アライメント)する必
要がある。即ち、OED210はヘッダ組立体の中心に
所定許容誤差内で精密に取付け固定する必要がある。更
に、ヘッダ組立体208はサブアセンブリ(副組立体)
を構成するようキャップに取付け固定する必要があり、
この場合にも所定誤差で中心に精密位置合わせが必要で
ある。このサブアセンブリはキャップ207のレンズ部
214と再度高精度にOED210と位置合せして形成
しなければならない。このサブアセンブリはAMD20
0に所定の高精度で取付け固定し、OED210が内部
の穴の中心と位置合せされなければならない。従って、
斯る従来のパッケージの組立体に関する許容誤差は累積
され、位置合せに相当大きな誤差が生じ得る。斯る誤差
は、光がこの結合装置を伝送される際に相当大きい信号
損失を招来することとなる。累積された誤差は約5デシ
ベル程度の回復不能な位置合せ損失となり得る。
The prior art coupling device shown in FIG. 1 has several drawbacks. For example, such conventional coupling devices require many parts to be assembled and must be precisely aligned with each other. That is, the OED 210 needs to be precisely attached and fixed to the center of the header assembly within a predetermined tolerance. Further, the header assembly 208 is a subassembly (subassembly).
It is necessary to attach and fix to the cap so that
In this case as well, precise alignment is required at the center with a predetermined error. This subassembly must be formed by aligning the lens portion 214 of the cap 207 with the OED 210 again with high precision. This subassembly is AMD20
The OED 210 must be aligned with the center of the hole inside, with a fixed precision of 0. Therefore,
The tolerances associated with the assembly of such conventional packages are cumulative and can result in significant alignment errors. Such errors lead to a considerable loss of signal as the light is transmitted through this coupling device. The accumulated error can result in unrecoverable alignment loss on the order of about 5 dB.

【0010】斯る製造工程での誤差が「累積されるとい
う問題点はサブアセンブリをAMD200に取付ける
「能動アライメント」技法を使用することにより、少な
くとも部分的に克服可能である。この能動アライメント
技法では、OED210は一時的に駆動され、光ファイ
バフェルール202をAMD200の端部201に配置
され、サブアセンブリの取付位置は、その位置を調整し
てケーブル203に伝送される又はそれから受信する光
信号をモニタすることにより決定する。能動アライメン
トは斯る結合装置の光効率を改善することができるが、
製造工程を一層複雑とし且つ結合装置の価格を上昇する
という欠点があった。
The problem of such "accumulation of manufacturing errors" can be overcome, at least in part, by using the "active alignment" technique of attaching the subassembly to the AMD 200. In this active alignment technique, the OED 210 is temporarily driven, the fiber optic ferrule 202 is placed at the end 201 of the AMD 200, and the mounting position of the subassembly is adjusted to that position and transmitted to or received from the cable 203. It is determined by monitoring the optical signal to be used. While active alignment can improve the light efficiency of such coupling devices,
It has the drawback of further complicating the manufacturing process and increasing the cost of the coupling device.

【0011】更にまた、上述特許に開示される従来の光
コネクタにあっては、いくつかの優れた特長を有する
が、斯る装置の有効性を損なう欠点も有する。例えば、
OEDと基板間の多くの半田付接続又はワイヤボンディ
ング接続により比較的大きい寄生インピーダンス、キャ
パシタンス及び抵抗を有する。更に、斯る結合装置及び
他の電子部品との組立体は製造工程が比較的複雑且つ高
価となる。
Furthermore, although the conventional optical connector disclosed in the above-mentioned patent has some excellent features, it also has a drawback that impairs the effectiveness of such a device. For example,
It has a relatively large parasitic impedance, capacitance and resistance due to the many soldered or wire bonded connections between the OED and the substrate. Furthermore, the assembly of such a coupling device and other electronic components is relatively complicated and expensive to manufacture.

【0012】従って、本発明の目的は製造工程が簡単で
あり且つ安価に製造でき、しかも改善された諸特性を有
する光コネクタを提供することである。
Therefore, it is an object of the present invention to provide an optical connector which has a simple manufacturing process and can be manufactured at low cost, and has various improved characteristics.

【0013】[0013]

【課題を解決するための手段】前述の課題を解決するた
め本発明による光コネクタは、基板に関連回路素子と共
に接続された光電素子と、該光電素子が接続された前記
基板を少なくとも部分的に包囲するケースと、該ケース
の側壁に取付けられ、該側壁を介して前記ケース内へ導
かれる光ファイバ伝送線と、該光ファイバ伝送線の伝送
軸を前記光電素子の発光/受光面に結合する光結合装置
とを具える。
In order to solve the above-mentioned problems, an optical connector according to the present invention comprises a photoelectric element connected to a substrate together with related circuit elements, and at least a part of the substrate to which the photoelectric element is connected. An enclosing case, an optical fiber transmission line attached to the side wall of the case and guided into the case through the side wall, and a transmission axis of the optical fiber transmission line is coupled to a light emitting / receiving surface of the photoelectric element. And an optical coupling device.

【0014】本発明の他の態様による光コネクタは、基
板の表面に関連回路素子と共に接続され、前記基板の表
面と略平行な発光/受光面を有する光電素子と、該光電
素子の前記発光/受光面に略平行に配置された伝送軸を
有する光ファイバ伝送線と、該光ファイバ伝送線の前記
伝送軸を前記光電素子の前記発光/受光面に光学的に結
合する光結合装置とを具える。
An optical connector according to another aspect of the present invention is a photoelectric element which is connected to a surface of a substrate together with related circuit elements and has a light emitting / receiving surface substantially parallel to the surface of the substrate, and the light emitting / receiving element of the photoelectric element. An optical fiber transmission line having a transmission axis arranged substantially parallel to a light receiving surface, and an optical coupling device for optically coupling the transmission axis of the optical fiber transmission line to the light emitting / light receiving surface of the photoelectric element. Get

【0015】本発明の更に他の態様による光コネクタ
は、基板の表面に関連回路素子と共に接続された光電素
子と、該光電素子が接続された前記基板を包囲するケー
スと、該ケースの側壁に形成された開口を介して光ファ
イバ伝送線の一端を固定する固定手段と、前記光ファイ
バ伝送線の伝送軸を前記光電素子の発光/受光面に光学
的に結合する光結合装置とを具え、該光結合装置及び前
記固定手段を一体的に形成し前記ケースに固定してい
る。
An optical connector according to still another aspect of the present invention comprises a photoelectric element connected to a surface of a substrate together with related circuit elements, a case surrounding the substrate to which the photoelectric element is connected, and a side wall of the case. Fixing means for fixing one end of the optical fiber transmission line through the formed opening; and an optical coupling device for optically coupling the transmission axis of the optical fiber transmission line to the light emitting / receiving surface of the photoelectric element, The optical coupling device and the fixing means are integrally formed and fixed to the case.

【0016】本発明の他の態様による光結合装置は、光
ファイバ伝送線の一端からの光ファイバを挿入する光フ
ァイバ挿入端と、該光ファイバ挿入端から離間し、前記
光ファイバ伝送線の伝送軸と異なる方向へ光路を変更す
る反射面を含む光軸変更部と、を具え、前記光ファイバ
伝送線の伝送軸を光電素子の発光/受光面に結合する一
体構造としている。
An optical coupling device according to another aspect of the present invention is an optical fiber insertion end into which an optical fiber is inserted from one end of an optical fiber transmission line, and a transmission from the optical fiber transmission line separated from the optical fiber insertion end. And an optical axis changing portion including a reflecting surface that changes the optical path in a direction different from the axis, and has an integral structure for connecting the transmission axis of the optical fiber transmission line to the light emitting / receiving surface of the photoelectric element.

【0017】[0017]

【作用】本発明は光ファイバ伝送線とサブストレートに
電気的にインターフェースされたOED間を光学的に結
合する改良された光コネクタである。この光コネクタは
プリント基板等のサブストレートに取付けられたOED
と、光ファイバ伝送線をサブストレートに取付ける手段
とを含み、OEDの動作軸又は光軸は光ファイバ伝送線
の光伝送軸と不一致である。この光コネクタは更に光軸
変更手段を含み、OEDの光軸を光ファイバ伝送線の光
伝送軸に沿うように向け、OEDから放射された光の少
なくとも一部分を光ファイバ伝送線に入力させるか、光
ファイバ伝送線から放射された光の少なくとも一部分が
OEDの光軸に沿って入射するようにする。本発明の光
コネクタによると従来のこの種光コネクタに関連する欠
点の多くが克服可能であることが判明した。
The present invention is an improved optical connector for optically coupling between an optical fiber transmission line and an OED electrically interfaced to a substrate. This optical connector is an OED mounted on a substrate such as a printed circuit board.
And a means for attaching the optical fiber transmission line to the substrate, wherein the operating axis or optical axis of the OED does not coincide with the optical transmission axis of the optical fiber transmission line. The optical connector further includes an optical axis changing means for directing the optical axis of the OED along the optical transmission axis of the optical fiber transmission line so that at least a part of the light emitted from the OED is input to the optical fiber transmission line. At least a part of the light emitted from the optical fiber transmission line is incident along the optical axis of the OED. It has been found that the optical connector of the present invention overcomes many of the drawbacks associated with conventional optical connectors of this type.

【0018】また、本発明は、この光コネクタに好適な
結合装置も提供する。好適実施例においては、結合装置
は第1端、第2端及び両端間に光通路を形成する穴を有
する光スリーブ(筒状部材)を含んでいる。この穴は光
ファイバ伝送線と共働し、第1端の開口に光ファイバ伝
送線の光軸が穴の光軸と略一致するようにする。光軸変
更手段(又は光曲げ手段)を光スリーブと光学的に共働
関係に配置する。穴の第2端の開口又はその近傍に配置
されるのが好ましい光軸変更手段は穴による光路と共働
してスリーブに接続された光ファイバ伝送線から放射さ
れた光の少なくとも一部がOEDの動作(光)軸に沿っ
て進行するようにする。また、光軸変更手段はOEDか
ら放射された光の少なくとも一部が光ファイバ伝送線に
沿って進行するようにしてもよい。
The present invention also provides a coupling device suitable for this optical connector. In the preferred embodiment, the coupling device includes a light sleeve having a first end, a second end, and a hole between the ends forming an optical passage. The hole cooperates with the optical fiber transmission line so that the optical axis of the optical fiber transmission line is substantially aligned with the optical axis of the hole at the opening at the first end. The optical axis changing means (or the optical bending means) is arranged in an optically cooperative relationship with the optical sleeve. The optical axis changing means, which is preferably arranged at or near the opening at the second end of the hole, cooperates with the optical path of the hole to at least part of the light emitted from the optical fiber transmission line connected to the sleeve OED. To move along the motion (optical) axis. Further, the optical axis changing means may cause at least a part of the light emitted from the OED to travel along the optical fiber transmission line.

【0019】本発明の光コネクタ及び光結合装置は種々
の周知の光コネクタ形式のいずれを使用してもよい。例
えば、本発明はSC型、ST型及びFDDI型コネクタ
のいずれであってもよい。SC型光コネクタは日本のN
TT社により提案されたANSI X3T9・5,FD
DI,LCF−PMD規格に採用された周知の光コネク
タである。STコネクタは米国AT&T社の周知の光コ
ネクタである。また、FDDIコネクタは米国AMP社
により製造されISO−ICE−9314−3FDDI
−PMDに規格化された周知の光コネクタである。
The optical connector and the optical coupling device of the present invention may use any of various well-known optical connector types. For example, the present invention may be any of SC type, ST type and FDDI type connectors. SC type optical connector is Japanese N
ANSI X3T9.5, FD proposed by TT
It is a well-known optical connector adopted in the DI and LCF-PMD standards. The ST connector is a well-known optical connector of AT & T, USA. Also, the FDDI connector is manufactured by American AMP Company and is ISO-ICE-9314-3FDDI.
-It is a well-known optical connector standardized to PMD.

【0020】また、光ファイバ伝送線をサブストレート
にマウントされたOEDと結合する装置は、光ファイバ
伝送線をサブストレートにマウントする手段を含み、O
EDの光軸は光ファイバ伝送線の光伝送軸と不一致であ
る。この結合装置は更に光軸変更手段を含み、OEDと
協働して、OEDから放射された光の少なくとも一部分
が光ファイバ伝送線の光伝送軸に沿って進行するか、光
ファイバ伝送線から放射された光の少なくとも一部分が
OEDの動作軸に沿って進行するようにする。
The apparatus for coupling an optical fiber transmission line with an OED mounted on a substrate includes means for mounting the optical fiber transmission line on the substrate,
The optical axis of the ED does not match the optical transmission axis of the optical fiber transmission line. The coupling device further includes an optical axis changing means for cooperating with the OED so that at least a part of the light emitted from the OED travels along the optical transmission axis of the optical fiber transmission line or is emitted from the optical fiber transmission line. At least a portion of the emitted light travels along the operating axis of the OED.

【0021】[0021]

【実施例】以下、本発明の光コネクタ及びその光結合装
置の好適実施例を添付図を参照して詳細に説明する。先
ず図2を参照して説明する。図2は本発明の一実施例に
よる光コネクタ10の説明図である。ハイブリッド(混
成)回路素子10は別のサブストレート(図示せず)と
嵌合するよう構成された接続ピン20を有するサブスト
レート(基板)15を具える。ここで、「サブストレー
ト」の用語は電気回路を構成する回路素子をマウントす
る電子回路素子一般を意味する。典型的な実施例では、
サブストレート15は当業者には周知のプリント基板
(PCB)、プリント配線板(PWB)及び/又は同様
のサブストレートである。好適実施例では、ハイブリッ
ド回路素子10はデュアルインライン型パッケージ(D
IP)であり、マザーボード又は電子デバイスの他のシ
ステムボードにマウント可能に構成されている。サブス
トレート15はその表面17にマウントされる各種回路
素子16を含んでいる。このプリント基板は例えば複数
のICチップを含んでいてもよい。斯るチップは例えば
プレ又はポスト増幅器及び付加電子回路であってもよ
い。斯る回路素子の形式及び性質及びサブストレート1
5への斯る素子のマウント技法及び方法は当業者に周知
であるので本発明の一部を構成するものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the optical connector and its optical coupling device of the present invention will be described in detail below with reference to the accompanying drawings. First, a description will be given with reference to FIG. FIG. 2 is an explanatory diagram of the optical connector 10 according to the embodiment of the present invention. The hybrid circuit element 10 comprises a substrate 15 having connection pins 20 configured to mate with another substrate (not shown). Here, the term "substrate" generally means an electronic circuit element that mounts a circuit element that constitutes an electric circuit. In a typical embodiment,
The substrate 15 is a printed circuit board (PCB), printed wiring board (PWB) and / or similar substrate known to those skilled in the art. In the preferred embodiment, hybrid circuit element 10 is a dual in-line package (D
IP) and is configured to be mountable on a motherboard or another system board of an electronic device. The substrate 15 includes various circuit elements 16 mounted on its surface 17. This printed circuit board may include, for example, a plurality of IC chips. Such chips may be, for example, pre or post amplifiers and additional electronics. Form and nature of such circuit element and substrate 1
Techniques and methods for mounting such elements to 5 are well known to those skilled in the art and therefore do not form part of the present invention.

【0022】OED30はサブストレート15の表面1
7にマウント、特に好ましくは表面実装(SMT)され
ている。ここで「光電素子(OED)」の用語は電流を
光に及び/又は光を電流に変換するデバイスを意味す
る。また、「光」の用語は電磁放射一般を意味し、好ま
しくは人間の裸眼に可視又は不可視であるに拘らず半導
体デバイスが敏感に応答する波長の電磁波を意味する。
OEDの例えばレーザ(例えばダブルチャンネル・プレ
ーナ埋込みヘテロ構造(DC−PBH)、埋込みクレセ
ント(BC)、ディストリビューテッドフィードバック
(DFB)、ディストリビューテッドブラグリフレクタ
(OBR)等)、発光ダイオード(LED)(例えば表
面放射LED(SLED)、端縁放射LED(ELE
D)、スーパールミネッセントダイオード(SLD)
等)又はフォトダイオード(PIN半導体、アバランシ
ェフォトダイオード(APD)等)を含む。
The OED 30 is the surface 1 of the substrate 15.
7 mounted, and particularly preferably surface mounted (SMT). As used herein, the term "photoelectric device (OED)" means a device that converts current into light and / or light into current. The term "light" generally means electromagnetic radiation, preferably electromagnetic waves of a wavelength to which a semiconductor device sensitively responds whether visible or invisible to the naked human eye.
OEDs such as lasers (eg double channel planar buried heterostructure (DC-PBH), buried crescent (BC), distributed feedback (DFB), distributed Bragg reflector (OBR) etc.), light emitting diodes (LED) (eg surface Emitting LED (SLED), edge emitting LED (ELE
D), super luminescent diode (SLD)
Etc.) or a photodiode (PIN semiconductor, avalanche photodiode (APD), etc.).

【0023】OED30をサブストレート15にSMT
することにより、OED30とサブストレート15間に
必要な電気的接続は、周知の如くサブストレート15の
表面17のコンタクトパッド等を介して行うことができ
る。当業者には周知の如く、斯るSMT手段により、図
1の従来のOED210及びIC209間及びリード2
13とプリント基板間の電気的接続により生じた寄生イ
ンダクタンス及びキャパシタンスに比して大幅に低減可
能である。更に、OED30をサブストレート15にマ
ウントすることによりデバイスと関連回路素子間の距離
を最小にすることができる。これにより本発明の光コネ
クタに関連する寄生インダクタンス及びキャパシタンス
を一層低減することができる。本発明によると、OED
30とサブストレート15上の1以上の付加回路素子1
6との接続にワイヤボンド31が使用できる。
The OMT 30 is mounted on the substrate 15 by SMT.
By doing so, the necessary electrical connection between the OED 30 and the substrate 15 can be made through a contact pad or the like on the surface 17 of the substrate 15 as is well known. As is well known to those skilled in the art, such SMT means allows the conventional OED 210 and IC 209 of FIG.
It can be significantly reduced as compared with the parasitic inductance and capacitance caused by the electrical connection between 13 and the printed circuit board. Further, mounting the OED 30 on the substrate 15 can minimize the distance between the device and associated circuit elements. This can further reduce the parasitic inductance and capacitance associated with the optical connector of the present invention. According to the invention, the OED
30 and one or more additional circuit elements 1 on the substrate 15
A wire bond 31 can be used for connection with 6.

【0024】OED30の動作軸Zがサブストレート1
5に対して任意角度に選定可能である。しかし、従来の
組立方法との適合性及び容易性の為に、OED30の動
作軸はサブストレート15の表面17に対して直交(法
線)方向とするのが好ましい。当業者には理解可能な如
く、OED30は一般に「能動領域」又は「能動面」を
含み、光を放射するか、入射光に応答する。ここで、こ
れらデバイスの「動作軸」とは、斯る能動領域又は能動
面に法線方向であり、この中心を通過する軸を意味す
る。図2に示す如く、例えばOED30の能動領域はサ
ブストレート15の表面17に略平行な実質的に平面3
5より成る。従って、OED30の動作軸Zはサブスト
レート15の表面17と略法線方向となる。そこで、例
えばLEDであるOEDの動作軸Zは図3乃至図5に示
す如く、それからの放射光の平均的方向と一致する。
The operating axis Z of the OED 30 is the substrate 1
5 can be selected at an arbitrary angle. However, it is preferable that the operating axis of the OED 30 is orthogonal (normal) to the surface 17 of the substrate 15 for the sake of compatibility and easiness with the conventional assembling method. As one of ordinary skill in the art will appreciate, OED 30 generally includes an "active area" or "active surface" that emits light or responds to incident light. Here, the "axis of motion" of these devices means the axis normal to such active area or surface and passing through this center. As shown in FIG. 2, for example, the active area of OED 30 is substantially parallel to surface 17 of substrate 15 and is substantially planar.
It consists of 5. Therefore, the operating axis Z of the OED 30 is substantially normal to the surface 17 of the substrate 15. Therefore, the operating axis Z of the OED, which is an LED, for example, coincides with the average direction of the emitted light from the OED, as shown in FIGS.

【0025】また、本発明の光コネクタ10は図2に参
照番号40で示す光スリーブを含んでいる。この光スリ
ーブ40は光ファイバ伝送線と光学的に結合し、特に図
1に示す形式のフェルール202内に収められた光ファ
イバ伝送線203と光結合する。
The optical connector 10 of the present invention also includes an optical sleeve designated by the reference numeral 40 in FIG. The optical sleeve 40 is optically coupled to an optical fiber transmission line, particularly an optical fiber transmission line 203 contained within a ferrule 202 of the type shown in FIG.

【0026】好適実施例では、光スリーブ40はケース
50に取付けられ、また特定実施例ではケース50と一
体形成されるのが好ましい。ケース50はサブストレー
ト15に取付けられ、且つ好ましくはサブストレート1
5の表面17に環境保護を行う。光スリーブ40は好ま
しくはケース50の端壁51から延び、穴又はキャビテ
ィ45を形成する。当業者には理解される如く、光スリ
ーブ40及び穴45の精密形状及び寸法は、それが結合
される光ファイバフェルールの特定寸法形状に依り大幅
に変化する。光スリーブ40は略筒状の穴を有するのが
好ましい。光スリーブ40の穴45の形状は光ファイバ
伝送線と動作上関連付けられ、その光伝送軸が穴45の
X軸と略一致するようにする。光を放射する光ファイバ
伝送線にあっては、「光伝送軸」の用語は光ファイバケ
ーブルからの放射光の平均方向を意味する。受光する光
ファイバ伝送線にあっては、「光伝送軸」の用語は、こ
の伝送線の軸又は光ファイバケーブルの受光端の平均軸
を意味する。図2において、この軸は1点鎖線Xで示
す。図2に示す好適実施例において、光伝送軸及び穴4
5の軸はサブストレート15の表面17と略平行であ
り、OED30の能動領域の光軸Zと略法線方向であ
る。また、OED30の動作軸Zは光伝送軸Xと略交差
するのが好ましい、特に図1に示す形式のフェルール2
02に収められる光ファイバ伝送線203と交差するの
が好ましい。更に好適実施例では、これら交差角は略9
0°であるのが好ましい。
In the preferred embodiment, the optical sleeve 40 is attached to the case 50, and in certain embodiments is preferably integrally formed with the case 50. The case 50 is attached to the substrate 15, and preferably the substrate 1
Environmental protection is provided on the surface 17 of No. 5. The light sleeve 40 preferably extends from the end wall 51 of the case 50 and forms a hole or cavity 45. As will be appreciated by those skilled in the art, the precise shape and size of the optical sleeve 40 and hole 45 will vary greatly depending on the particular size and shape of the fiber optic ferrule to which it is coupled. The optical sleeve 40 preferably has a substantially cylindrical hole. The shape of the hole 45 of the optical sleeve 40 is operatively associated with the optical fiber transmission line so that its optical transmission axis substantially coincides with the X axis of the hole 45. For optical fiber transmission lines that emit light, the term "optical transmission axis" means the average direction of light emitted from the optical fiber cable. In the case of an optical fiber transmission line that receives light, the term "optical transmission axis" means the axis of this transmission line or the average axis of the light receiving end of the optical fiber cable. In FIG. 2, this axis is indicated by the one-dot chain line X. In the preferred embodiment shown in FIG. 2, the light transmission shaft and the hole 4
The axis 5 is substantially parallel to the surface 17 of the substrate 15 and is substantially normal to the optical axis Z of the active region of the OED 30. Further, it is preferable that the operating axis Z of the OED 30 substantially intersects with the optical transmission axis X. Particularly, the ferrule 2 of the type shown in FIG.
It is preferable to intersect the optical fiber transmission line 203 housed in 02. In a more preferred embodiment, these intersection angles are approximately nine.
It is preferably 0 °.

【0027】また、本発明の光コネクタ10は光軸変更
手段(又は光結合装置)150がOED30及び光スリ
ーブ40と動作関係に設けられ、光の進行方向を変化さ
せる。ここで、「光動作関係」の用語は、光軸変更手段
が発光デバイスからの光路の少なくとも一部内に配置さ
れ、又は受光デバイスの光路の少なくとも一部に配置さ
れて、この光軸変更手段で光の進行方向が変更されるこ
とを意味する。当業者には明らかな如く、本発明の光コ
ネクタ10はOED30が発光デバイスより構成される
か受光デバイスより構成される実施例での使用に好適で
ある。また、当然乍ら、光ファイバ伝送線も夫々受光デ
バイス又は発光デバイスとなる。
In the optical connector 10 of the present invention, the optical axis changing means (or the optical coupling device) 150 is provided in the operative relationship with the OED 30 and the optical sleeve 40 to change the traveling direction of light. Here, the term “optical operation relation” means that the optical axis changing means is arranged in at least a part of the optical path from the light emitting device, or is arranged in at least a part of the optical path of the light receiving device. It means that the traveling direction of light is changed. Those skilled in the art will appreciate that the optical connector 10 of the present invention is suitable for use in embodiments where the OED 30 comprises a light emitting device or a light receiving device. Further, naturally, the optical fiber transmission line also serves as a light receiving device or a light emitting device, respectively.

【0028】本発明の光スリーブは光ファイバ伝送線が
発光又は受光光路を生じるので、この光スリーブと光軸
変更手段との光動作関係により、光ファイバ伝送線が光
スリーブ内に取付けられている場合には、光が適切な光
路に沿って進行するよう保証する。好適実施例による
と、光軸変更手段は発光デバイスからの放射光の相当部
分の方向を変化させて、放射光の相当部分が受光デバイ
スに受光されるようにする手段を具える。光ファイバ伝
送線が62ミクロン(μ)のコアを有する傾斜屈折率型
ファイバとSLEDより成るOEDで構成される実施例
の場合には、光結合効率は約5乃至10%であることが
期待されている。他方、光ファイバ伝送線が62ミクロ
ンのコアを有する傾斜屈折率型ファイバとPINより成
るOEDで構成される実施例の場合には、光結合効率は
約75乃至98%であることが期待される。
In the optical sleeve of the present invention, the optical fiber transmission line produces a light emitting or receiving optical path. Therefore, the optical fiber transmission line is mounted in the optical sleeve due to the optical operation relationship between the optical sleeve and the optical axis changing means. In some cases, ensure that light travels along the proper optical path. According to a preferred embodiment, the optical axis changing means comprises means for changing the direction of a substantial portion of the emitted light from the light emitting device so that a considerable portion of the emitted light is received by the light receiving device. In the case of an embodiment in which the optical fiber transmission line is composed of a graded index fiber having a 62 micron (μ) core and an OED composed of an SLED, the optical coupling efficiency is expected to be about 5 to 10%. ing. On the other hand, in the case of an embodiment in which the optical fiber transmission line is composed of a graded-index fiber having a 62-micron core and an OED made of PIN, the optical coupling efficiency is expected to be about 75 to 98%. .

【0029】当業者には明らかな如く、本発明による光
コネクタ及び光結合装置によると、従来デバイスによっ
ては決して達成又は実現し得なかった利点及び特長が得
られる。例えば、OEDが検出器(ディテクタ)の場合
には、OEDの面のファイバの像は受光器(レシーバ)
の能動領域より一般に小さい。斯る実施例の場合、本発
明の光コネクタ及び光結合装置の結合効率は少なくとも
75%であり、好ましくは約85乃至98%の高い値で
ある。実際の効率は本発明を使用する設計に依存する。
ここで、「結合効率」の用語は、利用可能な光量全体に
対する結合された光量を%で表わしたものを意味する。
更に、本発明は従来得られたものよりも十分大きい能動
領域を有するOEDの光結合装置が得られる。斯る利点
が得られる要因は、先ず本発明のSMT構成による。こ
れにより、寄生キャパシタンスを低減する為である。能
動領域が大きいことの利点は、プリント基板へのOED
の配置寸法精度又は自由度が増大し、特定実施例におい
ては上述した能動アライメントを不要にする。
As will be appreciated by those skilled in the art, the optical connector and the optical coupling device according to the present invention provide advantages and features that could never be achieved or realized by conventional devices. For example, when the OED is a detector (detector), the image of the fiber on the surface of the OED is a receiver (receiver).
Is generally smaller than the active area of. In such an embodiment, the coupling efficiency of the optical connector and the optical coupling device of the present invention is at least 75%, preferably as high as about 85 to 98%. The actual efficiency depends on the design using the invention.
Here, the term "coupling efficiency" means the combined light amount expressed as a percentage of the total available light amount.
Further, the present invention provides an OED optocoupler having an active area that is significantly larger than previously obtained. The reason why such an advantage is obtained is firstly due to the SMT structure of the present invention. This is to reduce the parasitic capacitance. The advantage of the large active area is that the OED on the printed circuit board
The placement dimensional accuracy or the degree of freedom is increased, and the above-described active alignment is unnecessary in a specific embodiment.

【0030】また、本発明によると、OEDがSLED
であってもよいという特長を有する。斯るデバイスの場
合、光コネクタ及び光結合装置の結合効率は約5乃至1
0%である。しかし、当業者には明らかな如く、発光量
のより大きい部分を光ファイバ伝送線の受像面に集束さ
せることができる。例えば非球面を用いてOEDの発光
量の約40乃至80%を斯る受像面に集束可能である。
このように高い割合の集束光線が受像面に得られると、
少なくとも次の2つの利点がある。第1に、フェルール
と穴の不一致があっても良好な光結合が得られる。第2
に、この特長又は利点により、プリント基板のLEDの
配置誤差による悪影響を最小にする。上述した如く、能
動アライメントを不要にすることができる。
According to the present invention, the OED is an SLED.
It has the feature that In the case of such a device, the coupling efficiency of the optical connector and the optical coupling device is about 5 to 1.
It is 0%. However, as will be apparent to one of ordinary skill in the art, the portion of greater light emission can be focused on the image receiving surface of the optical fiber transmission line. For example, an aspherical surface can be used to focus about 40 to 80% of the light emission amount of the OED on such an image receiving surface.
When a high proportion of focused rays is obtained on the image receiving surface,
There are at least two advantages. First, good optical coupling is obtained even if there is a mismatch between the ferrule and the hole. Second
In addition, this feature or advantage minimizes the adverse effects of LED placement errors on the printed circuit board. As mentioned above, active alignment can be eliminated.

【0031】本発明の光軸変更手段の特定構造は、方向
が変化される光が結合される特定の発光及び受光デバイ
ス及びOEDと光スリーブの相対位置により大幅に変化
し得る。しかし、一般に、光軸変更手段はOED及び光
スリーブと光動作関係の反射手段を有し、発光デバイス
からの放射光の少なくとも一部分を受光デバイスに反射
する。当業者には明らかな如く、この作用を行うには種
々の構成が考えられる。例えば、OEDの動作軸及び光
伝送軸に対して所定角度で配置した1以上のミラー
(鏡)を使用してこの作用を行ってもよい。詳細は後述
する如く、好適実施例においては、斯る反射手段はOE
D及び光ファイバ伝送線の軸に対して所定角度に配置さ
れた内面を有するプリズム等の反射面より構成される。
The specific structure of the optical axis changing means of the present invention can vary greatly depending on the specific light emitting and receiving device to which the light whose direction is changed is coupled and the relative position of the OED and the optical sleeve. However, in general, the optical axis changing means has a reflection means in optical relationship with the OED and the optical sleeve, and reflects at least a part of the emitted light from the light emitting device to the light receiving device. As will be apparent to those skilled in the art, various configurations are possible for performing this action. For example, one or more mirrors arranged at a predetermined angle with respect to the operating axis of the OED and the optical transmission axis may be used to perform this action. As will be described in more detail below, in the preferred embodiment, such reflecting means is OE.
D and a reflecting surface such as a prism having an inner surface arranged at a predetermined angle with respect to the axis of the optical fiber transmission line.

【0032】本発明の光結合装置の信号損失を最小にす
る為に、この反射手段は全反射プリズムであるのが好ま
しい。OEDが発光デバイスより成る実施例にあって
は、このデバイスから放射された光はコヒーレント又は
非コヒーレントであってもよい。例えば、OEDの能動
領域から放射された光は、このデバイスの動作軸と略平
行且つこの軸を中心とする略平行なビーム状であっても
よい。斯る実施例にあっては、光軸変更手段は好ましく
はビーム通路に配置された光反射手段より成る。OED
と光ファイバ線の動作に関連付けられた反射手段を使用
する場合の光跡を図3に示す。OED30よりの発光光
線300はOED30の動作軸Zと略平行であり、反射
面310に入射する。この反射面310は好ましくは動
作軸Zと光ファイバケーブル203の光伝送軸Xの双方
に対して45°の角度に配置されているので、光線30
0の進行方向は光伝送軸Xに略平行になるよう変更され
る。光線は可逆性を有するので、同じ光軸変更手段15
0を用いて、光ファイバ伝送線が発光デバイスである実
施例にも同様に使用可能である。
In order to minimize the signal loss of the optical coupling device of the present invention, this reflecting means is preferably a total reflection prism. In embodiments where the OED comprises a light emitting device, the light emitted from this device may be coherent or non-coherent. For example, the light emitted from the active region of the OED may be in the form of a beam that is substantially parallel to and about the operating axis of the device. In such an embodiment, the optical axis changing means preferably comprises light reflecting means arranged in the beam path. OED
FIG. 3 shows the light trace when using the reflection means associated with the operation of the optical fiber line. A light ray 300 emitted from the OED 30 is substantially parallel to the operating axis Z of the OED 30 and is incident on the reflecting surface 310. This reflecting surface 310 is preferably arranged at an angle of 45 ° with respect to both the operating axis Z and the optical transmission axis X of the optical fiber cable 203, so that the light ray 30
The traveling direction of 0 is changed to be substantially parallel to the optical transmission axis X. Since the light beam has reversibility, the same optical axis changing means 15
0 can be used as well in embodiments where the optical fiber transmission line is a light emitting device.

【0033】当業者には明らかな如く、光軸変更手段1
50の特定構成は、ここに開示する技術に基づいて、異
なる型式の発光デバイス及び受光デバイスを最適に収め
るように容易に変形することが可能である。例えば、O
ED30は発光デバイスは実質的に非コヒーレント光線
を発光する発光デバイスであってもよく、その場合には
レンズ330の如くOED30と光動作関係のコリメー
ション素子を光軸変更手段150が含んでいるのが好ま
しい。この例を図4に光跡図に示す。本発明のコリメー
ション素子の主目的はOED30又は光ファイバケーブ
ル端からの拡散光を集めることである。図4から明らか
な如く、コリメートされた光線は図示の例では平行光線
となるよう示すが、実際には必ずしも完全に平行光線で
ある必要はない。このコリメーション素子330は好ま
しくは正(ポジティブ)非球面レンズの如く光学的パワ
ー面を具える。斯るコリメーション素子はレンズ330
の光軸をOED30の動作軸Zと位置合せすることによ
りOED30と動作上関連付けるのが好ましい。これに
より、斯る非コヒーレントOED30からの放射光線3
00の相当大きい部分(大半)がレンズ330角に入射
することとなる。コリメートされた光ビームを光伝送軸
Xと一致させるには、図4に示す光軸変更手段も好まし
くは反射面310を含み、これを各軸に対して約45°
の角度に配置する。これにより、光線の進行方向は光フ
ァイバ203の光伝送軸Xに実質的に沿う方向となるよ
う変更される。
As will be apparent to those skilled in the art, the optical axis changing means 1
The particular configuration of 50 can be readily modified based on the techniques disclosed herein to optimally accommodate different types of light emitting and receiving devices. For example, O
The light-emitting device of the ED 30 may be a light-emitting device that emits substantially non-coherent light. In that case, the optical axis changing means 150 includes a collimation element such as the lens 330 that is in optical relationship with the OED 30. preferable. An example of this is shown in the light trace diagram in FIG. The primary purpose of the collimation element of the present invention is to collect diffused light from the OED 30 or fiber optic cable end. As is apparent from FIG. 4, the collimated light rays are shown as parallel light rays in the illustrated example, but in reality, they need not be perfectly parallel light rays. The collimation element 330 preferably comprises an optical power surface such as a positive aspherical lens. Such a collimation element is a lens 330.
Is preferably operatively associated with OED 30 by aligning its optical axis with the operating axis Z of OED 30. Thereby, the radiation ray 3 from such non-coherent OED 30
A considerably large part (most) of 00 enters the corner of the lens 330. For aligning the collimated light beam with the light transmission axis X, the optical axis changing means shown in FIG. 4 also preferably includes a reflecting surface 310, which is about 45 ° to each axis.
Place it at the angle. As a result, the traveling direction of the light beam is changed so as to be substantially along the optical transmission axis X of the optical fiber 203.

【0034】図5に示す好適実施例にあっては、光軸変
更手段150は更に第2レンズ340を有し、反射面3
10で反射された光線を集束する。レンズ340は非球
面レンズの如くパワー付き光学面を具える。レンズ34
0は好ましくは反射面310からの反射光線を光ファイ
バ伝送線203の受光端面の選択された領域に一致する
ようにする。
In the preferred embodiment shown in FIG. 5, the optical axis changing means 150 further has a second lens 340, and the reflecting surface 3
Focus the rays reflected at 10. Lens 340 comprises a powered optical surface such as an aspherical lens. Lens 34
Zero preferably causes the reflected light from reflective surface 310 to coincide with a selected region of the light receiving end of fiber optic transmission line 203.

【0035】図2乃至図5に示した光軸変更手段150
はOED30が発光デバイスであり、光ファイバケーブ
ル203が受光デバイスである実施例として説明した。
しかし、光の進行方向を変更する構成は一般に可逆性を
有するので、図2乃至図5と同じ構成を用いてOED3
0が受光デバイスであり、光ファイバケーブル203が
発光デバイスである場合にも適用可能である。従って、
本発明は光電ディテクタであるOEDのみならず、発光
デバイスであるOEDの効果的な結合を行うことができ
ることが判った。図5に示す如く、好適な光軸変更手段
150は第1レンズ340、反射面310及び第2レン
ズ330を有する。この型式の実施例についての詳細は
後述する。
Optical axis changing means 150 shown in FIGS. 2 to 5.
Has been described as an example in which the OED 30 is a light emitting device and the optical fiber cable 203 is a light receiving device.
However, since the configuration for changing the traveling direction of light is generally reversible, the same configuration as that of FIGS.
It is also applicable when 0 is a light receiving device and the optical fiber cable 203 is a light emitting device. Therefore,
It has been found that the present invention can effectively couple not only the OED which is the photoelectric detector but also the OED which is the light emitting device. As shown in FIG. 5, a suitable optical axis changing means 150 has a first lens 340, a reflecting surface 310 and a second lens 330. Details of this type of embodiment will be described later.

【0036】図2乃至図5の実施例は光ファイバ伝送線
の軸がOED30の動作軸と90°の角度で交する場合
である。簡単、製造の容易性及び効率の点で斯る構成が
好ましいが、光ファイバ伝送線の伝送軸とOEDの動作
軸との関係は上述以外であっても本発明の技術的範囲に
入ると解すべきである。
The embodiment shown in FIGS. 2 to 5 is a case where the axis of the optical fiber transmission line intersects with the operating axis of the OED 30 at an angle of 90 °. Although such a configuration is preferable in terms of simplicity, ease of manufacture, and efficiency, it is understood that the relationship between the transmission axis of the optical fiber transmission line and the operating axis of the OED is within the technical scope of the present invention even if it is other than the above. Should be.

【0037】次に、図6を参照して説明する。DIP構
造の第1コネクタ組立体10を開示する。このDIPコ
ネクタ組立体10は従来の16ピンDIPより成る。O
ED30及びその関連電子回路をDIP内のプリント基
板17上に取付けると、光ファイバ結合装置は寄生イン
ダクタンス及びキャパシタンスが従来の結合装置に比し
て大幅に低減することが判った。その主要因は、従来の
結合装置では少なくとも2本の半田付け及び/又はワイ
ヤボンディングされたリード線がOED(及び/又はそ
の取付けサブストレート)からDIP内のプリント基板
へ延びる為である。
Next, description will be made with reference to FIG. A first connector assembly 10 having a DIP structure is disclosed. The DIP connector assembly 10 comprises a conventional 16-pin DIP. O
It has been found that mounting the ED 30 and its associated electronics on the printed circuit board 17 in the DIP significantly reduces the parasitic inductance and capacitance of the fiber optic coupler compared to conventional couplers. The main reason for this is that in conventional coupling devices at least two soldered and / or wirebonded leads extend from the OED (and / or its mounting substrate) to the printed circuit board in the DIP.

【0038】このコネクタ組立体10はサブストレート
15、ケース50及び光結合装置60より成る。サブス
トレート15は、その表面17に配置される電子回路部
品16を含んでいる。サブストレート15の底面から下
方へピン20が延出し、別のサブストレート、例えば電
子機器のマザーボード又はシステムボードとインターフ
ェースするよう構成されている。また、サブストレート
15の上面17にはOED30がマウントされている。
OED30は周知技法によりプリント基板にSMT実装
され、更にワイヤボンド31によりプリント基板の回路
素子にワイヤボンドされている。放熱を助ける為に、斯
るOED30は例えば銅製バイアスを介してプリント基
板内の大きな銅接地面等のヒートシンクに結合してもよ
い。
The connector assembly 10 comprises a substrate 15, a case 50 and an optical coupling device 60. The substrate 15 includes electronic circuit components 16 disposed on its surface 17. A pin 20 extends downward from the bottom surface of the substrate 15 and is configured to interface with another substrate, for example, a motherboard of an electronic device or a system board. An OED 30 is mounted on the upper surface 17 of the substrate 15.
The OED 30 is SMT-mounted on the printed board by a well-known technique, and further wire-bonded to the circuit element of the printed board by the wire bond 31. To aid in heat dissipation, such an OED 30 may be coupled to a heat sink, such as a large copper ground plane in the printed circuit board, via a copper bias, for example.

【0039】箱状ケース50はプリント基板15の上面
17を実質的に覆うよう構成されている。このケース5
0は好ましくは2枚の実質的に平行な側壁53,54
と、2枚の実質的に平行な端壁51,52より成り、相
互に結合されている。端壁511,52と側壁53,5
4を連結する上壁55が設けられている。端壁51には
好ましくはこれと一体に光ファイバコネクタの取付具と
嵌合するよう構成された嵌合スリーブ70が結合されて
いる。斯る取付具及び関連するフェルールは当業者には
周知であるので、ここで詳細説明は省略することとす
る。嵌合スリーブ70は略筒状の穴又はキャビティ75
を有し、このスリーブの第1端76に光ファイバ伝送線
を取外し可能に受ける。また、穴75は側壁51の開口
77を形成し、光結合装置60の光スリーブ部61を永
久的に受けるよう構成される。
The box-shaped case 50 is constructed so as to substantially cover the upper surface 17 of the printed circuit board 15. This case 5
0 is preferably two substantially parallel side walls 53, 54
And two substantially parallel end walls 51, 52, which are connected to each other. End walls 511, 52 and side walls 53, 5
An upper wall 55 that connects the four is provided. A mating sleeve 70, which is preferably configured to mate with the fitting of the fiber optic connector, is coupled to the end wall 51. Such fittings and associated ferrules are well known to those of ordinary skill in the art and will not be described in detail here. The fitting sleeve 70 has a substantially cylindrical hole or cavity 75.
And has a first end 76 of the sleeve for removably receiving an optical fiber transmission line. The hole 75 also forms an opening 77 in the side wall 51 and is configured to permanently receive the optical sleeve portion 61 of the optical coupling device 60.

【0040】図7乃至図10は図6の実施例とは異なる
本発明による光コネクタの別の実施例を示す。図7及び
図8はシンプレックス型コネクタの例であり、図9及び
図10はデュプレックス型コネクタの実施例である。
FIGS. 7 to 10 show another embodiment of the optical connector according to the present invention, which is different from the embodiment shown in FIG. 7 and 8 show an example of a simplex type connector, and FIGS. 9 and 10 show an example of a duplex type connector.

【0041】両光コネクタの実施例共にSC型コネクタ
であり、米国特許第5,042,891号に開示する型
式の光コネクタである。詳細はこの米国特許公報を参照
にされたい。
Both of the embodiments of the optical connectors are SC type connectors, which are the type of optical connector disclosed in US Pat. No. 5,042,891. For details, refer to this US Patent Publication.

【0042】シンプレックス型光コネクタの実施例を示
す図7及び図8を参照すると、第1コネクタ半体71は
ベース73を有し、少なくとも2個の弾性キャッチピー
ス(係合片)72がベース73から外方へ延出する。こ
の弾性キャッチピース72は片持ち梁状であって、光ス
リーブ部61の長軸の反対側に平行に延び、突起74及
びリップ76で終端する。スロット79を有する矩形シ
ュラウド78がキャッチピース72を包囲してベース7
3と連結する。
Referring to FIGS. 7 and 8 showing an embodiment of a simplex type optical connector, the first connector half 71 has a base 73, and at least two elastic catch pieces (engaging pieces) 72 are provided on the base 73. Extends outward from. The elastic catch piece 72 is in the shape of a cantilever, extends parallel to the opposite side of the long axis of the optical sleeve portion 61, and terminates in a protrusion 74 and a lip 76. A rectangular shroud 78 having a slot 79 surrounds the catch piece 72 and provides a base 7
Connect with 3.

【0043】第2コネクタ半体80は後部82と前部8
4を有し、その表面には開口86を有し、第1コネクタ
半体71と嵌合する。前方部84は第1コネクタ半体7
1と、また片持ち梁状キャッチピース72間に結合す
る。所定形状の開口86はノッチを有し、第1コネクタ
半体71の突起74を位置させ且つ長手方向の凸条89
がスロット79と係合する。図9及び図10に示すデュ
プレックス型コネクタの構成及び動作は図7及び図8の
実施例を2個組合せたものであることが理解できよう。
The second connector half 80 has a rear portion 82 and a front portion 8.
4 and has an opening 86 on its surface, and is fitted with the first connector half 71. The front part 84 is the first connector half 7
1 and also between the cantilevered catch pieces 72. The opening 86 of a predetermined shape has a notch to locate the protrusion 74 of the first connector half 71 and to extend the longitudinal ridge 89.
Engage slot 79. It will be appreciated that the configuration and operation of the duplex connector shown in FIGS. 9 and 10 is a combination of the two embodiments of FIGS. 7 and 8.

【0044】付加的に図11を参照すると、光結合装置
60は光軸変更手段150に連結された光スリーブ部6
1を具える。光スリーブ部61は光ファイバ伝送線20
3のフェルール202を受け且つ取外し可能にマウント
するよう構成されている。これら図に示す好適実施例で
は、光スリーブ部60は内部に略筒状穴45を有する略
筒状スリーブ40を具える。スリーブ40の第1端に、
穴45が略円形開口62を有し、これを介してフェルー
ル202がスリーブ40に入る。光軸変更手段150が
光スリーブ40の反対端に配置され、穴45と光連通す
る。よって穴45はスリーブ40の第2端と光軸変更手
段150へ到る光路を形成する。更に、穴45は光ファ
イバ203のフェルール202と作動関係に構成され、
光ファイバ伝送線の光伝送軸が穴45の光軸と略一致す
る。即ち、軸穴45はスリーブ内に正確にモールドさ
れ、すべて正確な長手方向のアライメント面を形成し、
軸穴に挿入される光ファイバコネクタの寸法により決ま
る。特に、軸穴45はその内部に正確に軸方向に位置す
る肩63を含んでいる。光ファイバフェルールが光スリ
ーブ40と結合されると、フェルール202の端部及び
その他の部分が肩63と正しく接触するよう維持され
る。この正確な接触の維持の結果、集束レンズ340と
光ファイバ伝送線203の端部205間隔(又は距離)
は正確に固定される。この間隔は本発明の光ファイバ結
合装置の効果的な動作の為に重要なパラメータとなる。
この間隔は好ましくはOED30の受像面に対応する。
Referring additionally to FIG. 11, the optical coupling device 60 includes an optical sleeve portion 6 connected to an optical axis changing means 150.
1 is included. The optical sleeve portion 61 is the optical fiber transmission line 20.
3 ferrule 202 and is configured to removably mount. In the preferred embodiment shown in these figures, the optical sleeve portion 60 comprises a generally tubular sleeve 40 having a generally tubular bore 45 therein. At the first end of the sleeve 40,
The hole 45 has a generally circular opening 62 through which the ferrule 202 enters the sleeve 40. An optical axis changing means 150 is arranged at the opposite end of the optical sleeve 40 and is in optical communication with the hole 45. Therefore, the hole 45 forms an optical path reaching the second end of the sleeve 40 and the optical axis changing means 150. Further, the hole 45 is configured in operative relationship with the ferrule 202 of the optical fiber 203,
The optical transmission axis of the optical fiber transmission line substantially coincides with the optical axis of the hole 45. That is, the axial holes 45 are precisely molded within the sleeve, all forming a precise longitudinal alignment surface,
It is determined by the size of the optical fiber connector inserted in the shaft hole. In particular, the axial bore 45 includes a shoulder 63 located therein in the exact axial direction. When the fiber optic ferrule is mated with the optical sleeve 40, the ends of ferrule 202 and other portions are maintained in proper contact with shoulder 63. As a result of maintaining this accurate contact, the interval (or distance) between the focusing lens 340 and the end 205 of the optical fiber transmission line 203.
Is fixed exactly. This distance is an important parameter for effective operation of the optical fiber coupling device of the present invention.
This spacing preferably corresponds to the image receiving surface of OED 30.

【0045】本発明の好適実施例によると、光結合装置
60は流動性プラスチック材料をモールドすることによ
り一体形成され、その各部品の組立誤差の累積を排除す
るようにする。光結合装置は成型可能なプラスチック材
料のモールドで形成するのが好ましく、特にポリカーボ
ネート、ポリエーテルイミド又はポリアリルサルフォン
等の高級エンジニアリング用プラスチック材料でモール
ドするのが好ましい。更に、嵌合スリーブ部70を含む
本発明のケース50の形成に使用する材料は実質的に不
透明であり、漏光等による偽信号の発生を最小にするの
が好ましい。この目的に好適な材料としては、めっき処
理した自然又は炭素封入ポリアリルサルフォン、液晶ポ
リマ及び亜鉛である。モールドは射出成型、圧縮成型又
はトランスファ成型等の周知の技法で行うことができ
る。モールドされた結合装置60を使用する利点は、光
スリーブ60及び光軸変更手段150の相対寸法及び形
状は許容誤差の累積を最小にするよう正確に制御され
る。
According to the preferred embodiment of the present invention, the optical coupling device 60 is integrally formed by molding a fluid plastic material so as to eliminate the accumulation of the assembly error of the respective parts. The optical coupling device is preferably formed by molding a moldable plastic material, particularly preferably a high-grade engineering plastic material such as polycarbonate, polyetherimide or polyallylsulfone. Further, the material used to form the case 50 of the present invention, including the mating sleeve portion 70, is preferably substantially opaque to minimize spurious signal generation such as light leakage. Suitable materials for this purpose are plated natural or carbon encapsulated polyallyl sulfones, liquid crystal polymers and zinc. The molding can be performed by a well-known technique such as injection molding, compression molding or transfer molding. The advantage of using a molded coupling device 60 is that the relative size and shape of the optical sleeve 60 and the optical axis changing means 150 are precisely controlled to minimize the accumulation of tolerances.

【0046】レンズ340の光軸は穴45の軸と略一致
するのが好ましい。これにより、レンズ340の光軸は
光結合装置60にマウントされる光ファイバケーブルの
光伝送軸と略位置合せ(アライメント)される。更に、
光結合装置60は一体即ち単一結合装置であって、レン
ズ340と穴45の軸との間のアライメントの誤差累積
が排除又は実質的に低減できるようにするのが好まし
い。従って、本発明の好適実施例によると、光軸変更手
段150は一体形成のレンズ340を含み、穴45を閉
じる。レンズ340は穴45の閉端に一体形成されるの
で、レンズ及び穴の相対軸及び放射位置はその肩63を
含め極めて高精度とすることができる。
The optical axis of the lens 340 preferably coincides with the axis of the hole 45. As a result, the optical axis of the lens 340 is substantially aligned with the optical transmission axis of the optical fiber cable mounted on the optical coupling device 60. Furthermore,
The light coupling device 60 is preferably a one-piece or single coupling device, so that error accumulation of alignment between the lens 340 and the axis of the hole 45 can be eliminated or substantially reduced. Therefore, according to the preferred embodiment of the present invention, the optical axis changing means 150 includes an integrally formed lens 340 to close the hole 45. Since the lens 340 is integrally formed at the closed end of the hole 45, the relative axis and the radial position of the lens and the hole, including the shoulder 63 thereof, can be made extremely accurate.

【0047】図6、図11及び図12に示す光軸変更手
段150は第1レンズ340、反射面310及び第2レ
ンズ330より成る。これら各素子は光スリーブ61と
一体形成されるのが好ましい。夫々第1及び第2レンズ
340,330を含む面を有する光軸変更手段150の
反射面310は集束面を有する全反射プリズムより成る
のが好ましい。
The optical axis changing means 150 shown in FIGS. 6, 11 and 12 comprises a first lens 340, a reflecting surface 310 and a second lens 330. Each of these elements is preferably formed integrally with the optical sleeve 61. The reflecting surface 310 of the optical axis changing means 150 having a surface including the first and second lenses 340 and 330, respectively, is preferably a total reflection prism having a focusing surface.

【0048】また、光結合装置60は一般にはケース、
特定の場合には嵌合スリーブ70にこの光結合装置をマ
ウントする為の外部フランジ80を含んでいる。図2に
最もよく示す如く、キー81がフランジ80の下部から
突出し、側壁51の底部にスロット90を嵌合するよう
構成する。このフランジ80のキー81と側壁51のス
ロット90は共に光軸変更手段150をOED30と動
作関係でアライメントする第1手段を具える。特に、当
業者には明らかな如く、斯るキー/スロット構成は第1
コリメーション用レンズ330の光軸Zをアライメント
する手段を構成し、プリント基板15と略法線関係にな
るようにする。更に、フランジ80は好ましくは第1デ
ータム面82を含み、これに対してプリント基板15の
前縁が組立てられた結合装置に着座するようにする。図
12に示す如く、データム面82は平面であって、レン
ズ330の光軸と略平行であり、OED30とレンズ3
30間の軸アライメントを確立する正確な基準面となる
ようにする。本発明の好適光結合装置は一体形成される
ので、データム面82とレンズ330の集束軸間の正確
な軸方向距離は光結合装置の形成工程中に正確に確立さ
れる。その結果、OED30の光軸Zはレンズ330の
集束軸と極めて小さい誤差累積でアライメントされる。
The optical coupling device 60 is generally a case,
In certain cases, the mating sleeve 70 includes an outer flange 80 for mounting the optical coupling device. As best shown in FIG. 2, a key 81 projects from the bottom of the flange 80 and is configured to fit a slot 90 in the bottom of the sidewall 51. The key 81 of the flange 80 and the slot 90 of the side wall 51 both comprise first means for aligning the optical axis changing means 150 with the OED 30 in an operational relationship. In particular, such a key / slot configuration is the first as will be appreciated by those skilled in the art.
A means for aligning the optical axis Z of the collimation lens 330 is configured so as to have a substantially normal relationship with the printed circuit board 15. Further, the flange 80 preferably includes a first datum surface 82 against which the leading edge of the printed circuit board 15 seats in the assembled coupling device. As shown in FIG. 12, the datum surface 82 is a plane and is substantially parallel to the optical axis of the lens 330, and the OED 30 and the lens 3
Be an accurate reference plane that establishes axial alignment between 30. Since the preferred optical coupling device of the present invention is integrally formed, the exact axial distance between the datum surface 82 and the focusing axis of the lens 330 is accurately established during the optical coupling device formation process. As a result, the optical axis Z of the OED 30 is aligned with the focusing axis of the lens 330 with an extremely small error accumulation.

【0049】光結合装置60は更に第2データム面83
を含み、プリント基板15の上面17に従ってOED3
0の能動領域35とレンズ330間の距離を正確に確立
する基準面を与える。
The optical coupling device 60 further includes a second datum surface 83.
OED3 according to the upper surface 17 of the printed circuit board 15 including
It provides a reference plane that accurately establishes the distance between the active region 35 of 0 and the lens 330.

【0050】本発明の光結合装置60は本発明の光コネ
クタの組立を容易にし且つ組立工程で生じる誤差の累積
を最小にすることが理解できよう。特に、図6及び図1
2に最もよく示す如く、光コネクタの組立は好ましくは
先ず光結合装置60の光スリーブ61を嵌合スリーブ7
0の穴75内に挿入して始まる。嵌合スリーブ70付き
光結合装置60の光軸変更手段150の適切な角度方向
は、キー81をスロット90に係合させて保証する。特
に、キー81とスロット90との係合により、データム
面83が側壁53,54と略法線方向となり、上壁55
と略平行になるよう保証する。これにより、データム面
83はプリント基板15の上面17を受け且つこれと嵌
合するよう位置される。次に、光結合装置60をケース
50とアライメントされて連結される。光結合装置60
がケース50と一度連結されると、プリント基板15が
ケース50に連結される。データム面82,83はOE
D30がレンズ330と略光的にアライメントされる。
光コネクタ10の各素子の連結はエポキシ等の接着剤を
使用するか超音波溶接等の周知技法により実現可能であ
る。組立てられると、OED30は光軸変更手段150
のレンズ330と光動作関係となる。更に、光ファイバ
コネクタの結合具が嵌合スリーブ70と嵌合すると、フ
ェルール202は穴45と嵌合し、光軸変更手段150
のレンズ340と光動作関係となる。
It will be appreciated that the optical coupling device 60 of the present invention facilitates the assembly of the optical connector of the present invention and minimizes the accumulation of errors that occur during the assembly process. In particular, FIG. 6 and FIG.
2, the assembly of the optical connector preferably first involves fitting the optical sleeve 61 of the optical coupling device 60 with the mating sleeve 7.
It starts by inserting it into the hole 75 of 0. The proper angular orientation of the optical axis changing means 150 of the optical coupling device 60 with the fitting sleeve 70 is ensured by engaging the key 81 with the slot 90. In particular, the engagement of the key 81 and the slot 90 causes the datum surface 83 to be in a direction substantially normal to the side walls 53 and 54, and the upper wall 55.
Guaranteed to be approximately parallel to. Thereby, the datum surface 83 is positioned so as to receive the upper surface 17 of the printed circuit board 15 and to be fitted thereto. Next, the optical coupling device 60 is aligned and connected to the case 50. Optical coupling device 60
Once is connected to the case 50, the printed circuit board 15 is connected to the case 50. Datum surfaces 82 and 83 are OE
D30 is substantially optically aligned with lens 330.
The connection of each element of the optical connector 10 can be realized by using an adhesive such as epoxy or by a well-known technique such as ultrasonic welding. When assembled, the OED 30 serves as the optical axis changing means 150.
The optical relationship with the lens 330 of FIG. Further, when the coupling tool of the optical fiber connector is fitted with the fitting sleeve 70, the ferrule 202 is fitted with the hole 45, and the optical axis changing means 150.
The optical relationship with the lens 340 of FIG.

【0051】図13に示す如く、本発明の実施例による
と、光結合装置60は更に付加アライメント手段を含
み、レンズ330の光軸がOED30の動作軸Zと横方
向に位置合せされるようにする。斯る実施例では、この
横位置合せは光結合装置60から延びる1以上のアライ
メントペグ100を具える。この組立工程中に、斯るペ
グ100はプリント基板15に含まれるソケット110
に正確にマウントされるよう構成される。斯るソケット
110はプリント基板15の製造中に形成され、OED
30の動作軸Zに対して精密に位置決めされるようにす
る。更に、ペグ100のレンズ330に対する位置は光
結合装置60の形成中に精密に固定できる。上述した如
く、本発明の光結合装置60は流動性プラスチック材料
を精密寸法形状にモールドすることにより一体形成可能
である。当業者には明らかな如く、光結合装置の各部品
間の許容限界は単一モールド操作により決められる。従
って、斯る単一モールド操作の使用により、従来装置で
は生じ得た誤差累積を大幅に低減することができる。
As shown in FIG. 13, according to an embodiment of the present invention, the optical coupling device 60 further includes additional alignment means so that the optical axis of the lens 330 is laterally aligned with the operating axis Z of the OED 30. To do. In such an embodiment, this lateral alignment comprises one or more alignment pegs 100 extending from the optical coupling device 60. During the assembling process, the peg 100 may be mounted on the socket 110 included in the printed circuit board 15.
Is configured to be mounted exactly. The socket 110 is formed during the manufacture of the printed circuit board 15, and the OED
Precise positioning with respect to the 30 motion axis Z. Further, the position of the peg 100 with respect to the lens 330 can be precisely fixed during formation of the optical coupling device 60. As described above, the optical coupling device 60 of the present invention can be integrally formed by molding a fluid plastic material into a precise dimension. As will be appreciated by those skilled in the art, the tolerance limits between the components of the optical coupler are determined by a single mold operation. Therefore, the use of such a single mold operation can significantly reduce the error accumulation that can occur with conventional devices.

【0052】図13の実施例は、穴45内に形成された
肩63が除去されて、円錐台形のキャビティ125であ
るスペーサ素子120に置換されるという点で図11及
び図12の実施例と異なる。
The embodiment of FIG. 13 differs from the embodiments of FIGS. 11 and 12 in that the shoulder 63 formed in the hole 45 is removed and replaced by a spacer element 120 which is a frustoconical cavity 125. different.

【0053】本発明の更に他の実施例を図14に示す。
この実施例によると、光結合装置はケース50と一体形
成された光スリーブ40/70より成る。特に、ケース
50はフェルール202をマウントするよう構成されて
いるスリーブ40/70を含んでいる。更に、スリーブ
40/70は図11乃至図13の嵌合スリーブ70と同
一機能を果たす。即ち、それは光コネクタの取付具と嵌
合するよう構成されている。光結合装置の光軸変更手段
150は第1レンズ340、内部反射面310及び第2
レンズ330より構成される。この実施例の光軸変更手
段は上述した透明プラスチック材料で一体形成するのが
好ましい。この光結合装置は更に光軸変更手段150を
OED30及び光スリーブ40/70と光動作関係に維
持する手段より成る。特に、この維持手段は軸穴175
が形成されたハウジングジャケット170を具える。こ
のハウジングジャケット170はスリーブ40/70の
穴45の内端を介してケース50に連結され、穴175
の軸が穴45の軸Xと実質的に一致するようにする。軸
穴45,175の第1端にレンズ340がマウントされ
て、これを閉じ、レンズ340の軸が軸Xと位置合せさ
れ且つレンズ330の軸がOED30の動作軸と位置合
せされるようにする。ハウジングジャケット170は端
壁178を有し、これで軸穴45を部分的に閉鎖する。
端壁178は略円形開口180を含み、これが軸Xに沿
ってレンズ340への光路を形成する。ハウジングジャ
ケット170は図14中に別部材として示され穴45内
にマウントされているが、穴45は一体形成され、内部
にレンズ340をマウントするキャビティを有するよう
にしてもよい。
FIG. 14 shows still another embodiment of the present invention.
According to this embodiment, the optical coupling device comprises an optical sleeve 40/70 integrally formed with the case 50. In particular, case 50 includes sleeve 40/70 configured to mount ferrule 202. Furthermore, the sleeve 40/70 performs the same function as the mating sleeve 70 of FIGS. That is, it is configured to mate with an optical connector fixture. The optical axis changing means 150 of the optical coupling device includes a first lens 340, an internal reflection surface 310 and a second lens 340.
It is composed of a lens 330. The optical axis changing means of this embodiment is preferably integrally formed of the above-mentioned transparent plastic material. The optical coupler further comprises means for maintaining the optical axis changing means 150 in optical operating relationship with the OED 30 and the optical sleeve 40/70. In particular, this retaining means is
And a housing jacket 170 formed with. The housing jacket 170 is connected to the case 50 through the inner end of the hole 45 of the sleeve 40/70, and has a hole 175.
So that the axis of is substantially coincident with the axis X of the hole 45. A lens 340 is mounted on the first ends of the axial holes 45, 175 and is closed so that the axis of the lens 340 is aligned with the axis X and the axis of the lens 330 is aligned with the operating axis of the OED 30. . The housing jacket 170 has an end wall 178, which partially closes the shaft bore 45.
The end wall 178 includes a generally circular aperture 180, which defines an optical path along the axis X to the lens 340. Although the housing jacket 170 is shown as a separate member in FIG. 14 and is mounted in the hole 45, the hole 45 may be integrally formed and may have a cavity for mounting the lens 340 therein.

【0054】以上、本発明の光コネクタ及びそれに使用
する光結合部材を好適実施例につき説明した。しかし、
本発明は斯る実施例のみに限定するべきではなく、本発
明の要旨を逸脱することなく用途に応じて種々の変形変
更が可能であることが当業者には容易に理解できよう。
The preferred embodiments of the optical connector of the present invention and the optical coupling member used therefor have been described above. But,
It should be understood by those skilled in the art that the present invention should not be limited to such embodiments, and that various modifications and changes can be made according to the application without departing from the gist of the present invention.

【0055】[0055]

【発明の効果】上述の説明から理解される如く、本発明
の光コネクタ及びそれに使用する光結合装置は種々の実
用上の顕著な効果を有する。発光又は受光用OEDと光
伝送用光ファイバとの光軸が不一致であっても、光軸変
更手段又は光結合装置により両者間を光動作関係に結合
することができる。従って、OED及び関連電子回路素
子はプリント基板にSMT技法で直接接続し、寄生イン
ダクタンス、キャパシタンス及び抵抗を最小にすること
ができる。また、OEDと光ファイバ伝送線間の配置の
自由度が増加し組立作業性が大幅に改善できる。更にま
た、レンズや反射面等の光軸変更手段を有する光結合装
置をプラスチック材料で一体モールドしてケースにマウ
ントすることにより、光コネクタの組立作業性が改善さ
れるのみならず、一体構造であるので多数の部品から構
成される従来装置に比して累積誤差がなく高精度が得ら
れる。
As can be understood from the above description, the optical connector of the present invention and the optical coupling device used therein have various practically remarkable effects. Even if the optical axes of the light emitting or receiving OED and the optical fiber for optical transmission do not coincide with each other, the optical axis changing means or the optical coupling device can couple the two in an optical operation relationship. Therefore, the OED and related electronic circuit elements can be directly connected to the printed circuit board by SMT technique to minimize parasitic inductance, capacitance and resistance. Further, the degree of freedom in the arrangement between the OED and the optical fiber transmission line is increased, and the assembly workability can be greatly improved. Furthermore, by integrally molding an optical coupling device having an optical axis changing means such as a lens and a reflecting surface with a plastic material and mounting it in a case, not only the workability of assembling the optical connector is improved but also an integrated structure is provided. Therefore, there is no accumulated error and high accuracy can be obtained as compared with the conventional device composed of a large number of parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の光コネクタの分解斜視図。FIG. 1 is an exploded perspective view of a conventional optical connector.

【図2】本発明の光コネクタの実施例の模型図。FIG. 2 is a schematic diagram of an embodiment of the optical connector of the present invention.

【図3】直交するコヒーレント光源と受光素子間を結合
する本発明の光結合装置の第1実施例の構成図。
FIG. 3 is a configuration diagram of a first embodiment of an optical coupling device of the present invention that couples an orthogonal coherent light source and a light receiving element.

【図4】直交する非コヒーレント光源と受光素子間を結
合する本発明の光結合装置の第2実施例の構成図。
FIG. 4 is a configuration diagram of a second embodiment of an optical coupling device of the present invention that couples an orthogonal non-coherent light source and a light receiving element.

【図5】直交する非コヒーレント光源と受光素子間を結
合する本発明の光結合装置の第3実施例の構成図。
FIG. 5 is a configuration diagram of a third embodiment of an optical coupling device of the present invention that couples an orthogonal non-coherent light source and a light receiving element.

【図6】本発明の光コネクタの第1実施例の一部切欠い
た分解斜視図。
FIG. 6 is a partially cutaway exploded perspective view of the first embodiment of the optical connector of the present invention.

【図7】本発明のシンプレックス型光コネクタの実施例
の一部切欠いた分解斜視図。
FIG. 7 is a partially cutaway exploded perspective view of a simplex type optical connector according to an embodiment of the present invention.

【図8】図7のシンプレックス型光コネクタの嵌合状態
説明用斜視図。
8 is a perspective view for explaining a fitted state of the simplex optical connector of FIG.

【図9】本発明のデュプレックス型光コネクタの実施例
の一部切欠いた分解斜視図。
FIG. 9 is a partially cutaway exploded perspective view of a duplex type optical connector according to an embodiment of the present invention.

【図10】図9のデュプレックス型光コネクタの嵌合状
態を説明する斜視図。
FIG. 10 is a perspective view illustrating a fitted state of the duplex optical connector of FIG.

【図11】本発明の光結合装置の第1実施例の縦断面
図。
FIG. 11 is a vertical cross-sectional view of the first embodiment of the optical coupling device of the present invention.

【図12】図11の光結合装置を使用する本発明の光コ
ネクタの一実施例の断面図。
12 is a sectional view of an embodiment of the optical connector of the present invention using the optical coupling device of FIG.

【図13】光結合装置の変形実施例を使用する本発明の
光コネクタの断面図。
FIG. 13 is a sectional view of an optical connector of the present invention using a modified embodiment of the optical coupling device.

【図14】光結合装置の更に他の実施例を使用する本発
明の光コネクタの断面図。
FIG. 14 is a sectional view of an optical connector of the present invention using still another embodiment of the optical coupling device.

【符号の説明】[Explanation of symbols]

10 光コネクタ 30 光電素子(OED) 35 発光/受光面 15 基板 17 基板表面 50 ケース 51 側壁 150 光結合装置 203 光ファイバ伝送線 310 反射面 330,340 レンズ 10 Optical Connector 30 Photoelectric Element (OED) 35 Light Emitting / Receiving Surface 15 Substrate 17 Substrate Surface 50 Case 51 Sidewall 150 Optical Coupling Device 203 Optical Fiber Transmission Line 310 Reflecting Surface 330, 340 Lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 フランシス トーマス デラハンテイ アメリカ合衆国 ペンシルバニア州 18940 ニュートン カーメルプレイス 6 (72)発明者 アレン ハイニー アメリカ合衆国 ニュージャージー州 08904 ハイランド パーク ノースフィ フスアベニュー 292 (72)発明者 ビル ヘンリー レイセン アメリカ合衆国 ニュージャージー州 08886 スチュアーツビル トムソンスト リート 511 (72)発明者 リチャード グレゴリー ウエラー アメリカ合衆国 ニュージャージー州 08691 ロビンスビル ギャルストンドラ イブ 4 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Francis Thomas De La Hantey United States of America Pennsylvania 18940 Newton Carmel Place 6 (72) Inventor Allen Haney United States New Jersey 08904 Highland Park North Fifth Avenue 292 (72) Inventor Bill Henry Reisen United States of America New Jersey 08886 Stuartsville Thomson Street 511 (72) Inventor Richard Gregory Welerer United States New Jersey 08691 Robinsville Galston Drive 4

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板に関連回路素子と共に接続された光電
素子と、 該光電素子が接続された前記基板を少なくとも部分的に
包囲するケースと、 該ケースの側壁に取付けられ、該側壁を介して前記ケー
ス内へ導かれる光ファイバ伝送線と、 該光ファイバ伝送線の伝送軸を前記光電素子の発光/受
光面に結合する光結合装置と、を具えることを特徴とす
る光コネクタ。
1. A photoelectric element connected to a substrate together with related circuit elements, a case that at least partially surrounds the substrate to which the photoelectric element is connected, and a case mounted on a side wall of the case through the side wall. An optical connector comprising: an optical fiber transmission line guided into the case; and an optical coupling device for coupling a transmission axis of the optical fiber transmission line to a light emitting / receiving surface of the photoelectric element.
【請求項2】基板の表面に関連回路素子と共に接続さ
れ、前記基板の表面と略平行な発光/受光面を有する光
電素子と、 該光電素子の前記発光/受光面に略平行に配置された伝
送軸を有する光ファイバ伝送線と、 該光ファイバ伝送線の前記伝送軸を前記光電素子の前記
発光/受光面に光学的に結合する光結合装置と、を具え
ることを特徴とする光コネクタ。
2. A photoelectric element, which is connected to a surface of a substrate together with related circuit elements, and has a light emitting / light receiving surface substantially parallel to the surface of the substrate; and a photoelectric element arranged substantially parallel to the light emitting / light receiving surface of the photoelectric element. An optical connector comprising: an optical fiber transmission line having a transmission axis; and an optical coupling device for optically coupling the transmission axis of the optical fiber transmission line to the light emitting / receiving surface of the photoelectric element. .
【請求項3】基板の表面に関連回路素子と共に接続され
た光電素子と、 該光電素子が接続された前記基板を包囲するケースと、 該ケースの側壁に形成された開口を介して光ファイバ伝
送線の一端を固定する固定手段と、 前記光ファイバ伝送線の伝送軸を前記光電素子の発光/
受光面に光学的に結合する光結合装置と、を具え、該光
結合装置及び前記固定手段を一体的に形成し前記ケース
に固定することを特徴とする光コネクタ。
3. A photoelectric element connected to a surface of a substrate together with related circuit elements, a case surrounding the substrate to which the photoelectric element is connected, and an optical fiber transmission through an opening formed in a side wall of the case. Fixing means for fixing one end of the line, and a transmission axis of the optical fiber transmission line for emitting light from the photoelectric element /
An optical connector comprising: an optical coupling device that is optically coupled to a light-receiving surface; and the optical coupling device and the fixing means are integrally formed and fixed to the case.
【請求項4】光ファイバ伝送線の一端から光ファイバを
挿入する光ファイバ挿入端と、 該光ファイバ挿入端から離間し、前記光ファイバ伝送線
の伝送軸と異なる方向へ光路を変更する反射面を含む光
軸変更部と、を具え、前記光ファイバ伝送線の伝送軸を
光電素子の発光/受光面に結合する一体構造の光結合装
置。
4. An optical fiber insertion end into which an optical fiber is inserted from one end of an optical fiber transmission line, and a reflecting surface which is separated from the optical fiber insertion end and changes an optical path in a direction different from the transmission axis of the optical fiber transmission line. And an optical axis changing unit including the optical axis changing unit, the optical axis changing unit including the optical axis changing unit including the optical axis changing unit.
JP04979694A 1993-02-23 1994-02-23 Optical connector and optical coupling device used therein Expired - Lifetime JP3540834B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2195493A 1993-02-23 1993-02-23
US08/021,954 1993-02-23

Publications (2)

Publication Number Publication Date
JPH06273641A true JPH06273641A (en) 1994-09-30
JP3540834B2 JP3540834B2 (en) 2004-07-07

Family

ID=21807042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04979694A Expired - Lifetime JP3540834B2 (en) 1993-02-23 1994-02-23 Optical connector and optical coupling device used therein

Country Status (5)

Country Link
US (2) US5515468A (en)
EP (1) EP0613032B1 (en)
JP (1) JP3540834B2 (en)
KR (1) KR940020727A (en)
DE (1) DE69416016T2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014987A (en) * 2001-06-28 2003-01-15 Kyocera Corp Optical path converting body and its packaging structure and optical module
JP2004533004A (en) * 2000-11-01 2004-10-28 インテル・コーポレーション Apparatus and method for collimating and transferring beams
JP2006023777A (en) * 2005-09-15 2006-01-26 Seiko Epson Corp Optical module, optical communication apparatus, photoelectric consolidated integrated circuit, circuit board and electronic apparatus
JP2006133774A (en) * 2004-11-08 2006-05-25 Agilent Technol Inc Lens, lens array and optical receiver
JP2006178001A (en) * 2004-12-20 2006-07-06 Ibiden Co Ltd Optical path convertible member, multilayer printed wiring board, and optical communication device
WO2007046221A1 (en) * 2005-10-18 2007-04-26 Advantest Corporation Hermetically sealing member with optical transmission means, optoelectronic device and optical transmission method
JP2007264411A (en) * 2006-03-29 2007-10-11 Suzuka Fuji Xerox Co Ltd Optical module
US7287914B2 (en) 2003-04-30 2007-10-30 Fujikura Ltd. Optical connector assembly, connector holder, and optical connector
US7373044B2 (en) 2003-04-18 2008-05-13 International Business Machines Corporation Optical link module, optical interconnection method, information processor including the optical link module, signal transfer method, prism and method of manufacturing the prism
US7473038B2 (en) 2005-05-25 2009-01-06 Fujikura Ltd. Optical connector for coupling an optical fiber to a circuit board
US7534052B2 (en) 2003-04-30 2009-05-19 Fujikura Ltd. Optical transceiver and optical connector
WO2010098395A1 (en) * 2009-02-25 2010-09-02 矢崎総業株式会社 Optical communication module and optical communication connector
JP2011205102A (en) * 2010-03-25 2011-10-13 Furukawa Electric Co Ltd:The Connector with built-in module
JP2012032727A (en) * 2010-08-03 2012-02-16 Yazaki Corp Small-diameter bending optical connector
WO2013061742A1 (en) * 2011-10-26 2013-05-02 古河電気工業株式会社 Optical module
WO2013140922A1 (en) * 2012-03-23 2013-09-26 株式会社エンプラス Optical receptacle and optical module provided with same
WO2014103229A1 (en) * 2012-12-27 2014-07-03 パナソニック株式会社 Connector for signal transmission, cable provided with connector for signal transmission, display apparatus provided with cable, and image signal output apparatus
JP2016161942A (en) * 2015-02-26 2016-09-05 住友電気工業株式会社 Bi-directional optical module
JP2017181757A (en) * 2016-03-30 2017-10-05 株式会社エンプラス Optical receptacle, optical module and method for manufacturing optical module

Families Citing this family (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69416016T2 (en) * 1993-02-23 1999-07-15 Whitaker Corp Fiber optic coupling device
US5528408A (en) * 1994-10-12 1996-06-18 Methode Electronics, Inc. Small footprint optoelectronic transceiver with laser
US5734558A (en) * 1995-01-13 1998-03-31 Poplawski; Daniel S. Removable optoelectronic module
US5717533A (en) 1995-01-13 1998-02-10 Methode Electronics Inc. Removable optoelectronic module
US6220878B1 (en) 1995-10-04 2001-04-24 Methode Electronics, Inc. Optoelectronic module with grounding means
US5546281A (en) 1995-01-13 1996-08-13 Methode Electronics, Inc. Removable optoelectronic transceiver module with potting box
WO1997032344A1 (en) * 1996-02-28 1997-09-04 The Whitaker Corporation Packaging for optoelectronic device
US5692083A (en) * 1996-03-13 1997-11-25 The Whitaker Corporation In-line unitary optical device mount and package therefor
US6036375A (en) * 1996-07-26 2000-03-14 Kyocera Corporation Optical semiconductor device housing package
KR19980042931A (en) * 1996-11-29 1998-08-17 쿠라우찌 노리타카 Optical module and manufacturing method thereof, optical reflecting member of optical module, positioning method and positioning device
US6071016A (en) * 1997-03-04 2000-06-06 Hamamatsu Photonics K.K. Light receiving module for optical communication and light receiving unit thereof
US6124886A (en) 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
US6326613B1 (en) 1998-01-07 2001-12-04 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
US5913002A (en) * 1997-12-31 1999-06-15 The Whitaker Corporation Optical coupling device for passive alignment of optoelectronic devices and fibers
US6690268B2 (en) 2000-03-02 2004-02-10 Donnelly Corporation Video mirror systems incorporating an accessory module
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6278377B1 (en) 1999-08-25 2001-08-21 Donnelly Corporation Indicator for vehicle accessory
US6445287B1 (en) 2000-02-28 2002-09-03 Donnelly Corporation Tire inflation assistance monitoring system
DE19802190C1 (en) 1998-01-16 1999-09-02 Siemens Ag Multi-channel optical module
JP2907203B1 (en) 1998-02-20 1999-06-21 住友電気工業株式会社 Optical module
JP2907202B1 (en) 1998-02-20 1999-06-21 住友電気工業株式会社 Optical module manufacturing method
US6217232B1 (en) 1998-03-24 2001-04-17 Micron Technology, Inc. Method and apparatus for aligning an optic fiber with an opto-electronic device
US6380563B2 (en) 1998-03-30 2002-04-30 Micron Technology, Inc. Opto-electric mounting apparatus
US6713788B2 (en) 1998-03-30 2004-03-30 Micron Technology, Inc. Opto-electric mounting apparatus
US6420975B1 (en) 1999-08-25 2002-07-16 Donnelly Corporation Interior rearview mirror sound processing system
US6179627B1 (en) 1998-04-22 2001-01-30 Stratos Lightwave, Inc. High speed interface converter module
US6203333B1 (en) 1998-04-22 2001-03-20 Stratos Lightwave, Inc. High speed interface converter module
US6207950B1 (en) * 1999-01-11 2001-03-27 Lightlogic, Inc. Optical electronic assembly having a flexure for maintaining alignment between optical elements
NL1011261C2 (en) * 1999-02-10 2000-08-11 Lely Research Holding Ag Electronics housing.
DE19910164C2 (en) * 1999-02-24 2002-10-17 Infineon Technologies Ag Electro-optical module
JP2000292656A (en) * 1999-04-01 2000-10-20 Sony Corp Light transmitter, and its manufacture
US7013088B1 (en) 1999-05-26 2006-03-14 Jds Uniphase Corporation Method and apparatus for parallel optical interconnection of fiber optic transmitters, receivers and transceivers
US6873800B1 (en) 1999-05-26 2005-03-29 Jds Uniphase Corporation Hot pluggable optical transceiver in a small form pluggable package
US6213651B1 (en) 1999-05-26 2001-04-10 E20 Communications, Inc. Method and apparatus for vertical board construction of fiber optic transmitters, receivers and transceivers
US20020033979A1 (en) * 1999-05-27 2002-03-21 Edwin Dair Method and apparatus for multiboard fiber optic modules and fiber optic module arrays
US20040069997A1 (en) * 1999-05-27 2004-04-15 Edwin Dair Method and apparatus for multiboard fiber optic modules and fiber optic module arrays
US7116912B2 (en) * 1999-05-27 2006-10-03 Jds Uniphase Corporation Method and apparatus for pluggable fiber optic modules
US6952532B2 (en) * 1999-05-27 2005-10-04 Jds Uniphase Corporation Method and apparatus for multiboard fiber optic modules and fiber optic module arrays
US20010048793A1 (en) * 1999-05-27 2001-12-06 Edwin Dair Method and apparatus for multiboard fiber optic modules and fiber optic module arrays
US20020030872A1 (en) * 1999-05-27 2002-03-14 Edwin Dair Method and apparatus for multiboard fiber optic modules and fiber optic module arrays
US6632030B2 (en) 1999-05-27 2003-10-14 E20 Communications, Inc. Light bending optical block for fiber optic modules
JP2001059923A (en) * 1999-06-16 2001-03-06 Seiko Epson Corp Optical module, production thereof, semiconductor device and light transmission device
US6302596B1 (en) * 1999-07-07 2001-10-16 International Business Machines Corporation Small form factor optoelectronic transceivers
US6220873B1 (en) 1999-08-10 2001-04-24 Stratos Lightwave, Inc. Modified contact traces for interface converter
WO2001033272A1 (en) * 1999-11-01 2001-05-10 Cielo Communications, Inc. Optical device using chip-on-board technology
DE10004411A1 (en) * 2000-02-02 2001-08-16 Infineon Technologies Ag Electro-optical transmitter / receiver module and method for its production
US7480149B2 (en) 2004-08-18 2009-01-20 Donnelly Corporation Accessory module for vehicle
US6396408B2 (en) 2000-03-31 2002-05-28 Donnelly Corporation Digital electrochromic circuit with a vehicle network
GB2365989B (en) * 2000-05-08 2003-05-14 Mitel Semiconductor Ab Optic fiber interface device on folded circuit board
US6454470B1 (en) * 2000-08-31 2002-09-24 Stratos Lightwave, Inc. Optoelectronic interconnect module
US6553166B1 (en) * 2000-09-20 2003-04-22 Lsi Logic Corporation Concentric optical cable with full duplex connectors
US6913400B2 (en) * 2000-11-03 2005-07-05 Tyco Electronics Corporation Optoelectric module for multi-fiber arrays
US6860649B2 (en) * 2000-12-27 2005-03-01 Philip J. Edwards Transceiver for LC connector
US7079775B2 (en) 2001-02-05 2006-07-18 Finisar Corporation Integrated memory mapped controller circuit for fiber optics transceiver
US6870976B2 (en) 2001-03-13 2005-03-22 Opnext, Inc. Filter based multiplexer/demultiplexer component
US6804770B2 (en) 2001-03-22 2004-10-12 International Business Machines Corporation Method and apparatus for using past history to avoid flush conditions in a microprocessor
US6692161B2 (en) * 2001-03-29 2004-02-17 Intel Corporation High frequency emitter and detector packaging scheme for 10GB/S transceiver
US6796715B2 (en) * 2001-04-14 2004-09-28 E20 Communications, Inc. Fiber optic modules with pull-action de-latching mechanisms
US6692159B2 (en) 2001-04-14 2004-02-17 E20 Communications, Inc. De-latching mechanisms for fiber optic modules
US6635866B2 (en) 2001-04-19 2003-10-21 Internation Business Machines Corporation Multi-functional fiber optic coupler
US20020181515A1 (en) * 2001-05-31 2002-12-05 Kennet Vilhemsson Apparatus and method for controlling the operating wavelength of a laser diode
US6595699B1 (en) * 2001-08-03 2003-07-22 National Semiconductor Corporation Optoelectronic package with controlled fiber standoff
US6655854B1 (en) 2001-08-03 2003-12-02 National Semiconductor Corporation Optoelectronic package with dam structure to provide fiber standoff
US6592269B1 (en) * 2001-08-31 2003-07-15 Cypress Semiconductor Corporation Apparatus and method for integrating an optical transceiver with a surface mount package
US7001083B1 (en) 2001-09-21 2006-02-21 National Semiconductor Corporation Technique for protecting photonic devices in optoelectronic packages with clear overmolding
EP1298473A1 (en) * 2001-09-27 2003-04-02 Agilent Technologies, Inc. (a Delaware corporation) A package for opto-electrical components
US6859469B2 (en) * 2001-12-11 2005-02-22 Adc Telecommunications, Inc. Method and apparatus for laser wavelength stabilization
US7075656B2 (en) * 2001-12-11 2006-07-11 Adc Telecommunications, Inc. Method and algorithm for continuous wavelength locking
US7038782B2 (en) * 2001-12-11 2006-05-02 Adc Telecommunications, Inc. Robust wavelength locker for control of laser wavelength
WO2003065084A1 (en) 2002-01-31 2003-08-07 Donnelly Corporation Vehicle accessory module
JP2006506657A (en) * 2002-03-14 2006-02-23 エスエーイー・マグネティクス(エイチ・ケイ)リミテッド Integrated platform for active optical alignment of semiconductor devices with optical fibers
US7021833B2 (en) * 2002-03-22 2006-04-04 Ban-Poh Loh Waveguide based optical coupling of a fiber optic cable and an optoelectronic device
TW547659U (en) * 2002-05-24 2003-08-11 Hon Hai Prec Ind Co Ltd Optical connector
JP2004047831A (en) * 2002-07-12 2004-02-12 Mitsubishi Electric Corp Light receiving element module
EP1543365A1 (en) * 2002-09-23 2005-06-22 Huber+Suhner Ag Connector device for the detachable connection of at least one light wave guide to at least one optoelectronic component and method for assembly of such a connector device
US6963683B2 (en) * 2002-09-30 2005-11-08 Intel Corporation System and method for a packaging a monitor photodiode with a laser in an optical subassembly
US6921214B2 (en) * 2002-12-12 2005-07-26 Agilent Technologies, Inc. Optical apparatus and method for coupling output light from a light source to an optical waveguide
JP2004246279A (en) * 2003-02-17 2004-09-02 Seiko Epson Corp Optical module and its manufacturing method, optical communication device, optical and electric mixed integrated circuit, circuit board, electronic equipment
US6789959B1 (en) 2003-02-27 2004-09-14 Xilinx, Inc. Fiber optic integrated circuit package using micromirrors
US6945712B1 (en) 2003-02-27 2005-09-20 Xilinx, Inc. Fiber optic field programmable gate array integrated circuit packaging
US7486524B2 (en) * 2003-03-03 2009-02-03 Finisar Corporation Module housing for improved electromagnetic radiation containment
US6888988B2 (en) * 2003-03-14 2005-05-03 Agilent Technologies, Inc. Small form factor all-polymer optical device with integrated dual beam path based on total internal reflection optical turn
US7215554B2 (en) * 2003-08-24 2007-05-08 Stratos International, Inc. Pluggable video module
US7083333B2 (en) 2003-08-29 2006-08-01 Intel Corporation Optical packages and methods to manufacture the same
JP2005116400A (en) * 2003-10-09 2005-04-28 Auto Network Gijutsu Kenkyusho:Kk Optical active connector
JP2005197659A (en) * 2003-12-08 2005-07-21 Sony Corp Optical apparatus and image forming apparatus
JP3920264B2 (en) * 2003-12-26 2007-05-30 株式会社東芝 Manufacturing method of optical semiconductor module
US7352969B2 (en) * 2004-09-30 2008-04-01 Intel Corporation Fiber optic communication assembly
US20060067630A1 (en) * 2004-09-30 2006-03-30 Kim Brian H Optical transceiver module
US7575380B2 (en) * 2004-10-15 2009-08-18 Emcore Corporation Integrated optical fiber and electro-optical converter
US7255495B2 (en) * 2004-11-15 2007-08-14 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Axis translation installation mechanism for optoelectronic modules
EP1827908B1 (en) 2004-12-15 2015-04-29 Magna Electronics Inc. An accessory module system for a vehicle window
US7342841B2 (en) * 2004-12-21 2008-03-11 Intel Corporation Method, apparatus, and system for active refresh management
US7850374B2 (en) * 2005-01-14 2010-12-14 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical transmitter module with an integrated lens and method for making the module
KR20070110882A (en) * 2005-02-16 2007-11-20 어플라이드 머티어리얼스, 인코포레이티드 Optical coupling to ic chip
US8238699B2 (en) * 2005-03-04 2012-08-07 Finisar Corporation Semiconductor-based optical transceiver
CN101384939B (en) 2006-02-10 2010-06-02 松下电器产业株式会社 Lens barrel, image pickup device, lens barrel inspecting method, and lens barrel manufacturing method
US7578623B2 (en) * 2006-08-21 2009-08-25 Intel Corporation Aligning lens carriers and ferrules with alignment frames
US7371014B2 (en) * 2006-08-21 2008-05-13 Intel Corporation Monolithic active optical cable assembly for data device applications and various connector types
US7852015B1 (en) * 2006-10-11 2010-12-14 SemiLEDs Optoelectronics Co., Ltd. Solid state lighting system and maintenance method therein
US7543994B2 (en) 2006-10-19 2009-06-09 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Multi-optical fiber connector module for use with a transceiver module and method for coupling optical signals between the transceiver module and multiple optical fibers
CN101617219B (en) * 2007-02-23 2012-11-21 塞莫尼根分析技术有限责任公司 Hand-held, self-contained optical emission spectroscopy (OES) analyzer
US7745898B2 (en) * 2007-12-20 2010-06-29 International Business Machines Corporation Multichip package, methods of manufacture thereof and articles comprising the same
EP2116879B1 (en) * 2008-04-10 2018-04-04 Tyco Electronics Nederland B.V. Optical interface
US8159956B2 (en) 2008-07-01 2012-04-17 Finisar Corporation Diagnostics for serial communication busses
US20100098374A1 (en) * 2008-10-20 2010-04-22 Avago Technologies Fiber Ip (Signgapore) Pte. Ltd. Optoelectronic component based on premold technology
US8570374B2 (en) 2008-11-13 2013-10-29 Magna Electronics Inc. Camera for vehicle
US8985865B2 (en) * 2008-11-28 2015-03-24 Us Conec, Ltd. Unitary fiber optic ferrule and adapter therefor
JP2011059487A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Method of manufacturing optical path connector, and the optical path change optical connector
US8923670B2 (en) 2009-11-11 2014-12-30 Samtec, Inc. Molded optical structure for optical transceiver
CN104977668A (en) * 2010-03-19 2015-10-14 康宁公司 Fiber Optic Interface Device With Positionable Cleaning Cover
WO2011116156A2 (en) * 2010-03-19 2011-09-22 Corning Incorporated Small-form-factor fiber optic interface devices with an internal lens
US8262297B2 (en) 2010-07-30 2012-09-11 Tyco Electronics Corporation Body having a dedicated lens for imaging an alignment feature
US8977088B2 (en) 2010-07-30 2015-03-10 Tyco-Electronics Corporation Interposer with alignment features
WO2012017262A1 (en) * 2010-08-06 2012-02-09 Fci Optoelectronic connector
JP5666873B2 (en) * 2010-10-13 2015-02-12 富士フイルム株式会社 Ultrasonic diagnostic equipment
US8581173B2 (en) * 2010-10-27 2013-11-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Fiber optic transceiver module having a molded cover in which an optical beam transformer made of an elastomer is integrally formed
TWI493896B (en) * 2010-12-30 2015-07-21 Hon Hai Prec Ind Co Ltd Optical fiber communication apparatus
TWM449964U (en) 2011-01-18 2013-04-01 Framatome Connectors Int An optical communications system, and an optical communication module
CN103339543B (en) 2011-01-20 2016-12-21 康宁股份有限公司 There is the receptacle ferrule assembly of gradient-index lens and use its joints of optical fibre
US8888383B2 (en) * 2011-05-03 2014-11-18 Avego Technologies General Ip (Singapore) Pte. Ltd. Active optical cable (AOC) connector having a molded plastic leadframe, an AOC that incorporates the AOC connector, and a method of using an AOC
WO2013101112A1 (en) * 2011-12-29 2013-07-04 Intel Corporation Two-dimensional, high-density optical connector
WO2013101184A1 (en) 2011-12-30 2013-07-04 Intel Corporation Optical i/o system using planar light-wave integrated circuit
JP6011958B2 (en) * 2012-03-28 2016-10-25 株式会社エンプラス Optical receptacle and optical module having the same
US9052478B2 (en) * 2012-03-30 2015-06-09 Corning Cable Systems Llc Total-internal-reflection fiber optic interface modules with different optical paths and assemblies using same
US9435963B2 (en) 2012-03-30 2016-09-06 Corning Cable Systems Llc Misalignment-tolerant total-internal-reflection fiber optic interface modules and assemblies with high coupling efficiency
US8913858B2 (en) 2012-03-30 2014-12-16 Corning Cable Systems Llc Total-internal-reflection fiber optic interface modules and assemblies
JP5962980B2 (en) * 2012-08-09 2016-08-03 ソニー株式会社 Photoelectric composite module
EP2713193A1 (en) 2012-09-28 2014-04-02 CCS Technology, Inc. A method of manufacturing an assembly to couple an optical fiber to an opto-electronic component
TWI578023B (en) * 2012-10-08 2017-04-11 鴻海精密工業股份有限公司 Optical coupling lens
TWI565989B (en) * 2012-12-14 2017-01-11 鴻海精密工業股份有限公司 Optical fiber connector
TWI572923B (en) * 2013-05-15 2017-03-01 鴻海精密工業股份有限公司 Optical communication module
US10033464B2 (en) 2013-05-28 2018-07-24 Stmicroelectronics S.R.L. Optoelectronic device having improved optical coupling
JP6159239B2 (en) * 2013-12-09 2017-07-05 APRESIA Systems株式会社 Optical communication module and optical communication device
WO2015148840A1 (en) 2014-03-26 2015-10-01 Tyco Electronics Corporation Optical adapter module with managed connectivity
US9939596B2 (en) * 2015-10-29 2018-04-10 Samsung Electronics Co., Ltd. Optical integrated circuit package
US10838217B2 (en) * 2016-06-07 2020-11-17 Inuitive Ltd. Laser diode collimator and a pattern projecting device using same
US10466427B2 (en) * 2017-03-14 2019-11-05 Finisar Corporation Optical module with integrated lens
CN109839701A (en) * 2017-11-29 2019-06-04 海思光电子有限公司 Light emitting secondary module and optical transceiver module
CN109991704A (en) * 2018-01-02 2019-07-09 台达电子工业股份有限公司 Optical transceiver module
DE102018106570B4 (en) * 2018-03-20 2023-05-11 Lightworks GmbH Kit with LED module
US11474312B2 (en) 2020-02-28 2022-10-18 Ii-Vi Delaware, Inc. Optoelectronic module for receiving multiple optical connectors
FR3139636A1 (en) * 2022-09-09 2024-03-15 Luxor Lighting light emitting system

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222629A (en) * 1978-03-27 1980-09-16 Sperry Corporation Fiber optic connector assembly
US4186995A (en) * 1978-03-30 1980-02-05 Amp Incorporated Light device, lens, and fiber optic package
US4307934A (en) * 1978-05-08 1981-12-29 General Dynamics, Pomona Division Packaged fiber optic modules
US4273413A (en) * 1979-02-26 1981-06-16 Amp Incorporated Photoelectric element/optical cable connector
GB2162336B (en) * 1984-07-25 1988-07-13 Magnetic Controls Co Bi-directional optical fibre coupler
US4718744A (en) * 1985-08-16 1988-01-12 Amp Incorporated Collimating lens and holder for an optical fiber
US4756590A (en) * 1985-09-03 1988-07-12 American Telephone And Telegraph Company, At&T Bell Laboratories Optical component package
DE3543558C2 (en) * 1985-12-10 1996-09-19 Licentia Gmbh Opto-electrical coupling arrangement
US4842360A (en) * 1987-06-18 1989-06-27 Summit Technology, Inc. High energy laser-to-waveguide coupling devices and methods
US4897711A (en) * 1988-03-03 1990-01-30 American Telephone And Telegraph Company Subassembly for optoelectronic devices
US5017263A (en) * 1988-12-23 1991-05-21 At&T Bell Laboratories Optoelectronic device package method
US5073003A (en) * 1988-12-23 1991-12-17 At&T Bell Laboratories Optoelectronic device package method and apparatus
US4911519A (en) * 1989-02-01 1990-03-27 At&T Bell Laboratories Packaging techniques for optical transmitters/receivers
CA2019074C (en) * 1989-06-19 1993-06-01 Takayuki Masuko Photo-semiconductor module
JPH0331808A (en) * 1989-06-29 1991-02-12 Fujitsu Ltd Structure of optical semiconductor module
US4935856A (en) * 1989-10-05 1990-06-19 Dialight Corporation Surface mounted LED package
US4979791A (en) * 1989-12-08 1990-12-25 Amp Incorporated Laser diode connector assembly
US5056881A (en) * 1990-04-12 1991-10-15 Amp Incorporated Collimated laser diode
US5042891A (en) * 1990-06-21 1991-08-27 Amp Incorporated Active device mount assembly with interface mount for push-pull coupling type optical fiber connectors
EP0463214B1 (en) * 1990-06-27 1995-09-13 Siemens Aktiengesellschaft Transmitting- and receiving module for a bidirectional optical communication- and signal-transmission
SE468150B (en) * 1991-05-06 1992-11-09 Asea Brown Boveri OPTION ELECTRONIC COMPONENT
DE69416016T2 (en) * 1993-02-23 1999-07-15 Whitaker Corp Fiber optic coupling device
US5416870A (en) * 1993-12-03 1995-05-16 Motorola, Inc. Optoelectronic interface device and method with reflective surface

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533004A (en) * 2000-11-01 2004-10-28 インテル・コーポレーション Apparatus and method for collimating and transferring beams
JP2003014987A (en) * 2001-06-28 2003-01-15 Kyocera Corp Optical path converting body and its packaging structure and optical module
US7903911B2 (en) 2003-04-18 2011-03-08 International Business Machines Corporation Optical link module, optical interconnection method, information processor including the optical link module, signal transfer method, prism and method of manufacturing the prism
US7373044B2 (en) 2003-04-18 2008-05-13 International Business Machines Corporation Optical link module, optical interconnection method, information processor including the optical link module, signal transfer method, prism and method of manufacturing the prism
US7489840B2 (en) 2003-04-18 2009-02-10 International Business Machines Corporation Optical link module, optical interconnection method, information processor including the optical link module, signal transfer method, prism and method of manufacturing the prism
US7918610B2 (en) 2003-04-30 2011-04-05 Fujikura Ltd. Optical transceiver and optical connector
US7534052B2 (en) 2003-04-30 2009-05-19 Fujikura Ltd. Optical transceiver and optical connector
US7287914B2 (en) 2003-04-30 2007-10-30 Fujikura Ltd. Optical connector assembly, connector holder, and optical connector
JP2006133774A (en) * 2004-11-08 2006-05-25 Agilent Technol Inc Lens, lens array and optical receiver
JP4646618B2 (en) * 2004-12-20 2011-03-09 イビデン株式会社 Optical path conversion member, multilayer printed wiring board, and optical communication device
US7715666B2 (en) 2004-12-20 2010-05-11 Ibiden Co., Ltd. Optical path converting member, multilayer print circuit board, and device for optical communication
US7764860B2 (en) 2004-12-20 2010-07-27 Ibiden Co., Ltd. Optical path converting member, multilayer print circuit board, and device for optical communication
JP2006178001A (en) * 2004-12-20 2006-07-06 Ibiden Co Ltd Optical path convertible member, multilayer printed wiring board, and optical communication device
US7801398B2 (en) 2004-12-20 2010-09-21 Ibiden Co., Ltd. Optical path converting member, multilayer print circuit board, and device for optical communication
US7995880B2 (en) 2004-12-20 2011-08-09 Ibiden Co., Ltd. Optical path converting member, multilayer print circuit board, and device for optical communication
US7473038B2 (en) 2005-05-25 2009-01-06 Fujikura Ltd. Optical connector for coupling an optical fiber to a circuit board
JP2006023777A (en) * 2005-09-15 2006-01-26 Seiko Epson Corp Optical module, optical communication apparatus, photoelectric consolidated integrated circuit, circuit board and electronic apparatus
WO2007046221A1 (en) * 2005-10-18 2007-04-26 Advantest Corporation Hermetically sealing member with optical transmission means, optoelectronic device and optical transmission method
US7699538B2 (en) 2005-10-18 2010-04-20 Advantest Corp. Hermetically sealing member having optical transmission means, optoelectronic apparatus, and optical transmission method
JP2007115777A (en) * 2005-10-18 2007-05-10 Advantest Corp Sealing member with optical transmission means, photoelectronic device, and optical transmission method
JP2007264411A (en) * 2006-03-29 2007-10-11 Suzuka Fuji Xerox Co Ltd Optical module
US8737784B2 (en) 2009-02-25 2014-05-27 Yazaki Corporation Optical communication module and optical communication connector
WO2010098395A1 (en) * 2009-02-25 2010-09-02 矢崎総業株式会社 Optical communication module and optical communication connector
JP2011205102A (en) * 2010-03-25 2011-10-13 Furukawa Electric Co Ltd:The Connector with built-in module
JP2012032727A (en) * 2010-08-03 2012-02-16 Yazaki Corp Small-diameter bending optical connector
US9122025B2 (en) 2011-10-26 2015-09-01 Furukawa Electric Co., Ltd. Optical module
WO2013061742A1 (en) * 2011-10-26 2013-05-02 古河電気工業株式会社 Optical module
JP2013109311A (en) * 2011-10-26 2013-06-06 Furukawa Electric Co Ltd:The Optical module
WO2013140922A1 (en) * 2012-03-23 2013-09-26 株式会社エンプラス Optical receptacle and optical module provided with same
WO2014103229A1 (en) * 2012-12-27 2014-07-03 パナソニック株式会社 Connector for signal transmission, cable provided with connector for signal transmission, display apparatus provided with cable, and image signal output apparatus
JP5789795B2 (en) * 2012-12-27 2015-10-07 パナソニックIpマネジメント株式会社 Signal transmission connector, cable including the signal transmission connector, display device including the cable, and video signal output device
US9274292B2 (en) 2012-12-27 2016-03-01 Panasonic Intellectual Property Management Co., Ltd. Signal transmitting connector, cable having the signal transmitting connector, display apparatus having the cable, and video signal output apparatus
JP2016161942A (en) * 2015-02-26 2016-09-05 住友電気工業株式会社 Bi-directional optical module
JP2017181757A (en) * 2016-03-30 2017-10-05 株式会社エンプラス Optical receptacle, optical module and method for manufacturing optical module
WO2017169390A1 (en) * 2016-03-30 2017-10-05 株式会社エンプラス Optical receptacle, optical module and method for producing optical module
US10754106B2 (en) 2016-03-30 2020-08-25 Enplas Corporation Optical receptacle, optical module and method for producing optical module

Also Published As

Publication number Publication date
US5708743A (en) 1998-01-13
DE69416016D1 (en) 1999-03-04
DE69416016T2 (en) 1999-07-15
EP0613032A3 (en) 1995-04-05
EP0613032A2 (en) 1994-08-31
JP3540834B2 (en) 2004-07-07
KR940020727A (en) 1994-09-16
US5515468A (en) 1996-05-07
EP0613032B1 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP3540834B2 (en) Optical connector and optical coupling device used therein
US6913400B2 (en) Optoelectric module for multi-fiber arrays
US6748143B2 (en) Optical transceiver module and optical communications system using the same
US8641299B2 (en) Optical connector
US5446814A (en) Molded reflective optical waveguide
EP0982610B1 (en) Optical subassembly for use in fiber optic data transmission and reception
US5687267A (en) Integrated optoelectronic coupling and connector
US7066657B2 (en) Optical subassembly
KR101074593B1 (en) Optical module
US7413353B2 (en) Device and method for data transmission between structural units connected by an articulated joint
JP2004246279A (en) Optical module and its manufacturing method, optical communication device, optical and electric mixed integrated circuit, circuit board, electronic equipment
US20040101259A1 (en) Optical package with an integrated lens and optical assemblies incorporating the package
US6860649B2 (en) Transceiver for LC connector
US20020136504A1 (en) Opto-electronic interface module for high-speed communication systems and method of assembling thereof
US7373050B2 (en) Optical communication module and connector
US20070147747A1 (en) Optical module and optical transmission system using the same
CA2359002C (en) Optoelectric module for multi-fiber arrays
JP3295327B2 (en) Bidirectional optical module
JP2005284167A (en) Optical communication module
JP2005222003A (en) Mount, optical component, optical transmission/reception module, and bidirectional optical communication module
JP2001291923A (en) Light transmission-reception module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

EXPY Cancellation because of completion of term