JPH06268117A - Heat radiating substrate for semiconductor device and its manufacture - Google Patents

Heat radiating substrate for semiconductor device and its manufacture

Info

Publication number
JPH06268117A
JPH06268117A JP5053960A JP5396093A JPH06268117A JP H06268117 A JPH06268117 A JP H06268117A JP 5053960 A JP5053960 A JP 5053960A JP 5396093 A JP5396093 A JP 5396093A JP H06268117 A JPH06268117 A JP H06268117A
Authority
JP
Japan
Prior art keywords
semiconductor device
heat dissipation
base material
semiconductor
dissipation substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5053960A
Other languages
Japanese (ja)
Inventor
Akira Fukui
彰 福井
Yuugaku Abe
誘岳 安部
Masahiro Omachi
正弘 大町
Hitoshi Sakagami
仁之 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5053960A priority Critical patent/JPH06268117A/en
Publication of JPH06268117A publication Critical patent/JPH06268117A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Abstract

PURPOSE:To obtain a heat radiating substrate for semiconductor devices which has excellent thermal conductivity, a high quality, high reliability, and a coefficient of thermal expansion well matching to those of a semiconductor chip and package constituting material. CONSTITUTION:The title heat radiating substrate 10 is composed of a base material 1 and sandwich materials 2a and 2b stuck to both surfaces of the base material 1. The base material 1 is composed of at least one kind of metallic material selected out of W-Cu and Mo-Cu. The sandwich materials 2a and 2b are composed of a metallic material containing Cu as a main constituent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置用放熱基板
およびその製造方法に関し、特にLSI、IC、パワー
トランジスタなどに使用される軽量でかつ信頼性の高い
クラッドタイプの半導体装置用放熱基板およびその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipation substrate for a semiconductor device and a method of manufacturing the same, and more particularly to a lightweight and highly reliable clad type heat dissipation substrate for a semiconductor device used in LSIs, ICs, power transistors and the like. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、半導体装置用放熱基板としては、
以下の表1に示されるような、Cu(銅)、W(タング
ステン)、Mo(モリブデン)、W−Cu、Mo−C
u、Cu/Mo/Cu(以下、C.M.C.とする)が
用いられていた。これらは、同表に示すようにそれぞれ
の長所および短所を有しており、それらに応じた用途に
用いられている。
2. Description of the Related Art Conventionally, as a heat dissipation substrate for a semiconductor device,
Cu (copper), W (tungsten), Mo (molybdenum), W-Cu, Mo-C as shown in Table 1 below.
u, Cu / Mo / Cu (hereinafter referred to as CMC) have been used. These have respective advantages and disadvantages as shown in the same table, and are used for applications corresponding to them.

【0003】[0003]

【表1】 [Table 1]

【0004】[0004]

【発明が解決しようとする課題】上記の表1より明らか
な通り、熱伝導率が高く、かつ半導体素子ならびにパッ
ケージ外囲基材との熱膨張係数の差が小さいといった基
本特性を有し、さらに低コスト・軽量というすべての要
求を満たす半導体装置用放熱基板は従来得られていなか
った。
As is clear from Table 1 above, it has basic characteristics such as high thermal conductivity and a small difference in thermal expansion coefficient between the semiconductor element and the package surrounding base material. Conventionally, a heat dissipation board for a semiconductor device that meets all the requirements of low cost and light weight has not been obtained.

【0005】上記表1を参照して、たとえばCuは熱伝
導性には優れているが、半導体素子のSi(シリコ
ン)、GaAs(ガリウム砒素)や外囲基材Al2 3
(アルミナ)との熱膨張係数の差が大きい。それゆえ、
このCuは、放熱量の少ない小型のICで、なおかつ低
融点のはんだなどの軟ロウ付によるものにしか使用でき
ない。
Referring to Table 1 above, for example, Cu is excellent in thermal conductivity, but Si (silicon), GaAs (gallium arsenide) of the semiconductor element and the surrounding base material Al 2 O 3 are used.
The difference in the coefficient of thermal expansion with (alumina) is large. therefore,
This Cu is a small IC with a small amount of heat dissipation, and can be used only for soft solder such as low melting point solder.

【0006】また、WやMoは、半導体素子のSiに熱
膨張係数が近いが、熱伝導性においてそれほど優れてい
ない。それゆえ、このWやMoは、Siを搭載した基板
として広い放熱面を形成し得る大型のIC用としてのみ
利用される。
Further, although W and Mo have a thermal expansion coefficient close to that of Si of a semiconductor element, they are not so excellent in thermal conductivity. Therefore, W and Mo are used only for a large IC that can form a wide heat dissipation surface as a substrate on which Si is mounted.

【0007】したがって、これら単一金属材料の各々の
長所を利用した複合材としてW−Cu,Mo−Cu複合
合金およびクラッドタイプのC.M.C.が開発され、
中型もしくは大型のIC用として利用されている。
Therefore, W-Cu and Mo-Cu composite alloys and clad type C.I. M. C. Was developed,
It is used for medium- or large-sized ICs.

【0008】これらの中でもW、Moおよびそれらを多
量に含むW−CuやMo−Cuは高重量であり、軽量化
の要求には適さない。またこれらには剛性があるため、
塑性加工が難しい。
Among these, W, Mo and W-Cu and Mo-Cu containing a large amount thereof are high in weight and are not suitable for the demand for weight reduction. Also, because they have rigidity,
Plastic working is difficult.

【0009】一方、CuおよびC.M.C.はCuの延
性により塑性加工が可能である。Cuは、上述のように
半導体素子およびセラミックとの熱膨張係数の差が大き
いため、組込時ならびに作動時の熱応力の影響によって
相手材との接合界面に欠陥を生じ易く、また相手材・基
板自体にも変形、クラックなどの損傷が生じ易い。
On the other hand, Cu and C.I. M. C. Can be plastically processed due to the ductility of Cu. Since Cu has a large difference in coefficient of thermal expansion from the semiconductor element and ceramic as described above, defects are likely to occur at the joint interface with the mating material due to the effects of thermal stress during assembly and operation, and The substrate itself is also susceptible to deformation, cracks and other damage.

【0010】C.M.C.は、以上述べたような点を考
慮してMoの特徴を生かしつつ、それらの量を減らしC
u量を増やすことによって、軽量化が図れるとともにC
uの延性を十分利用して加工を容易にした材料として注
目されている。また、C.M.C.は、基材のMoと合
せ材のCuとの厚み比を変えることによって、熱伝導率
・熱膨張係数を自在に変えることができるという利点を
有している。
C. M. C. In consideration of the above-mentioned points, while reducing the amount of Mo while utilizing the characteristics of Mo, C
By increasing the amount of u, the weight can be reduced and C
It is attracting attention as a material that makes full use of the ductility of u to facilitate processing. In addition, C.I. M. C. Has an advantage that the thermal conductivity and the thermal expansion coefficient can be freely changed by changing the thickness ratio of Mo of the base material and Cu of the laminated material.

【0011】しかし、C.M.C.には、以下に述べる
欠点がある。図3は、C.M.C.の欠点を説明するた
めのC.M.C.の概略断面図である。図3を参照し
て、C.M.C.は圧延によってクラッドされているた
め、MoとCuの延性の違いにより、Cu層102a、
102bにはさまれるMo層101の厚みがX、Y方向
(長さ、幅方向)で均一にならず、波打った状態とな
る。このため、Mo層101の厚み(t1 、t2 )が各
部で異なる。それゆえ、Z方向(厚み方向)の熱膨張係
数が各部で異なり、かつ基板110自体にもうねりが生
じやすい。したがって、C.M.C.は、高容量で放熱
量の大きいICには利用できないという問題点があっ
た。
However, C.I. M. C. Has the following drawbacks. FIG. 3 shows C.I. M. C. To explain the drawbacks of C. M. C. FIG. With reference to FIG. M. C. Is clad by rolling, the Cu layer 102a, due to the difference in ductility between Mo and Cu,
The thickness of the Mo layer 101 sandwiched between the layers 102b is not uniform in the X and Y directions (length and width directions) and becomes wavy. Therefore, the thickness (t 1 , t 2 ) of the Mo layer 101 is different in each part. Therefore, the coefficient of thermal expansion in the Z direction (thickness direction) is different in each part, and the substrate 110 itself is likely to be twisted. Therefore, C.I. M. C. Has a problem that it cannot be used for an IC having a high capacity and a large heat radiation amount.

【0012】さらに、C.M.C.では、X、Y方向の
熱伝導性はクラッド化により大幅に改善されるが、Z方
向の熱伝導性は、中間にMo層101を有するため悪く
なるという問題点もあった。
Further, C.I. M. C. Then, although the thermal conductivity in the X and Y directions is significantly improved by forming the cladding, there is also a problem that the thermal conductivity in the Z direction is deteriorated because the Mo layer 101 is provided in the middle.

【0013】本発明は、上記のような問題点を解決する
ためになされたもので、熱伝導性に優れ、半導体素子や
パッケージ構成材と良好な熱膨張の整合性がとれてお
り、かつ高品質・高信頼性の半導体装置用放熱基板およ
びその製造方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and has excellent thermal conductivity, good thermal expansion matching with semiconductor elements and package components, and high thermal conductivity. An object of the present invention is to provide a high quality and highly reliable heat dissipation board for a semiconductor device and a method for manufacturing the same.

【0014】[0014]

【課題を解決するための手段および作用効果】本発明の
半導体装置用放熱基板は、以下の知見に基づいてなされ
ている。
The heat dissipation substrate for a semiconductor device of the present invention has been made based on the following knowledge.

【0015】すなわち、本発明者らは、上記の問題点を
解決すべく鋭意検討した結果、W−CuまたはMo−C
u複合合金の基材の上下両面に合せ材としてCuをクラ
ッド接合した半導体装置用放熱基板が、熱伝導性に優
れ、半導体素子などとの熱膨張係数の差が小さく、軽量
で加工性に優れかつ基板のうねりが小さく、厚み方向の
熱伝導性も良好であるなどの要求を満たすことを見い出
した。
That is, the present inventors have conducted extensive studies to solve the above-mentioned problems, and as a result, W-Cu or Mo-C
The heat dissipation substrate for semiconductor devices, in which Cu is clad bonded as the bonding material on both upper and lower sides of the base material of u composite alloy, has excellent thermal conductivity, has a small difference in coefficient of thermal expansion from semiconductor elements, and is lightweight and excellent in workability. In addition, they have found that the substrate has small waviness and good thermal conductivity in the thickness direction.

【0016】それゆえ、本発明の半導体装置用放熱基板
は、半導体素子を搭載または保持するための半導体装置
用放熱基板であって、互いに対向する一方と他方の主表
面を有し、かつタングステン−銅合金およびモリブデン
−銅合金からなる群より選ばれた少なくとも一種の金属
材料からなる第1の部材と、前記第1の部材の一方と他
方の主表面に接合され、かつ銅を主材料とする金属材料
からなる第2の部材とを備えている。
Therefore, the heat dissipation substrate for a semiconductor device of the present invention is a heat dissipation substrate for a semiconductor device for mounting or holding a semiconductor element, and has one and the other main surfaces facing each other and is made of tungsten. A first member made of at least one metal material selected from the group consisting of copper alloys and molybdenum-copper alloys, and one main surface of one and the other of the first members are joined to each other, and copper is the main material. And a second member made of a metal material.

【0017】本発明の半導体装置用放熱基板は、基材と
してW−CuおよびMo−Cuからなる群より選ばれた
少なくとも一種の金属材料を用いている。このため、ク
ラッド材の熱伝導率ならびに熱膨張係数は、W−Cu、
Mo−Cu層とCu層との厚み比率によって制御するこ
とができる。この点はC.M.C.と変わりはないが、
本発明の半導体装置用放熱基板では、さらにW−Cu、
Mo−Cu層のCu量を制御することによって、熱伝導
率ならびに熱膨張係数をより精密に制御することが可能
となる。
The heat dissipation substrate for a semiconductor device of the present invention uses, as a base material, at least one metal material selected from the group consisting of W-Cu and Mo-Cu. Therefore, the thermal conductivity and thermal expansion coefficient of the clad material are W-Cu,
It can be controlled by the thickness ratio of the Mo-Cu layer and the Cu layer. This point is C.I. M. C. Is the same as
In the heat dissipation substrate for semiconductor device of the present invention, W-Cu,
By controlling the amount of Cu in the Mo-Cu layer, the thermal conductivity and the thermal expansion coefficient can be controlled more precisely.

【0018】また本発明の半導体装置用放熱基板では、
基材の両面にCuを主材料とする金属材料が接合されて
いる。このため、両面をCuとしたことによるめっきの
しやすさ、プレス加工のしやすさ、加工表面精度の向
上、軽量化についてはC.M.C.と同様の効果を得る
ことができる。加えて、本発明の半導体装置用放熱基板
では、C.M.C.と同じ基材、同じ合せ材、同じ厚み
比でも、C.M.C.に比較して優れた熱伝導性が得ら
れる。
In the heat dissipation board for semiconductor device of the present invention,
A metallic material containing Cu as a main material is bonded to both surfaces of the base material. Therefore, regarding the ease of plating, the ease of press working, the improvement of the processing surface accuracy, and the weight reduction by using Cu on both sides, C.I. M. C. The same effect as can be obtained. In addition, in the heat dissipation board for semiconductor devices of the present invention, C.I. M. C. Even if the same base material, the same laminated material, and the same thickness ratio as C. M. C. Excellent thermal conductivity can be obtained as compared with.

【0019】C.M.C.では、MoとCuとの接合性
およびMo自体の塑性加工性が悪いため、圧延の際、高
い加圧が必要となる。高い加圧下で圧延を行なうため、
C.M.C.ではMo層の波打ちや割れが生じ、熱膨張
係数の差による接合界面での歪が生じやすく、また素材
の歪みも生じやすくなる。さらに、C.M.C.では、
X、Y方向に対してZ方向の熱膨張差が大きくなる。す
なわち、半導体素子やパッケージ構成材の熱膨張係数に
比較して、Z方向の熱膨張係数は大幅に低くなる。上記
のことから、C.M.C.では、Mo層を薄くしようと
する傾向にあるが、薄くしすぎた場合、薄くすればする
ほどMo層の波打ちや割れの問題が顕著となる。
C. M. C. Then, since the bondability between Mo and Cu and the plastic workability of Mo itself are poor, high pressure is required during rolling. Since rolling is performed under high pressure,
C. M. C. In this case, the Mo layer is corrugated or cracked, and strain is likely to occur at the bonding interface due to the difference in thermal expansion coefficient, and strain of the material is also likely to occur. In addition, C.I. M. C. Then
The difference in thermal expansion in the Z direction becomes larger than that in the X and Y directions. That is, the coefficient of thermal expansion in the Z direction is significantly lower than the coefficient of thermal expansion of the semiconductor element or the package constituent material. From the above, C.I. M. C. Then, there is a tendency to thin the Mo layer, but when the Mo layer is made too thin, the problem of waviness and cracking of the Mo layer becomes more remarkable as the thickness is made thinner.

【0020】これに対して、本発明の半導体装置用放熱
基板では、W−CuおよびMo−Cuからなる群より選
ばれた少なくとも一種の金属材料を基材とするため、合
せ材であるCuとの接合が容易となり、加工性も改善さ
れる。
On the other hand, in the heat dissipation substrate for a semiconductor device of the present invention, since at least one metal material selected from the group consisting of W-Cu and Mo-Cu is used as a base material, Cu as a composite material is used. Joining becomes easier and the workability is also improved.

【0021】また、本発明の半導体装置用放熱基板で
は、実験の結果、基材の波打ちについては厚み方向で±
3%以内に収まり、半導体素子などと高精度に接合さ
れ、また界面において何ら欠陥が見られなかった。この
ように高精度に接合されたことが、実施例に示すような
高い熱伝導率と所望の熱膨張係数の達成に効果を示した
ものと考えられる。
Further, in the heat dissipation board for semiconductor device of the present invention, as a result of the experiment, the corrugation of the base material is ± in the thickness direction.
The content was within 3%, the semiconductor element and the like were joined with high precision, and no defect was observed at the interface. It is considered that the joining with high precision as described above has been effective in achieving high thermal conductivity and a desired coefficient of thermal expansion as shown in the examples.

【0022】さらに、本発明の半導体装置用放熱基板で
は、実験の結果、Z方向の熱伝導性にも優れていること
が判明した。このため高発熱のICでは半導体基板の裏
面に放射面積を稼ぐためフィンを設けるが、Z方向の放
熱性がW−Cu、Mo−Cuによって改善されるため、
より効率のよいものが得られる。
Further, as a result of experiments, it was found that the heat dissipation substrate for a semiconductor device of the present invention is also excellent in thermal conductivity in the Z direction. Therefore, in an IC with high heat generation, a fin is provided on the back surface of the semiconductor substrate to increase the radiation area. However, since the heat dissipation in the Z direction is improved by W-Cu and Mo-Cu,
More efficient ones can be obtained.

【0023】また本発明の半導体装置用放熱基板におい
ては、半導体素子を構成する半導体材料がシリコンおよ
びガリウム・砒素のいずれかを含んでいることが好まし
い。
In the heat dissipation substrate for semiconductor device of the present invention, it is preferable that the semiconductor material forming the semiconductor element contains either silicon or gallium arsenide.

【0024】また本発明の半導体装置用放熱基板におい
ては、その表面に各種のめっき法、蒸着法、浸析法、塗
布法などによって用途に応じた材質および厚みのセラミ
ックスまたは有機物からなる絶縁薄層を形成させること
も可能である。このように表面に絶縁薄層を形成するこ
とによって、本発明の半導体装置用放熱基板を電気的に
絶縁が要求される用途に用いることが可能となり、従来
のセラミックスまたは有機絶縁材の基板に置き換えて利
用することも可能となる。
In the heat dissipation substrate for a semiconductor device of the present invention, an insulating thin layer made of a ceramic or an organic material having a material and thickness suitable for the application is formed on the surface thereof by various plating methods, vapor deposition methods, dipping methods, coating methods and the like. Can also be formed. By forming an insulating thin layer on the surface in this manner, the heat dissipation substrate for a semiconductor device of the present invention can be used for applications requiring electrical insulation, and can be replaced with a conventional ceramic or organic insulating substrate. It is also possible to use.

【0025】本発明の半導体装置用放熱基板は、W−C
u、Mo−Cuの基材の上下両面に合せ材としてCuを
配し、これを圧延するかまたは積層後に熱間一軸加工に
よって製造される。
The heat dissipation substrate for a semiconductor device of the present invention is WC
It is manufactured by arranging Cu as a bonding material on both upper and lower surfaces of a base material of u or Mo-Cu, rolling it, or laminating it and then hot uniaxially processing it.

【0026】それゆえ、本発明の半導体装置用放熱基板
の製造方法は、半導体素子を搭載または保持するための
半導体装置用放熱基板の製造方法であって、タングステ
ン−銅合金およびモリブデン−銅合金からなる群より選
ばれた少なくとも一種の金属材料からなる第1の部材の
互いに対向する一方と他方の主表面に、銅を主材料とす
る金属材料からなる第2の部材を熱間一軸加工法または
圧延法のいずれかによって接合する工程を備えている。
Therefore, a method of manufacturing a heat dissipation board for a semiconductor device according to the present invention is a method of manufacturing a heat dissipation board for a semiconductor device for mounting or holding a semiconductor element, and is made of a tungsten-copper alloy and a molybdenum-copper alloy. A first member made of at least one metal material selected from the group consisting of a second member made of a metal material containing copper as a main material is formed on the one and the other main surfaces of the first member facing each other by the hot uniaxial working method or It has a step of joining by any of the rolling methods.

【0027】以下、本発明の半導体装置用放熱基板の製
造方法について、圧延により接合する場合を詳細に説明
する。
The method of manufacturing the heat dissipation substrate for a semiconductor device according to the present invention will be described in detail in the case of bonding by rolling.

【0028】まずW−Cu、Mo−Cu合金表面の余剰
Cuや汚れを除去し、所定の厚みの基材を作る。この合
金よりなる基材の両面に合せ材としてCuを重ね合わせ
非酸化性雰囲気中で加熱し、加熱炉から直接圧延機に導
入し、接合するとともに厚みを落とす。さらに、同様な
加熱と圧延を繰返し、段階的に厚みを落として所規の厚
みに仕上げる。
First, excess Cu and stains on the surfaces of W-Cu and Mo-Cu alloys are removed to prepare a base material having a predetermined thickness. Cu is superposed on both sides of a base material made of this alloy as a bonding material, heated in a non-oxidizing atmosphere, directly introduced from a heating furnace into a rolling mill, bonded, and reduced in thickness. Further, the same heating and rolling are repeated to gradually reduce the thickness and finish it to a desired thickness.

【0029】なお、W−Cu、Mo−Cu合金とCuの
当初の厚みについては、必要な特性に合わせて調整す
る。しかしながら、Cu層、Mo層が極端に厚いもしく
は極端に薄い場合には、予めめっき法、蒸着法、(溶融
金属)浸析法などの方法によってCu、Ag(銀)、A
l(アルミニウム)、Ni(ニッケル)のいずれかの金
属またはそれらの金属を薄く被覆することによって、小
さい圧延率で確実な接合を行なうことが可能となる。ま
た、この被覆層の厚みは熱伝導性を劣化させないため3
μm以下が好ましい。
The initial thicknesses of the W-Cu, Mo-Cu alloy and Cu are adjusted according to the required characteristics. However, when the Cu layer and the Mo layer are extremely thick or extremely thin, Cu, Ag (silver), A, etc. are previously prepared by a method such as a plating method, a vapor deposition method, and a (molten metal) dipping method.
By thinly coating a metal of l (aluminum) or Ni (nickel) or a metal thereof, reliable joining can be performed with a small rolling rate. In addition, the thickness of this coating layer does not deteriorate the thermal conductivity, so 3
μm or less is preferable.

【0030】また、加熱処理の温度は、W−Cu、Mo
−CuのCu量にもよるが、1100℃〜1300℃が
好ましく、加熱時間は均一に加熱するため少なくとも6
0分は必要である。また、その場合の雰囲気はH2 (水
素)、Ar(アルゴン)などの非酸化性のガスまたは1
-1Torr以下の真空雰囲気とする。特に好ましい雰
囲気はH2 である。
The heat treatment temperature is W--Cu or Mo.
Although it depends on the Cu amount of —Cu, 1100 ° C. to 1300 ° C. is preferable, and the heating time is at least 6 for uniformly heating.
0 minutes is required. The atmosphere in that case is a non-oxidizing gas such as H 2 (hydrogen) or Ar (argon) or 1
The vacuum atmosphere is set to 0 −1 Torr or less. A particularly preferred atmosphere is H 2 .

【0031】また、当初のW−Cu、Mo−Cuのクラ
ッド面の表面粗さRmaxは5μm程度には仕上げる。
これによって、圧延時の密着性が確保され得る。
The initial surface roughness Rmax of the W-Cu and Mo-Cu clad surfaces is about 5 μm.
Thereby, the adhesiveness at the time of rolling can be secured.

【0032】さらにCuおよびW−Cu、Mo−Cuの
クラッド面には1〜3μmの膜厚でNiめっきを施し、
洗浄して汚れを除き、即時に積層して加熱を行なう。
Further, the Cu, W-Cu, and Mo-Cu clad surfaces are plated with Ni to a thickness of 1 to 3 μm.
Wash to remove dirt, stack immediately and heat.

【0033】熱間での圧延条件については圧延率5〜1
5%とし、1〜3段で接合を完了するようにする。また
圧延後の表面では粗くて使えない用途には、さらに修正
冷間圧延を行なって所望の面粗度となるようにその表面
を仕上げる。
Regarding the hot rolling condition, the rolling ratio is 5 to 1
It is set to 5% and the joining is completed in 1 to 3 steps. For applications where the surface after rolling is rough and cannot be used, correction cold rolling is further performed to finish the surface so as to have a desired surface roughness.

【0034】また圧延後のフープは所定の形状にプレス
加工して基板とする。次に、本発明の半導体装置用放熱
基板の製造方法において熱間一軸加工を用いた場合を詳
細に説明する。
The rolled hoop is pressed into a predetermined shape to form a substrate. Next, a case where hot uniaxial processing is used in the method for manufacturing a semiconductor device heat dissipation substrate of the present invention will be described in detail.

【0035】この熱間一軸加工による方式は、生産方式
によっては熱間圧延法に比べ高価になるが基材のW−C
u、Mo−Cuの波打ちをほとんど解消でき、素材に近
い安定した厚みを有する基材が得られる点でメリットが
ある。
This hot uniaxial working method is more expensive than the hot rolling method depending on the production method, but the WC of the base material is used.
It is advantageous in that the waviness of u and Mo-Cu can be almost eliminated, and a base material having a stable thickness close to that of the raw material can be obtained.

【0036】この場合には、カーボン製の臼と杵を用
い、臼内にたとえばCu、W−Cu、Cuの積層単位を
BN、Al2 3 などの分離剤を介在させて加熱した
後、所定時間加圧を行なう。
In this case, a carbon mortar and pestle are used, and a laminated unit of, for example, Cu, W--Cu, Cu is heated in the mortar with a separating agent such as BN or Al 2 O 3 interposed therebetween, and then heated. Pressurize for a predetermined time.

【0037】安価にするためには連続化を考えればよ
く、これにより圧延法に匹敵する程度に安価に製造する
ことも十分可能である。この熱間一軸加工時の雰囲気
は、酸化を未然に防ぐため、10-1Torr以下の真空
下または非酸化性ガスのAr、N 2 (窒素)、He(ヘ
リウム)、COなどまたはこれらの混合ガスとする。
To make it cheap, consider serialization.
In this way, it can be manufactured at a low cost comparable to the rolling method.
It is possible enough. Atmosphere during hot uniaxial machining
Is 10 to prevent oxidation.-1Vacuum below Torr
Under or non-oxidizing gas Ar, N 2(Nitrogen), He (F
), CO, or a mixed gas thereof.

【0038】また温度は300℃〜850℃とし、基材
のCu量によって調整する。300℃未満では接合部の
金属成分の拡散が不十分で接合強度が得られず、850
℃を超えるとCu表面の肌荒れによる寸法精度の確保が
難しくなり好ましくない。
The temperature is set to 300 ° C. to 850 ° C., and is adjusted according to the amount of Cu in the base material. If the temperature is less than 300 ° C., the diffusion of the metal components in the joint is insufficient and the joint strength cannot be obtained.
If the temperature exceeds ℃, it is difficult to secure dimensional accuracy due to roughened Cu surface, which is not preferable.

【0039】また加圧力は300〜1000kg/cm
2 とする。300kg/cm2 未満では接合強度が得ら
れないかまたは長時間の加圧が必要になり、1000k
g/cm2 を超えるとCu部に変形が生じるとともに型
の寿命も縮めることになり好ましくない。
The applied pressure is 300 to 1000 kg / cm.
Set to 2 . If the pressure is less than 300 kg / cm 2 , bonding strength may not be obtained, or long-term pressurization may be required, and 1000 k
When it exceeds g / cm 2 , the Cu portion is deformed and the life of the mold is shortened, which is not preferable.

【0040】また加圧時間は10分〜3時間とする。1
0分未満では強度が十分に得られず、3時間を超えても
加圧の効果はそれ以上得られない。
The pressurizing time is 10 minutes to 3 hours. 1
If it is less than 0 minutes, sufficient strength cannot be obtained, and if it exceeds 3 hours, the effect of pressurization cannot be further obtained.

【0041】接合強度については、接合部のJIS Z
−3192による剪断強度として少なくとも5kgf/
mm2 以上が必要である。
Regarding the joint strength, JIS Z of the joint portion is used.
-3192 as a shear strength of at least 5 kgf /
mm 2 or more is required.

【0042】本発明の半導体装置用放熱基板の製造方法
においては、W−Cu、Mo−Cuからなる群より選ば
れた少なくとも一種の金属材料からなる第1の部材は溶
浸法または焼結法のいずれかにより形成されることが好
ましい。
In the method of manufacturing a heat dissipation substrate for a semiconductor device of the present invention, the first member made of at least one metal material selected from the group consisting of W-Cu and Mo-Cu is the infiltration method or the sintering method. It is preferably formed by any of the above.

【0043】以下、本発明の半導体装置用放熱基板の製
造方法の好ましい局面において、W−Cu、Mo−Cu
を溶浸法により形成する場合を詳細に説明する。
Hereinafter, in a preferable aspect of the method for manufacturing a heat dissipation substrate for a semiconductor device of the present invention, W-Cu and Mo-Cu are used.
The case of forming by the infiltration method will be described in detail.

【0044】まず予め粒度調整されたW、Mo粉末に必
要により少量のFe(鉄)、Ni、Co(コバルト)な
どの粉末を添加した後、混合・成形する。その後、この
成形体を非酸化性ガス雰囲気中で1000〜1400℃
の温度で焼結し、W、Moからなる多孔体を作る。原料
のW、Moは粗粒と微粒の組合せにより充填性をよくす
る。また成形に用いるバインダは灰分の残らない低温揮
発性のものを用いる。さらに焼結時のガスは純度の高い
もの(H2 が好ましい)を用いることによって骨格の内
部に空孔のない多孔体を得ることが必要である。
First, if necessary, a small amount of powder of Fe (iron), Ni, Co (cobalt) or the like is added to W and Mo powders whose particle sizes have been adjusted in advance, and then mixed and molded. Then, this molded body is heated to 1000 to 1400 ° C. in a non-oxidizing gas atmosphere.
Sintering is carried out at the temperature of to make a porous body composed of W and Mo. The raw materials W and Mo improve the filling property by combining coarse particles and fine particles. The binder used for molding is a low temperature volatile binder that does not leave ash. Furthermore, it is necessary to obtain a porous body having no pores inside the skeleton by using a high-purity gas (preferably H 2 ) for sintering.

【0045】またFe、Ni、CoはW、Moの骨格形
成時に溶融して焼結を促進させる。このFe、Ni、C
oは0.2〜3wt.%添加することが好ましい。0.
2wt.%未満では促進効果がなく、3wt.%を超え
ると熱伝導が急激に低下する。
Further, Fe, Ni and Co are melted at the time of forming the skeleton of W and Mo to accelerate the sintering. This Fe, Ni, C
o is 0.2 to 3 wt. % Is preferably added. 0.
2 wt. %, There is no accelerating effect and 3 wt. If it exceeds%, the thermal conductivity will drop sharply.

【0046】焼結された多孔体を純度の高い非酸化性ガ
ス雰囲気中(H2 が好ましい)で1100〜1400℃
の温度でCuと接触させ溶融Cuを空孔に隙間なく埋
め、実質密度100%のものを作製する。骨格内部やC
u充填部に空孔を作らないことによってクラッド後のW
−Cu層に微小な空孔が残らず、W−Cu層の熱膨張係
数、熱伝導度が複合則で予測し得るものとなり、要求に
応じた組成の材料の選定が容易になるとともに、高い熱
伝導の基材が形成され得る。
The sintered porous body was heated to 1100 to 1400 ° C. in a high purity non-oxidizing gas atmosphere (H 2 is preferable).
The molten Cu is brought into contact with Cu at the temperature of 1 to fill the voids with no gaps to produce a material having a substantial density of 100%. Inside the skeleton and C
u After clad by not forming holes in the filling part,
-Since the Cu layer does not have minute holes, the coefficient of thermal expansion and thermal conductivity of the W-Cu layer can be predicted by the complex rule, making it easy to select a material having a composition according to requirements and high. A thermally conductive substrate can be formed.

【0047】次に、本発明の半導体装置用放熱基板の製
造方法の好ましい局面において、W−Cu、Mo−Cu
を焼結法で形成する場合を詳細に説明する。
Next, in a preferable aspect of the method for manufacturing a heat dissipation substrate for a semiconductor device of the present invention, W-Cu and Mo-Cu are used.
The case of forming by a sintering method will be described in detail.

【0048】まず最終組成に相当するW、Moのいずれ
かの粉末とCuの粉末を混合して成形する。その後、成
形体を非酸化性雰囲気中で焼結し、W、Moの焼結とと
もに溶融Cuでその空孔部を充填する方法によって複合
合金を作る。
First, either powder of W or Mo corresponding to the final composition and powder of Cu are mixed and molded. After that, the molded body is sintered in a non-oxidizing atmosphere, and a composite alloy is produced by a method of sintering W and Mo and filling the voids with molten Cu.

【0049】なお、原料の粒度制御、Fe、Ni、Co
の少量添加の内容、成形用バインダの選定、焼結の条件
については上記溶浸法に準じる。
The particle size control of the raw materials, Fe, Ni, Co
The contents of addition of a small amount of, the selection of the binder for molding, and the conditions of sintering are in accordance with the above infiltration method.

【0050】この方法では溶浸法のようにWの骨格が形
成されずCu部に微小な空孔が残るため、溶浸法のよう
な100%緻密なものはできない。したがって、同一C
u量で比較すると溶浸法に比べ焼結法で形成されたもの
は熱伝導度が低く、熱膨張係数は高くなる。しかしなが
ら、溶浸法に比べ焼結法を用いることにより加熱工程が
短くなりその分だけ安価に製造できる。またこの場合で
も、クラッド化圧延時に残留空孔は潰される。
In this method, the skeleton of W is not formed unlike in the infiltration method and minute voids remain in the Cu portion, so that the infiltration method cannot be 100% dense. Therefore, the same C
Compared with the amount of u, the one formed by the sintering method has a lower thermal conductivity and a higher thermal expansion coefficient than the infiltration method. However, by using the sintering method as compared with the infiltration method, the heating process is shortened and the manufacturing cost can be reduced accordingly. Also in this case, the residual holes are crushed during the clad rolling.

【0051】なお、W−Cu、Mo−Cuの作り方とし
て溶浸法・焼結法のいずれを選ぶかは用途によって選べ
ばよい。
It should be noted that which of the infiltration method and the sintering method should be selected as a method for producing W-Cu or Mo-Cu may be selected depending on the application.

【0052】また、必要によってはW−Cu、Mo−C
uとCuのクラッド化に先立ち、クラッド界面にめっき
法、蒸着法、浸析法、塗布法、薄い板または粉末を介在
させる方法などによってCu、Ag、Al、Niのいず
れかまたはそれらの合金を付与することが好ましい。こ
れらの合金を付与することによってクラッド接合性が改
善できる。しかし、接合層とこれらの付与された金属と
の間に合金層が形成されるため、Z方向の熱伝導率が若
干低下する。この場合、付与される層の最終厚みは3μ
m以下とすることが好ましい。
If necessary, W-Cu, Mo-C
Prior to the clad formation of u and Cu, any one of Cu, Ag, Al and Ni or their alloys is formed on the clad interface by a plating method, a vapor deposition method, an immersion method, a coating method, a method of interposing a thin plate or a powder. It is preferable to add. The cladding bondability can be improved by adding these alloys. However, since the alloy layer is formed between the bonding layer and these added metals, the thermal conductivity in the Z direction is slightly reduced. In this case, the final thickness of the applied layer is 3μ
It is preferably m or less.

【0053】以下、実施例により本発明を説明する。The present invention will be described below with reference to examples.

【0054】[0054]

【実施例】実施例1.W粉末またはMo粉末とCu粉末
にNi粉末1.0wt.%を混合し、100mm×50
mm×0.5〜1.5mmtの大きさに型押しした。そ
の後、1000〜1400℃でH2 ガス雰囲気下にて焼
結し、スケルトンを作った。このスケルトンに1100
〜1400℃でH2 ガス雰囲気下にて加熱し、Cuを1
〜50wt.%含有したW−CuまたはMo−Cu合金
を製作した。
EXAMPLES Example 1. W powder or Mo powder and Cu powder with Ni powder 1.0 wt. %, 100 mm x 50
The die was embossed into a size of mm × 0.5 to 1.5 mmt. After that, sintering was performed at 1000 to 1400 ° C. in a H 2 gas atmosphere to make a skeleton. 1100 for this skeleton
Heat at ~ 1400 ° C under H 2 gas atmosphere to remove Cu from 1
~ 50 wt. % W-Cu or Mo-Cu alloy was produced.

【0055】この合金の表面の余分なCuや汚れを洗浄
により除去し、寸法を100mm×50mm×0.5〜
1.5mmtにし、表面粗さRmaxを4μmにした
後、表面に2μmの膜厚でNiめっきを施した。このよ
うにして得られた合金の上下両面にCuを重ね合わせ、
Cu/W−Cu/CuまたはCu/Mo−Cu/Cuと
した。
Excess Cu and dirt on the surface of this alloy are removed by washing, and the dimensions are 100 mm × 50 mm × 0.5-
The surface roughness Rmax was set to 1.5 μm and the surface roughness Rmax was set to 4 μm, and then the surface was plated with Ni to a film thickness of 2 μm. Cu was superposed on the upper and lower surfaces of the alloy thus obtained,
It was Cu / W-Cu / Cu or Cu / Mo-Cu / Cu.

【0056】この重ね合わせた3層の板を水素雰囲気中
で1130℃の温度で80分間加熱した。その後、加熱
炉から直接圧延へ通し、圧延率10%で熱間圧延を行な
い、各層を接合した。その品物を同様の熱処理と圧延を
繰返すことにより、厚みを落としてプレス打ち抜きし、
所定の厚みの試料を作製した。
The laminated three-layer plate was heated in a hydrogen atmosphere at a temperature of 1130 ° C. for 80 minutes. Then, it was passed directly from the heating furnace to rolling, and hot rolling was performed at a rolling rate of 10% to bond the layers. By repeating the same heat treatment and rolling, the product is reduced in thickness and punched,
A sample having a predetermined thickness was prepared.

【0057】実施例2.W粉末とCu粉末にNi粉末
1.0wt.%を混合し、φ425mm×0.7mmt
の大きさに型押しした。その後、1000〜1400℃
でH2 ガス雰囲気下にて焼結し、スケルトンを作った。
このスケルトンに1100〜1400℃でH2 ガス雰囲
気下にて加熱し、Cuを10wt.%含有したW−Cu
合金を製作した。
Example 2. Ni powder 1.0 wt. %, Φ425mm × 0.7mmt
Stamped to the size of. After that, 1000-1400 ° C
A skeleton was prepared by sintering in a H 2 gas atmosphere.
This skeleton was heated at 1100 to 1400 ° C. under a H 2 gas atmosphere, and Cu was added at 10 wt. % W-Cu
Made alloy.

【0058】この合金の表面の余分なCuや汚れを洗浄
により除去し、寸法をφ425mm×0.7mmtに
し、表面粗さRmaxを4μmにした後、表面に2μm
の膜厚でNiめっきを施した。このようにして得られた
合金の上下両面に同寸法のCuを重ね合わせ、Cu/W
−Cu/Cuとした。
Excess Cu and stains on the surface of this alloy were removed by washing to make the size φ425 mm × 0.7 mmt and the surface roughness Rmax to 4 μm, and then 2 μm on the surface.
Ni plating was performed with a film thickness of. Cu of the same size was superposed on the upper and lower surfaces of the alloy thus obtained, and Cu / W
-Cu / Cu.

【0059】この重ね合わせた3層の板をカーボン製の
臼と杵に入れ熱間一軸加工用装置にて真空度5×10-2
Torrにし、炉にて500℃に加熱し、500kg/
cm 2 の圧力で加圧し、2時間保持した後、試料を作製
した。
This laminated three-layer plate is made of carbon.
Put in a die and pestle, vacuum degree 5 × 10 with hot uniaxial machining equipment-2
Set to Torr and heat to 500 ° C in a furnace, 500 kg /
cm 2After pressurizing with pressure of 2 hours and holding for 2 hours, prepare a sample
did.

【0060】上記の実施例1.と実施例2.とにより得
られた試料の熱伝導率と熱膨張率を測定した結果につい
て以下の表2に示す。
Example 1 above. And Example 2. The results of measuring the thermal conductivity and the coefficient of thermal expansion of the sample obtained by are shown in Table 2 below.

【0061】また表2に示す本発明例の試料No.3と
比較例の試料No.1についてX、Y、Zの各方向の熱
伝導率の実測データを表3に示す。
Further, the sample No. of the example of the present invention shown in Table 2 was obtained. 3 and the sample No. of the comparative example. Table 3 shows the actual measurement data of the thermal conductivity in the X, Y, and Z directions for Sample No. 1.

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【表3】 [Table 3]

【0064】この表2および表3より、本発明例の試料
は、基材をW−CuまたはMo−Cuとしたことによ
り、熱伝導性がC.M.C.に比べて良く、かつC.
M.C.に比べてZ方向の熱伝導性の劣化が少なく、格
段に優れた材料であることが判明した。
From Tables 2 and 3, the samples of the examples of the present invention have a thermal conductivity of C.I. M. C. Better than C. and C.I.
M. C. It was found that the heat conductivity in the Z direction was less deteriorated than that of No. 1, and the material was remarkably excellent.

【0065】次に、本発明の半導体装置用放熱基板の構
成およびその用途について説明する。
Next, the structure and application of the heat dissipation substrate for semiconductor device of the present invention will be described.

【0066】図1は、本発明の一実施例における半導体
装置用放熱基板の構成を概略的に示す斜視図である。図
1を参照して、本発明の一実施例における半導体装置用
放熱基板10は基材1の上下両面に合せ材2a、2bが
接合された構成を有している。基材1は、W−Cuおよ
びMo−Cuからなる群より選ばれた少なくとも一種の
金属材料からなっている。また合せ材2a、2bは、主
に銅を材料とする金属材料からなっている。また基材1
と合せ材2a、2bの接合においては、熱間圧延法また
は熱間一軸加工法のいずれかによってなされている。
FIG. 1 is a perspective view schematically showing the structure of a heat dissipation board for a semiconductor device according to an embodiment of the present invention. Referring to FIG. 1, a heat dissipation substrate 10 for a semiconductor device according to an embodiment of the present invention has a structure in which mating materials 2a and 2b are bonded to both upper and lower surfaces of a base material 1. The base material 1 is made of at least one metal material selected from the group consisting of W-Cu and Mo-Cu. The mating materials 2a and 2b are made of a metal material mainly made of copper. Also the base material 1
The joining materials 2a and 2b are joined by either a hot rolling method or a hot uniaxial working method.

【0067】図2は、本発明の一実施例における半導体
装置用放熱基板を用いた半導体装置の構成を概略的に示
す断面図である。図2を参照して、半導体装置は、半導
体装置用放熱基板10と、Si半導体素子ICチップ2
0と、Al2 3 外囲基材30と、キャップ40と、ピ
ン端子50とを備えている。半導体装置用放熱基板10
は、図1に示した構成とほぼ同様の構成を有している。
またこの半導体装置用放熱基板10には、Si半導体素
子ICチップ20とAl2 3 外囲基材30とが取付け
られている。このAl2 3 外囲基材には複数本のピン
端子50が設けられており、このピン端子50の各々
は、Si半導体素子ICチップ20とワイヤボンディン
グによるリード線60により電気的に接続されている。
また、Si半導体素子ICチップ20が露出しないよう
にAl2 3 外囲基材30の半導体装置用放熱基板10
に対向する面側にはキャップ40が取付けられている。
FIG. 2 is a sectional view schematically showing the structure of a semiconductor device using a heat dissipation substrate for a semiconductor device according to an embodiment of the present invention. Referring to FIG. 2, the semiconductor device includes a semiconductor device heat dissipation substrate 10 and a Si semiconductor element IC chip 2
0, an Al 2 O 3 surrounding base material 30, a cap 40, and a pin terminal 50. Heat dissipation board 10 for semiconductor device
Has a configuration substantially similar to that shown in FIG.
Further, an Si semiconductor element IC chip 20 and an Al 2 O 3 envelope base material 30 are attached to the heat dissipation substrate 10 for semiconductor device. A plurality of pin terminals 50 are provided on the Al 2 O 3 envelope base material, and each of the pin terminals 50 is electrically connected to the Si semiconductor element IC chip 20 by a lead wire 60 by wire bonding. ing.
Further, the heat dissipation substrate 10 for semiconductor device of the Al 2 O 3 surrounding base material 30 is provided so that the Si semiconductor element IC chip 20 is not exposed.
A cap 40 is attached to the surface side facing the.

【0068】半導体装置用放熱基板10の外寸は38m
m□、Al2 3 外囲基材30の外寸は40mm□、S
i半導体素子ICチップ20の外寸は15mm□であ
る。この場合、Al2 3 外囲基材30と半導体装置用
放熱基板10との一辺の接合長は半導体装置用放熱基板
10の外寸38mmとなる。
The external dimensions of the heat dissipation board 10 for a semiconductor device are 38 m.
m □, Al 2 O 3 envelope base material 30 has an outer size of 40 mm □, S
The outer size of the i semiconductor element IC chip 20 is 15 mm □. In this case, the joint length of one side of the Al 2 O 3 surrounding base material 30 and the semiconductor device heat dissipation substrate 10 is the outer dimension of the semiconductor device heat dissipation substrate 10 of 38 mm.

【0069】この図3に示す半導体装置に表2に記載の
本発明例の試料No.2を取付け、−65℃〜+150
℃の熱サイクル試験を行なった。その結果、試験後のH
eリーク試験でのリーク量は10-8atm・cc/se
c以下であり、かつクラッドの界面や半導体素子および
他の構成材との接合界面における割れ、亀裂、変形など
の不具合は見られなかった。
In the semiconductor device shown in FIG. 3, sample Nos. 2 attached, -65 ℃ ~ +150
A heat cycle test at ℃ was performed. As a result, H after the test
e Leak amount in the leak test is 10 -8 atm · cc / se
No defects such as cracking, cracking, and deformation were observed at the interface of the clad and at the bonding interface with the semiconductor element and other constituent materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体装置用放熱基
板の構成を概略的に示す斜視図である。
FIG. 1 is a perspective view schematically showing a structure of a heat dissipation board for a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施例における半導体装置用放熱基
板が用いられた半導体装置の構成を概略的に示す断面図
である。
FIG. 2 is a cross-sectional view schematically showing a configuration of a semiconductor device using a heat dissipation substrate for a semiconductor device according to an embodiment of the present invention.

【図3】C.M.C.においてMo層が不均一な厚みと
なった様子を示すC.M.C.の構成を概略的に示す断
面図である。
FIG. 3 C. M. C. C. showing that the Mo layer had an uneven thickness. M. C. It is sectional drawing which shows the structure of.

【符号の説明】[Explanation of symbols]

1 基材 2a、2b 合せ材 10 半導体装置用放熱基板 DESCRIPTION OF SYMBOLS 1 Base material 2a, 2b Composite material 10 Heat dissipation board for semiconductor device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂上 仁之 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiyuki Sakagami 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子を搭載または保持するための
半導体装置用放熱基板であって、 互いに対向する一方と他方の主表面を有し、かつタング
ステン−銅合金およびモリブデン−銅合金からなる群よ
り選ばれた少なくとも一種の金属材料からなる第1の部
材と、 前記第1の部材の一方と他方の主表面に接合され、かつ
銅を主材料とする金属材料からなる第2の部材とを備え
た、半導体装置用放熱基板。
1. A heat dissipation substrate for a semiconductor device for mounting or holding a semiconductor element, comprising: a group consisting of a tungsten-copper alloy and a molybdenum-copper alloy, having one and the other main surfaces facing each other. A first member made of at least one selected metal material; and a second member made of a metal material containing copper as a main material, which is joined to one and the other main surfaces of the first member. Also, a heat dissipation board for semiconductor devices.
【請求項2】 前記半導体素子を構成する半導体材料が
シリコンおよびガリウム・砒素のいずれかを含む、請求
項1に記載の半導体装置用放熱基板。
2. The heat dissipation substrate for a semiconductor device according to claim 1, wherein the semiconductor material forming the semiconductor element contains one of silicon and gallium arsenide.
【請求項3】 半導体素子を搭載または保持するための
半導体装置用放熱基板の製造方法であって、 タングステン−銅合金およびモリブデン−銅合金からな
る群より選ばれた少なくとも一種の金属材料からなる第
1の部材の互いに対向する一方と他方の主表面に、銅を
主材料とする金属材料からなる第2の部材を熱間一軸加
工法または圧延法のいずれかによって接合する、半導体
装置用放熱基板の製造方法。
3. A method of manufacturing a heat dissipation board for a semiconductor device for mounting or holding a semiconductor element, comprising a metal material of at least one selected from the group consisting of a tungsten-copper alloy and a molybdenum-copper alloy. A heat dissipation board for a semiconductor device in which a second member made of a metal material containing copper as a main material is bonded to one and the other of the main surfaces of the first member facing each other by either a hot uniaxial working method or a rolling method. Manufacturing method.
【請求項4】 前記第1の部材は、溶浸法または焼結法
のいずれかにより形成される、請求項3に記載の半導体
装置用放熱基板の製造方法。
4. The method of manufacturing a heat dissipation board for a semiconductor device according to claim 3, wherein the first member is formed by either an infiltration method or a sintering method.
JP5053960A 1993-03-15 1993-03-15 Heat radiating substrate for semiconductor device and its manufacture Withdrawn JPH06268117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053960A JPH06268117A (en) 1993-03-15 1993-03-15 Heat radiating substrate for semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053960A JPH06268117A (en) 1993-03-15 1993-03-15 Heat radiating substrate for semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH06268117A true JPH06268117A (en) 1994-09-22

Family

ID=12957259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053960A Withdrawn JPH06268117A (en) 1993-03-15 1993-03-15 Heat radiating substrate for semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH06268117A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007940A (en) * 2001-06-25 2003-01-10 Kyocera Corp Heat radiation member and package for housing semiconductor element
JP2003068954A (en) * 2001-08-28 2003-03-07 Kyocera Corp Package for housing semiconductor element
JP2003297985A (en) * 2002-03-22 2003-10-17 Plansee Ag Package and manufacturing method thereof
JP2004356302A (en) * 2003-05-28 2004-12-16 Mitsubishi Materials Corp Substrate for power module, heat sink and manufacturing method therefor
JP2007142126A (en) * 2005-11-18 2007-06-07 Allied Material Corp Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same
EP1939993A2 (en) 2006-12-28 2008-07-02 A.L.M.T. Corp. Heat spreader and semiconductor device using the same
US7951467B2 (en) 2005-10-18 2011-05-31 Eiki Tsushima Cladding material and its manufacturing method, press-forming method, and heat sink using cladding material
WO2013038964A1 (en) * 2011-09-13 2013-03-21 電気化学工業株式会社 Clad material for led light-emitting element holding substrate, and method for manufacturing same
JP2013207221A (en) * 2012-03-29 2013-10-07 Neomax Material:Kk Substrate for light emitting element and light emitting module
CN103443314A (en) * 2011-03-30 2013-12-11 株式会社东芝 Sintered Mo part for heat sink plate for semiconductor device and semiconductor device including same
JP2016105523A (en) * 2016-03-10 2016-06-09 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2017028295A (en) * 2014-05-29 2017-02-02 株式会社アライドマテリアル Heat spreader and method for producing the same
WO2021261805A1 (en) * 2020-06-23 2021-12-30 주식회사 아모센스 Hybrid base plate and manufacturing method therefor
WO2022138711A1 (en) * 2020-12-24 2022-06-30 住友電気工業株式会社 Composite material, semiconductor package, and method for manufacturing composite material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007940A (en) * 2001-06-25 2003-01-10 Kyocera Corp Heat radiation member and package for housing semiconductor element
JP4574071B2 (en) * 2001-06-25 2010-11-04 京セラ株式会社 Package for housing heat dissipation member and semiconductor element
JP2003068954A (en) * 2001-08-28 2003-03-07 Kyocera Corp Package for housing semiconductor element
JP2003297985A (en) * 2002-03-22 2003-10-17 Plansee Ag Package and manufacturing method thereof
JP2004356302A (en) * 2003-05-28 2004-12-16 Mitsubishi Materials Corp Substrate for power module, heat sink and manufacturing method therefor
US7951467B2 (en) 2005-10-18 2011-05-31 Eiki Tsushima Cladding material and its manufacturing method, press-forming method, and heat sink using cladding material
JP2007142126A (en) * 2005-11-18 2007-06-07 Allied Material Corp Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same
EP1939993A2 (en) 2006-12-28 2008-07-02 A.L.M.T. Corp. Heat spreader and semiconductor device using the same
CN103443314A (en) * 2011-03-30 2013-12-11 株式会社东芝 Sintered Mo part for heat sink plate for semiconductor device and semiconductor device including same
CN107658280A (en) * 2011-03-30 2018-02-02 株式会社东芝 Heat dissipating plate for semiconductor Mo sintered components and the semiconductor device using the Mo sintered components
WO2013038964A1 (en) * 2011-09-13 2013-03-21 電気化学工業株式会社 Clad material for led light-emitting element holding substrate, and method for manufacturing same
US9299888B2 (en) 2011-09-13 2016-03-29 Denka Company Limited Clad material for LED light-emitting element holding substrate, and method for manufacturing same
JP2013207221A (en) * 2012-03-29 2013-10-07 Neomax Material:Kk Substrate for light emitting element and light emitting module
JP2017028295A (en) * 2014-05-29 2017-02-02 株式会社アライドマテリアル Heat spreader and method for producing the same
CN106460191A (en) * 2014-05-29 2017-02-22 联合材料公司 Heat spreader and process for producing same
EP3147384A4 (en) * 2014-05-29 2018-02-14 A.L.M.T. Corp. Heat spreader and process for producing same
US10215512B2 (en) 2014-05-29 2019-02-26 A.L.M.T. Corp. Heat spreader and method for manufacturing the same
JP2016105523A (en) * 2016-03-10 2016-06-09 三菱電機株式会社 Semiconductor device and manufacturing method thereof
WO2021261805A1 (en) * 2020-06-23 2021-12-30 주식회사 아모센스 Hybrid base plate and manufacturing method therefor
WO2022138711A1 (en) * 2020-12-24 2022-06-30 住友電気工業株式会社 Composite material, semiconductor package, and method for manufacturing composite material

Similar Documents

Publication Publication Date Title
EP1944116A1 (en) Cladding material and its fabrication method, method for molding cladding material, and heat sink using cladding material
CN109690760B (en) Heat sink and method for manufacturing the same
US20060246314A1 (en) Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
US20090283309A1 (en) Ceramic-metal bonded body, method for manufacturing the bonded body and semi-conductor device using the bonded body
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
CN111357100A (en) Heat sink and method for manufacturing the same
JP2000323618A (en) Copper circuit clad substrate and manufacture thereof
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
EP0365275B1 (en) A composite material heat-dissipating member for a semiconductor element and method of its fabrication
US20060263584A1 (en) Composite material, electrical circuit or electric module
US7083759B2 (en) Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
US4793967A (en) Cermet substrate with spinel adhesion component
EP0915512B1 (en) Ceramic substrate having a metal circuit
JP4104253B2 (en) Board integrated structure
US4743299A (en) Cermet substrate with spinel adhesion component
US5653379A (en) Clad metal substrate
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
EP1231633B1 (en) Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same
JP6786090B2 (en) Heat dissipation plate material
JPH08186204A (en) Heat sink and its manufacture
US5886269A (en) Substrate and heat sink for a semiconductor and method of manufacturing the same
US5613181A (en) Co-sintered surface metallization for pin-join, wire-bond and chip attach
JP2006120973A (en) Circuit board and manufacturing method thereof
JPH05109947A (en) Heat conducting material and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530