JPH06273437A - Rotation detection apparatus - Google Patents

Rotation detection apparatus

Info

Publication number
JPH06273437A
JPH06273437A JP6182493A JP6182493A JPH06273437A JP H06273437 A JPH06273437 A JP H06273437A JP 6182493 A JP6182493 A JP 6182493A JP 6182493 A JP6182493 A JP 6182493A JP H06273437 A JPH06273437 A JP H06273437A
Authority
JP
Japan
Prior art keywords
output
trigger circuit
hall elements
rotation
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6182493A
Other languages
Japanese (ja)
Inventor
Shinichirou Aranami
真一郎 荒浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP6182493A priority Critical patent/JPH06273437A/en
Publication of JPH06273437A publication Critical patent/JPH06273437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To provide a rotation detection apparatus where the direction of rotation and the number of revolutions of a shaft can be detected precisely by a simple constitution, at a low cost and irrespective of whether the shaft is turning at high speed CONSTITUTION:A rotation detection apparatus is provided with a rotary body 2 in which the ratio of mountain parts 2a to valley parts 2b is not 1:1 and which is made of a magnetic substance, with two Hall elements 4, 5 which are installed in parts facing the outer circumferential part of the rotary body 2, side by side, in the circumferential direction and whose installation interval is narrower than the length of the narrower part of the mountain parts 2a or the valley parts 2b, with a bias magnet 6 which gives a bias magnetic field to the Hall elements 4, 5, with an amplifier 7 which differentially amplifies outputs of the two Hall elements 4, 5 and with a Schmitt trigger circuit 8 to which the differential output of the amplifier 7 is input. In the rotation detection apparatus, the direction of rotation and the number of revolutions of a shaft 1 attached to the rotary body 2 can be detected by the duty ratio of the output of the Schmltt trigger circuit 8 and by the number of pulses per unit time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転検出装置に関し、特
に、回転する山部と谷部の比率が1対1でない磁性体製
の回転体の回転方向および回転数を簡単な構成で正確に
検出する回転検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation detecting device, and more particularly, it accurately determines the rotating direction and the rotating speed of a rotating body made of a magnetic material in which the ratio of rotating peaks and valleys is not 1: 1. The present invention relates to a rotation detection device for detecting.

【0002】[0002]

【従来の技術】従来、内燃機関やモータ等の回転機器の
回転速度を検出する方法として、回転機器に磁性体から
なる回転体、例えば、歯車をロータとして取り付け、こ
の歯車の歯部の凹凸を利用して回転速度を検出すること
が行われている。例えば、歯車を透磁性を有する材料で
構成し、その歯先部に磁気検出センサを設置して歯先の
凹凸による磁束の変化を検出したり、歯先部を挟むよう
に発光素子と受光素子を設けて光の単位時間当たりの遮
断回数を検出したりして回転機器の回転速度を検出する
ことが行われている。
2. Description of the Related Art Conventionally, as a method of detecting the rotational speed of a rotating device such as an internal combustion engine or a motor, a rotating member made of a magnetic material, for example, a gear is attached as a rotor to the rotating device, and unevenness of teeth of the gear is detected. The rotation speed is detected by utilizing this. For example, a gear is made of a magnetically permeable material, and a magnetic detection sensor is installed at the tooth tip to detect a change in magnetic flux due to unevenness of the tooth tip, or a light emitting element and a light receiving element sandwiching the tooth tip. Is provided to detect the number of times light is blocked per unit time, and to detect the rotation speed of the rotating device.

【0003】一方、このような回転検出装置において、
回転数を検出する他に、その回転方向を検出する機能を
備えた回転検出装置が提案されている。
On the other hand, in such a rotation detecting device,
A rotation detection device has been proposed that has a function of detecting the rotation direction in addition to detecting the rotation speed.

【0004】図4(a) はこの回転方向と回転速度とを検
出可能な回転検出装置40の構成を示すものであり、特
開昭4−89574号公報に開示があるものである。こ
の公報に開示された回転検出装置40では、クランクシ
ャフト41の一部に取り付けたシグナルプレート42の
外周面を120度の角度で3つの領域に分け、各領域に
それぞれ山部42Aと谷部42Bとを形成し、各領域の
山部42Aの長さを1:2:3にしている。そして、シ
グナルプレート42の外周部に対向させて電磁ピックア
ップ43を配置し、この電磁式ピックアップコイル43
から出力されるパルスをコントローラ44で検出してシ
グナルプレート42の回転方向と回転数とを検出するよ
うにしている。即ち、シグナルプレート42の1回転に
おいて電磁式ピックアップコイル43から出力されるパ
ルス長は、シグナルプレート42の回転方向によって図
4(b) に示すように、時計方向回転時と反時計方向回転
時とではそれぞれ異なるので、コントローラ44はその
ディーティ比の増減でシグナルプレートの回転方向を、
パルス数で回転数を検出するようになっている。
FIG. 4 (a) shows the structure of a rotation detecting device 40 capable of detecting the rotation direction and the rotation speed, which is disclosed in Japanese Patent Laid-Open No. 4-89574. In the rotation detecting device 40 disclosed in this publication, the outer peripheral surface of the signal plate 42 attached to a part of the crankshaft 41 is divided into three regions at an angle of 120 degrees, and each region has a mountain portion 42A and a valley portion 42B. Are formed, and the length of the mountain portion 42A in each region is set to 1: 2: 3. The electromagnetic pickup 43 is arranged so as to face the outer peripheral portion of the signal plate 42.
The controller 44 detects the pulse output from the signal plate 42 to detect the rotation direction and the rotation speed of the signal plate 42. That is, the pulse length output from the electromagnetic pickup coil 43 in one rotation of the signal plate 42 depends on the rotation direction of the signal plate 42, as shown in FIG. The controller 44 changes the rotation direction of the signal plate by increasing or decreasing the duty ratio.
The number of rotations is detected by the number of pulses.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図4に
示した従来の回転検出装置では、シグナルプレートの形
状が複雑であり、その重心がクランク軸の回転中心と一
致していないために、また、回転検出センサが電磁ピッ
クアップであるために、(1) 製造コストが高くなる、
(2) 高速回転時の回転検出には適さない、(3) 低速回転
検出が困難である、等の課題が残っている。
However, in the conventional rotation detecting device shown in FIG. 4, since the shape of the signal plate is complicated and its center of gravity does not coincide with the rotation center of the crankshaft, Since the rotation detection sensor is an electromagnetic pickup, (1) the manufacturing cost is high,
(2) It is not suitable for rotation detection at high speed rotation, (3) It is difficult to detect low speed rotation, and other problems remain.

【0006】そこで、本発明は前記従来の回転検出装置
の有する課題を解消し、簡単な構成でコストがかから
ず、検出したい回転軸の高速回転、低速回転に係わら
ず、回転軸の回転方向と回転数を正確に検出することが
できる回転検出装置を提供することを目的とする。
Therefore, the present invention solves the problems of the conventional rotation detecting device, has a simple structure and does not cost, and the rotating direction of the rotating shaft is detected regardless of the high speed rotation or the low speed rotation of the rotating shaft to be detected. It is an object of the present invention to provide a rotation detection device capable of accurately detecting the rotation speed.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明の回転検出装置は、山部と谷部の比率が1対1でない
磁性体製の回転体と、前記回転体の外周部分に対向する
部位に周方向に並んで設けられ、その設置間隔が前記山
部または谷部の狭い方の部分の長さより狭い2個のホー
ル素子と、前記ホール素子にバイアス磁界を与えるバイ
アス磁石と、前記2個のホール素子の出力を差動増幅す
る増幅器と、前記増幅器の差動出力が入力されるシュミ
ットトリガ回路とを備え、前記シュミットトリガ回路の
出力によって、前記回転体が取付られた回転軸の回転方
向および回転数を検出できることを特徴としている。
According to the rotation detecting device of the present invention for achieving the above object, a rotating body made of a magnetic material having a peak-to-valley ratio which is not 1: 1 and an outer peripheral portion of the rotating body are opposed to each other. Two Hall elements, which are arranged side by side in the circumferential direction and whose installation interval is narrower than the length of the narrower one of the peaks or valleys, and a bias magnet which applies a bias magnetic field to the Hall element, An amplifier for differentially amplifying the outputs of the two Hall elements and a Schmitt trigger circuit to which the differential output of the amplifier is input are provided, and the output of the Schmitt trigger circuit causes the rotary shaft to which the rotating body is attached. The feature is that the rotation direction and the rotation speed can be detected.

【0008】[0008]

【作用】本発明の回転検出装置によれば、山部と谷部の
比率が1対1でない磁性体製の回転体の外周部分に、2
個のホール素子がその設置間隔が山部または谷部の狭い
方の部分の長さより狭く併設されているので、回転体の
回転により2個のホール素子から出力された信号を差動
増幅してシュミットトリガ回路にすると、シュミットト
リガ回路からは回転体の回転方向に応じてデューティ比
の異なるパルス信号が得られるので、これにより回転体
の回転方向と回転数とを検出することができる。
According to the rotation detecting device of the present invention, the ratio of the crests to the troughs is not 1: 1.
Since the individual Hall elements are installed side by side with a narrower interval than the length of the narrower portion of the peak or valley, the signals output from the two Hall elements are differentially amplified by the rotation of the rotating body. When the Schmitt trigger circuit is used, a pulse signal having a different duty ratio is obtained from the Schmitt trigger circuit according to the rotating direction of the rotating body, so that the rotating direction and the rotating speed of the rotating body can be detected.

【0009】[0009]

【実施例】以下添付図面を用いて本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0010】図1(a) は本発明の一実施例の回転検出装
置10の構成を示すものである。図において1は回転方
向と回転速度を検出する回転軸であり、この回転軸の一
部に磁性体製の回転体2が取り付けられている。この実
施例では回転体2はその外周面が90度の角度で4つの
領域に分けられ、各領域にそれぞれ山部2aと谷部2b
とが形成されている。各領域における4つの山部2aの
長さは全て同じであり、よって4つの谷部2bの長さも
全て同じである。ところが、各領域における山部2aと
谷部2bの比は1:1ではなく、この実施例では山部2
aの長さの方が谷部2bの長さよりも長く形成されてい
る。
FIG. 1 (a) shows the structure of a rotation detecting device 10 according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a rotary shaft for detecting a rotational direction and a rotational speed, and a rotary body 2 made of a magnetic material is attached to a part of the rotary shaft. In this embodiment, the rotating body 2 has its outer peripheral surface divided into four regions at an angle of 90 degrees, and each region has a mountain portion 2a and a valley portion 2b.
And are formed. The lengths of the four crests 2a in each area are all the same, and therefore the lengths of the four troughs 2b are also the same. However, the ratio of the peaks 2a to the valleys 2b in each region is not 1: 1.
The length of a is formed longer than the length of the valley portion 2b.

【0011】回転体2の外周部に対向する部位には、2
つのホール素子4,5を備えたホールIC3が設けられ
ており、2つのホール素子4,5の取付間隔は、回転体
2の谷部2bの長さよりも短くなっている。この結果、
2つのホール素子4,5が共に谷部2bに対向する場合
があり得る。そして、ホールIC3の後部には2つのホ
ール素子4,5を均一な磁界で励磁(バイアス)するた
めのバイアス磁石6が設けられている。
At the portion facing the outer peripheral portion of the rotating body 2, 2
A Hall IC 3 including two Hall elements 4 and 5 is provided, and the mounting interval between the two Hall elements 4 and 5 is shorter than the length of the valley portion 2b of the rotating body 2. As a result,
It is possible that the two Hall elements 4 and 5 both face the valley 2b. A bias magnet 6 for exciting (biasing) the two Hall elements 4 and 5 with a uniform magnetic field is provided at the rear of the Hall IC 3.

【0012】ホール素子4,5の出力は差動増幅器7の
2つの入力端子に接続されており、ホール素子4,5の
出力はこの差動増幅器7によって差動増幅される。ま
た、差動増幅器7の出力はシュミットトリガ回路8に入
力されるようになっている。シュミットトリガ回路8に
は図1(b) に示すような2つの回路しきい値VonとVof
f があり、2つのしきい値の絶対レベルは同じ(Von=
−Vof)となっている。そして、シュミットトリガ回路
8は、差動増幅器7からの入力信号のレベルがしきい値
Vonを越えるとハイレベル“H”を出力し、差動増幅器
7からの入力信号がしきい値Voff を下回るとローレベ
ル“L”を出力する。
The outputs of the Hall elements 4 and 5 are connected to the two input terminals of the differential amplifier 7, and the outputs of the Hall elements 4 and 5 are differentially amplified by the differential amplifier 7. The output of the differential amplifier 7 is input to the Schmitt trigger circuit 8. The Schmitt trigger circuit 8 has two circuit threshold values Von and Vof as shown in FIG. 1 (b).
f, and the absolute levels of the two thresholds are the same (Von =
-Vof). Then, the Schmitt trigger circuit 8 outputs a high level "H" when the level of the input signal from the differential amplifier 7 exceeds the threshold value Von, and the input signal from the differential amplifier 7 falls below the threshold value Voff. And low level "L" are output.

【0013】ここで、以上のように構成された回転検出
装置10の動作を、回転体2が時計回りをした場合と反
時計回りをした場合について、図2を用いて説明する。
なお、この図にはバイアス磁石6の図示は省略してあ
り、ホール素子4,5の出力電圧をそれぞれV4,V5 と
し、シュミットトリガ回路8の出力をVout とする。
Now, the operation of the rotation detecting device 10 constructed as above will be described with reference to FIG. 2 for the case where the rotating body 2 rotates clockwise and the case where it rotates counterclockwise.
The bias magnet 6 is not shown in this figure, and the output voltages of the Hall elements 4 and 5 are V4 and V5, respectively, and the output of the Schmitt trigger circuit 8 is Vout.

【0014】まず、図2の 1に示すように、ホール素子
4,5が共に回転体2の谷部2bに対向している時に
は、ホール素子4,5の出力は等しくV4 −V5 =0と
なり、差動増幅器7の出力も0である。このときシュミ
ットトリガ回路8の出力VoutはOFFとなっているも
のとする。この状態から回転体2が矢印の方向(時計方
向)に回転すると、ホール素子4が回転体2の山部2a
に近づくので、ホール素子4を貫通する磁束が増してホ
ール素子4の出力のみが増大し、ホール素子4,5の出
力はV4 >V5 となる。そして、ホール素子4の出力V
4 とホール素子5の出力V5 の差がしきい値Vonを上回
った時点でシュミットトリガ回路8の出力がOFFから
ONに反転する。
First, as shown by 1 in FIG. 2, when the Hall elements 4 and 5 are both facing the valley 2b of the rotating body 2, the outputs of the Hall elements 4 and 5 are equal to V4 -V5 = 0. The output of the differential amplifier 7 is also 0. At this time, it is assumed that the output Vout of the Schmitt trigger circuit 8 is OFF. When the rotating body 2 is rotated in the direction of the arrow (clockwise direction) from this state, the Hall element 4 moves to the peak portion 2a of the rotating body 2.
, The magnetic flux penetrating the Hall element 4 increases and only the output of the Hall element 4 increases, and the outputs of the Hall elements 4 and 5 become V4> V5. And the output V of the Hall element 4
When the difference between 4 and the output V5 of the Hall element 5 exceeds the threshold value Von, the output of the Schmitt trigger circuit 8 is inverted from OFF to ON.

【0015】そして、図2の 2に示すようにホール素子
4が山部2aに対向し、ホール素子5が谷部2bに対向
する状態では、ホール素子4,5の出力差V4 −V5
(V4>V5 )は正の最大値をとる。この状態から回転
体2が矢印の方向に回転すると、ホール素子5が回転体
2の山部2aに近づくので、ホール素子4の出力は変わ
らずホール素子5の出力のみが増大し、V4 −V5 の値
が0に近づいて差動増幅器7の出力は次第に小さくなっ
てVonよりも小さくなってくるが、シュミットトリガ回
路8のしきい値はヒステリシスを持っているので、シュ
ミットトリガ回路8の出力Vout はONのままである。
As shown by 2 in FIG. 2, when the Hall element 4 faces the peak portion 2a and the Hall element 5 faces the valley portion 2b, the output difference V4 -V5 of the Hall elements 4, 5 is increased.
(V4> V5) has the maximum positive value. When the rotator 2 rotates in the direction of the arrow from this state, the Hall element 5 approaches the ridge portion 2a of the rotator 2, so that the output of the Hall element 4 does not change and only the output of the Hall element 5 increases. The output of the differential amplifier 7 gradually becomes smaller and becomes smaller than Von as the value of becomes closer to 0. However, since the threshold value of the Schmitt trigger circuit 8 has hysteresis, the output Vout of the Schmitt trigger circuit 8 is Remains ON.

【0016】この後、図2の 3に示すようにホール素子
4,5が共に山部2aに対向する状態では、ホール素子
4,5の出力はV4 =V5 となり、差動増幅器7の出力
は0になる。この時のシュミットトリガ回路8の出力V
out はONのままである。この状態から回転体2が矢印
の方向に回転すると、ホール素子4が回転体2の谷部2
bに近づくので、ホール素子5の出力は変わらずホール
素子4の出力のみが減少し、V4 −V5 の値が0よりも
小さくなり、差動増幅器7の出力は次第に小さくなって
マイナス側のしきい値Voff よりも小さくなってくる。
そして、ホール素子4の出力V4 とホール素子5の出力
V5 の差がしきい値Voff を下回った時点でシュミット
トリガ回路8の出力がONからOFFに反転する。
Thereafter, as shown by 3 in FIG. 2, when the Hall elements 4 and 5 are both facing the mountain portion 2a, the outputs of the Hall elements 4 and 5 are V4 = V5, and the output of the differential amplifier 7 is It becomes 0. Output V of the Schmitt trigger circuit 8 at this time
out remains ON. When the rotating body 2 is rotated in the direction of the arrow from this state, the Hall element 4 moves to the valley portion 2 of the rotating body 2.
Since it approaches b, the output of the Hall element 5 does not change, only the output of the Hall element 4 decreases, the value of V4 -V5 becomes smaller than 0, and the output of the differential amplifier 7 becomes gradually smaller and becomes the negative side. It becomes smaller than the threshold value Voff.
Then, when the difference between the output V4 of the Hall element 4 and the output V5 of the Hall element 5 falls below the threshold value Voff, the output of the Schmitt trigger circuit 8 is inverted from ON to OFF.

【0017】そして、図2の 4に示すようにホール素子
4が谷部2bに対向し、ホール素子5が山部2aに対向
する状態では、ホール素子4,5の出力差V4 −V5
(V4<V5 )は負の最小値 (絶対レベルは最大) をと
る。この状態から回転体2が矢印の方向に回転すると、
ホール素子5が回転体2の谷部2bに近づくので、ホー
ル素子4の出力は変わらずホール素子5の出力のみが減
少し、V4 −V5 の値が0に近づいて差動増幅器7の出
力は次第に大きくなってVoff よりも大きくなってくる
が、シュミットトリガ回路8のしきい値はヒステリシス
を持っているので、シュミットトリガ回路8の出力Vou
t はOFFのままである。
As shown by 4 in FIG. 2, when the Hall element 4 faces the valley 2b and the Hall element 5 faces the peak 2a, the output difference V4 -V5 of the Hall elements 4, 5 is V4.
(V4 <V5) takes the negative minimum value (the absolute level is the maximum). When the rotating body 2 rotates in the direction of the arrow from this state,
Since the Hall element 5 approaches the valley 2b of the rotating body 2, the output of the Hall element 4 does not change, only the output of the Hall element 5 decreases, and the value of V4 -V5 approaches 0, and the output of the differential amplifier 7 becomes It gradually becomes larger than Voff, but the threshold value of the Schmitt trigger circuit 8 has hysteresis, so the output Vou of the Schmitt trigger circuit 8 is increased.
t remains off.

【0018】この後、図2の 5に示すようにホール素子
4,5が共に谷部2bに対向する状態では、ホール素子
4,5の出力はV4 =V5 となり、差動増幅器7の出力
は0になり、シュミットトリガ回路8の出力Vout はO
FFのままである。この状態は図2の 1と同じであり、
以後、 1から 5の動作が繰り返される。
Thereafter, as shown by 5 in FIG. 2, when the Hall elements 4 and 5 both face the valley 2b, the outputs of the Hall elements 4 and 5 are V4 = V5, and the output of the differential amplifier 7 is The output Vout of the Schmitt trigger circuit 8 becomes 0.
It remains FF. This state is the same as 1 in Figure 2,
After that, the operations from 1 to 5 are repeated.

【0019】次に、図2の 1′に示すように、ホール素
子4,5が共に回転体2の谷部2bの中央に対向してお
り、ホール素子4,5の出力は等しくV4 −V5 =0、
差動増幅器7の出力も0となっている状態から、回転体
2が矢印で示す反時計方向に回転した場合について考え
る。ただし、図2 5に示した状態で回転体2が止まり、
そこから回転体2が逆転を始めた場合は最初は図2の
1′の状態でシュミットトリガ回路8の出力Vout はO
FFであるが、その後、隣接する谷部2bにおいて図2
の 1′になった状態ではシュミットトリガ回路8の出力
Vout はONとなり、その後は図2 1′の状態では全て
シュミットトリガ回路8の出力Vout はONであるの
で、図2 1′のシュミットトリガ回路8の出力Vout は
ONの状態で説明する。
Next, as shown in 1'of FIG. 2, the Hall elements 4 and 5 are both opposed to the center of the valley 2b of the rotating body 2, and the outputs of the Hall elements 4 and 5 are equal to V4 -V5. = 0,
Consider a case where the rotating body 2 rotates counterclockwise as indicated by an arrow from the state where the output of the differential amplifier 7 is also zero. However, in the state shown in FIG.
When the rotating body 2 starts reversing from that point, first of all
In the state of 1 ', the output Vout of the Schmitt trigger circuit 8 is O
Although it is an FF, after that, in the adjacent valley portion 2b, as shown in FIG.
2 ', the output Vout of the Schmitt trigger circuit 8 is ON, and thereafter, in the state of FIG. 2 1', the output Vout of the Schmitt trigger circuit 8 is all ON. Therefore, the Schmitt trigger circuit of FIG. The output Vout of 8 will be described in the ON state.

【0020】まず、図2の 1′に示すホール素子4,5
が共に回転体2の谷部2bに対向している状態から回転
体2が矢印の方向(反時計方向)に回転すると、ホール
素子5が回転体2の山部2aに近づくので、ホール素子
5を貫通する磁束が増してホール素子5の出力のみが増
大し、ホール素子4,5の出力はV4 <V5 となる。そ
して、ホール素子4の出力V4 とホール素子5の出力V
5 の差(V4 −V5 <0)がしきい値Voff を下回った
時点でシュミットトリガ回路8の出力がONからOFF
に反転する。
First, the Hall elements 4 and 5 shown at 1'in FIG.
When the rotator 2 rotates in the direction of the arrow (counterclockwise) from the state where they both face the valley 2b of the rotator 2, the Hall element 5 approaches the ridge 2a of the rotator 2, so the Hall element 5 The magnetic flux penetrating through the holes increases and only the output of the hall element 5 increases, and the outputs of the hall elements 4 and 5 are V4 <V5. Then, the output V4 of the Hall element 4 and the output V of the Hall element 5
When the difference of 5 (V4−V5 <0) becomes less than the threshold value Voff, the output of the Schmitt trigger circuit 8 changes from ON to OFF.
Flip to.

【0021】そして、図2の 2′に示すようにホール素
子5が山部2aに対向し、ホール素子4が谷部2bに対
向する状態では、ホール素子4,5の出力差V4 −V5
(V4 >V5 )は負の最小値 (絶対レベルは最大) をと
る。この状態から回転体2が矢印の方向に回転すると、
ホール素子4が回転体2の山部2aに近づくので、ホー
ル素子5の出力は変わらずホール素子4の出力のみが増
大し、V4 −V5 の値が0に近づいて差動増幅器7の出
力は次第に小さくなってVoff よりも大きくなってくる
が、シュミットトリガ回路8のしきい値はヒステリシス
を持っているので、シュミットトリガ回路8の出力Vou
t はOFFのままである。
As shown in 2'of FIG. 2, when the Hall element 5 faces the peak 2a and the Hall element 4 faces the valley 2b, the output difference V4 -V5 of the Hall elements 4 and 5 is increased.
(V4> V5) takes a negative minimum value (absolute level is maximum). When the rotating body 2 rotates in the direction of the arrow from this state,
Since the Hall element 4 approaches the mountain portion 2a of the rotating body 2, the output of the Hall element 5 does not change, only the output of the Hall element 4 increases, and the value of V4 -V5 approaches 0, and the output of the differential amplifier 7 becomes Although it gradually becomes smaller and becomes larger than Voff, the threshold value of the Schmitt trigger circuit 8 has hysteresis, so the output Vou of the Schmitt trigger circuit 8 is
t remains off.

【0022】この後、図2の 3′に示すようにホール素
子4,5が共に山部2aに対向する状態では、ホール素
子4,5の出力はV4 =V5 となり、差動増幅器7の出
力は0になる。この状態でもシュミットトリガ回路8の
出力Vout はOFFのままである。この状態から回転体
2が矢印の方向に回転すると、ホール素子5が回転体2
の谷部2bに近づくので、ホール素子4の出力は変わら
ずホール素子5の出力のみが減少し、V4 −V5 の値が
0よりも大きくなり、差動増幅器7の出力は次第に大き
くなってプラス側のしきい値Vonよりも大きくなってく
る。そして、ホール素子4の出力V4 とホール素子5の
出力V5 の差がしきい値Vonを上回った時点でシュミッ
トトリガ回路8の出力がOFFからONに反転する。
After that, as shown in 3'of FIG. 2, when the Hall elements 4 and 5 both face the mountain portion 2a, the outputs of the Hall elements 4 and 5 become V4 = V5, and the output of the differential amplifier 7 Becomes 0. Even in this state, the output Vout of the Schmitt trigger circuit 8 remains OFF. When the rotating body 2 rotates in the direction of the arrow from this state, the Hall element 5 moves
As the output of the Hall element 4 does not change and only the output of the Hall element 5 decreases, the value of V4 -V5 becomes larger than 0, and the output of the differential amplifier 7 gradually increases and becomes positive. It becomes larger than the threshold value Von on the side. Then, when the difference between the output V4 of the Hall element 4 and the output V5 of the Hall element 5 exceeds the threshold value Von, the output of the Schmitt trigger circuit 8 is inverted from OFF to ON.

【0023】そして、図2の 4′に示すようにホール素
子5が谷部2bに対向し、ホール素子4が山部2aに対
向する状態では、ホール素子4,5の出力差V4 −V5
(V4 >V5 )は正の最大値をとる。この状態から回転
体2が矢印の方向に回転すると、ホール素子4が回転体
2の谷部2bに近づくので、ホール素子5の出力は変わ
らずホール素子4の出力のみが減少し、V4 −V5 の値
が0に近づいて差動増幅器7の出力は次第に小さくなっ
てVonよりも小さくなってくるが、シュミットトリガ回
路8のしきい値はヒステリシスを持っているので、シュ
ミットトリガ回路8の出力Vout はONのままである。
When the Hall element 5 faces the valley 2b and the Hall element 4 faces the peak 2a as shown at 4'in FIG. 2, the output difference V4 -V5 of the Hall elements 4 and 5 is shown.
(V4> V5) has the maximum positive value. When the rotator 2 rotates in the direction of the arrow from this state, the Hall element 4 approaches the valley portion 2b of the rotator 2, so that the output of the Hall element 5 does not change and only the output of the Hall element 4 decreases. The output of the differential amplifier 7 gradually becomes smaller and becomes smaller than Von as the value of becomes closer to 0. However, since the threshold value of the Schmitt trigger circuit 8 has hysteresis, the output Vout of the Schmitt trigger circuit 8 is Remains ON.

【0024】この後、図2の 5′に示すようにホール素
子4,5が共に谷部2bに対向する状態では、ホール素
子4,5の出力はV4 =V5 となり、差動増幅器7の出
力は0になり、シュミットトリガ回路8の出力Vout は
OFFのままである。この状態は図2の 1′と同じであ
り、以後、 1′から 5′の動作が繰り返される。
Thereafter, as shown in 5'of FIG. 2, when the Hall elements 4 and 5 both face the valley 2b, the output of the Hall elements 4 and 5 becomes V4 = V5, and the output of the differential amplifier 7 is obtained. Becomes 0, and the output Vout of the Schmitt trigger circuit 8 remains OFF. This state is the same as 1'of FIG. 2, and thereafter, the operations of 1'to 5'are repeated.

【0025】図3は以上のように動作する回転検出装置
10の差動増幅器7の出力波形と、これに対応するシュ
ミットトリガ回路8の出力波形を示すものであり、(a)
は回転体2が時計回りした時の波形であり、(b) は回転
体2が反時計回りした時の波形を示すものである。図3
(a) ,(b) において、図2の状態との対応関係を明確に
するために、時間軸(横軸)に図2の状態を示す符号 1
〜 5および 1′〜 5′を付してある。
FIG. 3 shows the output waveform of the differential amplifier 7 of the rotation detecting device 10 which operates as described above and the output waveform of the Schmitt trigger circuit 8 corresponding to it.
Shows a waveform when the rotating body 2 rotates clockwise, and (b) shows a waveform when the rotating body 2 rotates counterclockwise. Figure 3
In (a) and (b), in order to clarify the correspondence relationship with the state of FIG. 2, a symbol indicating the state of FIG. 2 on the time axis (horizontal axis) 1
~ 5 and 1'-5 'are attached.

【0026】図3(a) ,(b) に示すように、ホール素子
4,5にバイアス磁石6より均等な磁界が印加された状
態でバイアス磁石6の反対側に図1に示すような回転体
2が回転すると、その位置(山部2aと谷部2bの位
置)によって2つのホール素子4,5を貫通する磁束の
密度に差が発生し、2つのホール素子4,5の出力電圧
の差V4 −V5 に差が生じる。従って、2つのホール素
子4,5の出力電圧の差V4 −V5 を差動増幅し、しき
い値に図1(b) に示すようなヒステリシスのあるシュミ
ットトリガ回路8にて波形成形すれば、回転体2の回転
方向の違いによって2つのホール素子4,5が同時に山
部2a、あるいは谷部2bに位置していても、シュミッ
トトリガ回路8の出力のONとOFFが反転する。
As shown in FIGS. 3 (a) and 3 (b), the Hall elements 4 and 5 are rotated on the opposite side of the bias magnet 6 as shown in FIG. When the body 2 rotates, a difference occurs in the density of the magnetic flux penetrating the two Hall elements 4 and 5 depending on the position (positions of the peak portion 2a and the valley portion 2b), and the output voltage of the two Hall elements 4 and 5 varies. A difference occurs between the difference V4 and V5. Therefore, if the difference V4 -V5 between the output voltages of the two Hall elements 4 and 5 is differentially amplified and the threshold value is waveform-shaped by the Schmitt trigger circuit 8 having hysteresis as shown in FIG. 1 (b), Even if the two Hall elements 4 and 5 are located at the peak 2a or the valley 2b at the same time due to the difference in the rotating direction of the rotating body 2, ON / OFF of the output of the Schmitt trigger circuit 8 is reversed.

【0027】このように、回転体2の形状が図1(a) に
示すように山部2aと谷部2bの比が1:1でない場合
には回転体2の回転方向によりシュミットトリガ回路8
の最終出力のデューティ比(実効値)が変化する。よっ
て、図1(a) に示した簡単な構成においてシュミットト
リガ回路8の出力波形のデューティ比を観測することに
より、回転体2の回転方向を検出することができる。ま
た、シュミットトリガ回路8の出力波形のパルス数(単
位時間当たりの)を観測することにより、回転体2の回
転数を検出することができる。
As described above, when the shape of the rotating body 2 is not 1: 1 as shown in FIG. 1 (a), the Schmitt trigger circuit 8 depends on the rotating direction of the rotating body 2.
The duty ratio (effective value) of the final output of changes. Therefore, the rotation direction of the rotating body 2 can be detected by observing the duty ratio of the output waveform of the Schmitt trigger circuit 8 in the simple configuration shown in FIG. Further, by observing the number of pulses (per unit time) of the output waveform of the Schmitt trigger circuit 8, the number of rotations of the rotating body 2 can be detected.

【0028】以上のように、本発明の回転検出装置10
では、回転体2の形状が簡単でコントローラが不要のた
め、コストダウンが図れる、回転体2が点対称のために
その重量バランスが良く高速回転の検出が可能である、
ホール素子によって磁束密度の変化を検出しているので
低速回転の検出が可能である、2つのホール素子を1チ
ップIC化が可能であるので装置の小型、軽量、高信頼
性が図れる、実効値メータやタコメータ等の簡単な装置
で回転体2の回転方向と回転数が共に検出することが可
能である、等の数々の利点がある。
As described above, the rotation detecting device 10 of the present invention.
Then, since the shape of the rotating body 2 is simple and a controller is not required, cost reduction can be achieved. Since the rotating body 2 is point-symmetrical, its weight balance is good and high-speed rotation can be detected.
Since the change in magnetic flux density is detected by the Hall element, it is possible to detect low-speed rotation. The two Hall elements can be integrated into a single-chip IC, so the device can be made small, lightweight, and highly reliable. Effective value There are a number of advantages such as being able to detect both the rotation direction and the rotation speed of the rotating body 2 with a simple device such as a meter or a tachometer.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
簡単な構成でコストがかからず、検出したい回転軸の高
速回転、低速回転に係わらず、回転軸の回転方向と回転
数を正確に検出することができるという効果がある。
As described above, according to the present invention,
With a simple configuration, there is no cost, and there is an effect that the rotation direction and the number of rotations of the rotary shaft can be accurately detected regardless of the high speed rotation or the low speed rotation of the rotary shaft to be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) は本発明の回転検出装置の一実施例の構成
を示す構成図であり、(b) はシュミットトリガ回路のし
きい値を示す線図である。
FIG. 1A is a configuration diagram showing a configuration of an embodiment of a rotation detection device of the present invention, and FIG. 1B is a diagram showing threshold values of a Schmitt trigger circuit.

【図2】図1の回転体とホール素子の位置関係、および
回転体の回転方向に応じたホール素子の出力差と差動増
幅器の出力電圧の関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a positional relationship between the rotor and the Hall element of FIG. 1, and a relationship between an output difference of the Hall element and an output voltage of the differential amplifier according to a rotation direction of the rotor.

【図3】(a) は図1の回転体が時計回りした時のホール
素子の出力差とその時の差動増幅器の出力の変化を示す
波形図であり、(b) は図1の回転体が反時計回りした時
のホール素子の出力差とその時の差動増幅器の出力の変
化を示す波形図である。
3A is a waveform diagram showing the output difference of the Hall element and the output of the differential amplifier when the rotating body of FIG. 1 is rotated clockwise, and FIG. 3B is the rotating body of FIG. FIG. 6 is a waveform diagram showing the output difference of the Hall element when the counterclockwise turns and the change of the output of the differential amplifier at that time.

【図4】(a) は従来の回転検出装置の構成を示す構成図
であり、(b) は(a) の回転体が時計回りと反時計回りし
た時の回転検出装置のコントローラの出力波形を比較し
て示す線図である。
4A is a configuration diagram showing a configuration of a conventional rotation detection device, and FIG. 4B is an output waveform of a controller of the rotation detection device when the rotating body in FIG. 4A rotates clockwise and counterclockwise. It is a diagram which compares and shows.

【符号の説明】[Explanation of symbols]

1 回転軸 2 回転体 2a 山部 2b 谷部 3 ホールIC 4,5 ホール素子 6 バイアス磁石 7 差動増幅器 8 シュミットトリガ回路 10 本発明の回転検出装置 DESCRIPTION OF SYMBOLS 1 rotating shaft 2 rotating body 2a mountain part 2b valley part 3 Hall IC 4,5 Hall element 6 Bias magnet 7 Differential amplifier 8 Schmitt trigger circuit 10 Rotation detecting device of the present invention

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 山部と谷部の比率が1対1でない磁性体
製の回転体と、 前記回転体の外周部分に対向する部位に周方向に並んで
設けられ、その設置間隔が前記山部または谷部の狭い方
の部分の長さより狭い2個のホール素子と、 前記ホール素子にバイアス磁界を与えるバイアス磁石
と、 前記2個のホール素子の出力を差動増幅する増幅器と、 前記増幅器の差動出力が入力されるシュミットトリガ回
路とを備え、 前記シュミットトリガ回路の出力によって、前記回転体
が取付られた回転軸の回転方向および回転数を検出でき
ることを特徴とする回転検出装置。
1. A rotating body made of a magnetic material in which the ratio of peaks to valleys is not 1: 1 and is provided side by side in the circumferential direction at a portion facing the outer peripheral portion of the rotating body, and the installation intervals are the peaks. Hall elements narrower than the length of the narrower part of the portion or valley, a bias magnet that applies a bias magnetic field to the Hall elements, an amplifier that differentially amplifies the outputs of the two Hall elements, and the amplifier A Schmitt trigger circuit to which the differential output of (1) is input, and the rotation direction and the number of rotations of the rotating shaft to which the rotating body is attached can be detected by the output of the Schmitt trigger circuit.
JP6182493A 1993-03-22 1993-03-22 Rotation detection apparatus Pending JPH06273437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6182493A JPH06273437A (en) 1993-03-22 1993-03-22 Rotation detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6182493A JPH06273437A (en) 1993-03-22 1993-03-22 Rotation detection apparatus

Publications (1)

Publication Number Publication Date
JPH06273437A true JPH06273437A (en) 1994-09-30

Family

ID=13182230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6182493A Pending JPH06273437A (en) 1993-03-22 1993-03-22 Rotation detection apparatus

Country Status (1)

Country Link
JP (1) JPH06273437A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648271C2 (en) * 1996-06-25 2000-05-18 Mitsubishi Electric Corp Motion sensor for a moving magnetic object
KR20010020194A (en) * 1997-04-24 2001-03-15 칼 하인쯔 호르닝어 Method for detecting the direction of rotation of a wheel by means of hall probes
EP1423712A1 (en) * 2001-07-27 2004-06-02 Edward D. Furrow Printer ribbon motion detection system
DE10314064A1 (en) * 2003-03-28 2004-10-07 Zf Friedrichshafen Ag Method for determining a speed and a direction of rotation of a component
DE19838433B4 (en) * 1997-08-25 2005-11-03 Aisin Seiki K.K., Kariya Rotation detector
JP2006064523A (en) * 2004-08-26 2006-03-09 Hitachi Cable Ltd Magnetic motion sensor
JP2006267090A (en) * 2005-02-25 2006-10-05 Nsk Ltd Displacement measuring device and load measuring device for rolling bearing unit
CN101986159A (en) * 2009-07-28 2011-03-16 通用汽车环球科技运作公司 Directional speed sensing systems and methods
US8164324B2 (en) 2008-07-18 2012-04-24 Aisin Seiki Kabushiki Kaisha Rotation sensor
US8624588B2 (en) 2008-07-31 2014-01-07 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object
US8754640B2 (en) 2012-06-18 2014-06-17 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal
JP2016035456A (en) * 2014-08-01 2016-03-17 マイクロナス ゲー・エム・ベー・ハー Magnetic field measuring device
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10495485B2 (en) 2016-05-17 2019-12-03 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10495700B2 (en) 2016-01-29 2019-12-03 Allegro Microsystems, Llc Method and system for providing information about a target object in a formatted output signal
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10656170B2 (en) 2018-05-17 2020-05-19 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140813A (en) * 1996-06-25 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Rotating magnetic object motion sensor with unbalanced bias
US6339324B1 (en) 1996-06-25 2002-01-15 Mitsubishi Denki Kabushiki Kaisha Rotating magnetic object motion sensor with unbalanced bias
DE19648271C2 (en) * 1996-06-25 2000-05-18 Mitsubishi Electric Corp Motion sensor for a moving magnetic object
KR20010020194A (en) * 1997-04-24 2001-03-15 칼 하인쯔 호르닝어 Method for detecting the direction of rotation of a wheel by means of hall probes
DE19838433B4 (en) * 1997-08-25 2005-11-03 Aisin Seiki K.K., Kariya Rotation detector
DE19838433C5 (en) * 1997-08-25 2012-04-05 Aisin Seiki K.K. Rotation detector
EP1423712A4 (en) * 2001-07-27 2008-10-15 Edward D Furrow Printer ribbon motion detection system
EP1423712A1 (en) * 2001-07-27 2004-06-02 Edward D. Furrow Printer ribbon motion detection system
DE10314064A1 (en) * 2003-03-28 2004-10-07 Zf Friedrichshafen Ag Method for determining a speed and a direction of rotation of a component
US6969986B2 (en) 2003-03-28 2005-11-29 Zf Friedrichshafen Ag Method for determining a rotation speed and a rotation direction of a component
JP2006064523A (en) * 2004-08-26 2006-03-09 Hitachi Cable Ltd Magnetic motion sensor
JP2006267090A (en) * 2005-02-25 2006-10-05 Nsk Ltd Displacement measuring device and load measuring device for rolling bearing unit
US8164324B2 (en) 2008-07-18 2012-04-24 Aisin Seiki Kabushiki Kaisha Rotation sensor
US8624588B2 (en) 2008-07-31 2014-01-07 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object
US8994369B2 (en) 2008-07-31 2015-03-31 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
US9151771B2 (en) 2008-07-31 2015-10-06 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
CN101986159A (en) * 2009-07-28 2011-03-16 通用汽车环球科技运作公司 Directional speed sensing systems and methods
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
US8754640B2 (en) 2012-06-18 2014-06-17 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10254103B2 (en) 2013-07-19 2019-04-09 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
JP2016035456A (en) * 2014-08-01 2016-03-17 マイクロナス ゲー・エム・ベー・ハー Magnetic field measuring device
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753768B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10495700B2 (en) 2016-01-29 2019-12-03 Allegro Microsystems, Llc Method and system for providing information about a target object in a formatted output signal
US10495485B2 (en) 2016-05-17 2019-12-03 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10837800B2 (en) 2016-06-08 2020-11-17 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US11073573B2 (en) 2017-05-26 2021-07-27 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US11313700B2 (en) 2018-03-01 2022-04-26 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10656170B2 (en) 2018-05-17 2020-05-19 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US11686599B2 (en) 2018-08-06 2023-06-27 Allegro Microsystems, Llc Magnetic field sensor
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Similar Documents

Publication Publication Date Title
JPH06273437A (en) Rotation detection apparatus
US5304926A (en) Geartooth position sensor with two hall effect elements
US6323641B1 (en) Non-contacting position sensor with helical flux linkage
US9618528B2 (en) Speed sensor
US5977765A (en) Speed, direction, and acceleration sensor for a rotating shaft having a rotor with teeth having unequal spacing
US10401194B2 (en) Sensor for determining at least one rotation characteristic of a rotating element
WO2000058704A1 (en) Torque and speed sensor
US6404185B1 (en) Apparatus and method for sensing an angular position of a flux linkage member
JP2007285741A (en) Rotation detection device
US6771063B2 (en) Methods and systems for improving the duty cycle output of a vehicle speed sensor circuit
JPH03233317A (en) Rotation angle sensor
US6853184B2 (en) Methods and systems for utilizing a ring magnet for magnetic sensing applications
US5153513A (en) Apparatus for processing output signal of sensor with magnetic rotary member
US20020175678A1 (en) Arrangement for determining the position of a motion sensor element
JP4650016B2 (en) Wheel speed sensor
US6157187A (en) Inductive wheel-speed sensor for an improved output signal indicative of a rotational speed of a motor vehicle wheel
JPH0140930B2 (en)
US4513609A (en) Electromagnetic rotation detecting apparatus
JPH10274546A (en) Magnetic rotation detecting system
JP2687602B2 (en) Rotational position detector
JPH10299558A (en) Rotation detector for internal combustion engine
JP3182880B2 (en) Rotation detection device
JPS59189500A (en) Magnetic type rotary encoder
JPH0283412A (en) Magnetic type rotation sensor
JPH0469348B2 (en)