JPH06267943A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06267943A
JPH06267943A JP5372393A JP5372393A JPH06267943A JP H06267943 A JPH06267943 A JP H06267943A JP 5372393 A JP5372393 A JP 5372393A JP 5372393 A JP5372393 A JP 5372393A JP H06267943 A JPH06267943 A JP H06267943A
Authority
JP
Japan
Prior art keywords
film
layer wiring
stamper
glass film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5372393A
Other languages
Japanese (ja)
Inventor
Kenji Furusawa
健志 古澤
Yoshio Honma
喜夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP5372393A priority Critical patent/JPH06267943A/en
Publication of JPH06267943A publication Critical patent/JPH06267943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the deterioration in reliability upon wiring due to moisture absorption into an interlayer insulating film by a method wherein rugged surfaces are transferred to a gel film formed on a substrate having an electrode by pressing down a stamper and after finishing the heat treating step, a metallic film is deposited on the transferred regions. CONSTITUTION:A conductive film for lower layer wiring is formed on a semiconductor substrate 101 so as to be patterned into a lower layer wiring 102. Next, an organic coated glass film 104 in gel state is formed by spin-coating step. Next, a stamper 106 is pressed down agaist said glass film 104 to transfer the recessed surfaces 111 and 110 corresponding to an upper layer wiring and a connecting hole. Later, the organic coated glass film 104 is set by heat- treating it in nitrogen stream. Furthermore, the lower layer wiring on the bottom part of the connecting hole 110 is completely exposed by etching back step. Finally, after the formation of an aluminum film 114 as another conductive film for upper layer wiring, the aluminum excluding the recessed surface of said glass film 104 is removed so as to turn the aluminum in the recessed surfaces into an upper layer wiring 115.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層配線構造を持つ半
導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a multilayer wiring structure.

【0002】[0002]

【従来の技術】従来の半導体装置の製造方法を図18か
ら図24に示す。まず、半導体基板301に下層配線用
導電膜を形成し、公知のドライエッチング技術を用いて
パターニングして下層配線302とする(図18)。つ
いで、第一のプラズマ酸化膜303を形成し(図1
9)、平坦化のために有機塗布ガラス膜(有機スピンオ
ングラス)304を形成した後(図20)、下層配線3
02の上部に塗布ガラス膜304が残らないようにエッ
チバック308を行なう(図21)。更に、第二のプラ
ズマ酸化膜309を形成する(図22)。ついで、公知
のドライエッチング技術を用いて、上層配線と下層配線
の接続孔310を形成する(図23)。その上に上層配
線用導電膜を形成し、公知のドライエッチング技術を用
いてパターニングして上層配線315とする(図2
4)。
2. Description of the Related Art A conventional method of manufacturing a semiconductor device is shown in FIGS. First, a conductive film for lower layer wiring is formed on the semiconductor substrate 301, and patterned by using a known dry etching technique to form a lower layer wiring 302 (FIG. 18). Then, a first plasma oxide film 303 is formed (see FIG.
9) After forming an organic coating glass film (organic spin-on glass) 304 for flattening (FIG. 20), the lower wiring 3
Etchback 308 is performed so that the coated glass film 304 does not remain on the upper part of 02 (FIG. 21). Further, a second plasma oxide film 309 is formed (FIG. 22). Next, a connection hole 310 for the upper layer wiring and the lower layer wiring is formed by using a known dry etching technique (FIG. 23). A conductive film for upper layer wiring is formed thereon, and patterned by using a known dry etching technique to form upper layer wiring 315 (FIG. 2).
4).

【0003】ここで有機塗布ガラス膜とは、ポリオルガ
ノシロキサン塗布膜の通称であり、珪素と酸素のシロキ
サン結合の主鎖に、側基としてアルキル基やアリル基等
が結合したものである。
Here, the organic coating glass film is a general name for a polyorganosiloxane coating film, and is a film in which an alkyl group, an allyl group or the like is bonded as a side group to the main chain of a siloxane bond of silicon and oxygen.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の半
導体装置の問題点は、工程数が多いことである。三層層
間絶縁膜構造では、三回の膜形成に加えて、エッチバッ
ク、接続孔310形成のためのドライエッチング工程を
含むため、単層層間絶縁膜構造に比べてかなり工程数が
多く、製造コスト増大に拍車がかかる。
The problem with the conventional semiconductor device as described above is that the number of steps is large. Since the three-layered interlayer insulating film structure includes a dry etching process for etching back and forming the contact hole 310 in addition to three times of film formation, the number of processes is considerably larger than that of the single-layered interlayer insulating film structure, It will spur the cost increase.

【0005】工程数が多くなる原因は、接続孔310と
上層配線315を形成した後、プラズマ酸化膜309上
のレジストを除去する時のアッシャ処理による有機塗布
ガラス膜304の変質を避けなければならないことにあ
る。すなわち、上記の従来の製造方法の例では、有機塗
布ガラス膜304の上下をプラズマ酸化膜303と30
9で挟んで、上層配線315と下層配線302に有機塗
布ガラス膜304が接触しない構造にして、その変質を
避けている。有機塗布ガラス膜304は、有機基により
有機塗布ガラスの表面が疎水性になり含有水分量が少な
くなるので、吸湿性は低く通常水分は殆ど含まないが、
上記レジストを除去する工程では、バレル型ドライエッ
チング装置における酸素プラズマ処理(アッシャ処理)
によって、有機基が取れて水分を含むようになる。この
吸湿した有機塗布ガラス膜304から出る水分が、配線
の信頼性を低下させるのである。したがって、上記のレ
ジストを除去する工程がなければ、三層層間絶縁膜構造
を用いる必要はないので、工程数を低減できる。
The reason why the number of steps increases is that the organic coating glass film 304 must be prevented from being deteriorated by the asher process when removing the resist on the plasma oxide film 309 after forming the connection hole 310 and the upper wiring 315. Especially. That is, in the above-described conventional manufacturing method, the plasma oxide films 303 and 30 are formed above and below the organic coating glass film 304.
The upper coating 315 and the lower wiring 302 are sandwiched between the organic coating glass film 304 and the organic coating glass film 304 so that the organic coating glass film 304 does not come into contact with the upper wiring 315 and the lower wiring 302. In the organic coating glass film 304, the surface of the organic coating glass is made hydrophobic by the organic group and the amount of contained water is reduced, so that the hygroscopicity is low and usually contains almost no water.
In the step of removing the resist, oxygen plasma treatment (asher treatment) in a barrel type dry etching device is performed.
As a result, the organic groups are removed to contain water. The moisture that is absorbed from the organically coated glass film 304 reduces the reliability of the wiring. Therefore, if there is no step of removing the resist described above, it is not necessary to use the three-layer interlayer insulating film structure, and the number of steps can be reduced.

【0006】本発明の目的は、層間絶縁膜の吸湿による
配線の信頼度低下のない多層配線構造を、少ない工程数
で形成することにある。
An object of the present invention is to form a multi-layered wiring structure in which the reliability of wiring is not deteriorated due to moisture absorption of an interlayer insulating film in a small number of steps.

【0007】[0007]

【課題を解決するための手段】有機系溶媒中にオルガノ
シロキサンを分散させた溶液を基板に回転塗布してゲル
薄膜(有機塗布ガラス膜)を形成した後、スタンパを前
記ゲル薄膜に押しつけて凹凸面を転写した後、窒素気流
中で300℃以上600℃以下の温度で加熱硬化する。
さらにゲル薄膜の表面をエッチングしてスタンパの凸部
に対応するゲル薄膜の凹部底面を必要に応じて清浄化
し、その凹部に金属を埋め込んで配線とする。
[Means for Solving the Problems] A solution in which an organosiloxane is dispersed in an organic solvent is spin-coated on a substrate to form a gel thin film (organic-coated glass film), and then a stamper is pressed against the gel thin film to form unevenness. After the surface is transferred, it is heat-cured at a temperature of 300 ° C. or higher and 600 ° C. or lower in a nitrogen stream.
Further, the surface of the gel thin film is etched to clean the bottom surface of the concave portion of the gel thin film corresponding to the convex portion of the stamper as needed, and metal is embedded in the concave portion to form wiring.

【0008】上記のスタンパとは、表面にパターニング
された凹凸面をもつものであり、これをゲル薄膜に押し
つけることで、ゲル薄膜に凹凸面を転写するものであ
る。スタンパの材料は、微細加工により凹凸面を作りや
すく、ゲル薄膜との接着性が悪くて剥離しやすいもので
ある必要がある。このような材料の例として、アルミニ
ウムやタングステン等が挙げられる。また、スタンパの
表面処理によって、ゲル薄膜との接着性を悪くする方法
でもよい。このような表面処理の例として、スパッタ法
によってテフロン薄膜を形成する方法がある。
The stamper has an uneven surface patterned on the surface, and presses this on a gel thin film to transfer the uneven surface to the gel thin film. The material of the stamper needs to be easy to form an uneven surface by microfabrication, have poor adhesiveness to the gel thin film, and be easily peeled off. Examples of such materials include aluminum and tungsten. Alternatively, the surface treatment of the stamper may deteriorate the adhesion to the gel thin film. As an example of such surface treatment, there is a method of forming a Teflon thin film by a sputtering method.

【0009】また、転写するスタンパの凹凸面と下層の
配線層等との位置合わせのためには、上記のスタンパに
位置合わせマークを形成しておき、これと半導体基板の
位置合わせマークによって双方の位置を検出して、位置
合わせを行う。
Further, in order to align the uneven surface of the stamper to be transferred with the underlying wiring layer, etc., an alignment mark is formed on the stamper and both the alignment mark and the alignment mark of the semiconductor substrate are used to form the alignment mark. The position is detected and the position is adjusted.

【0010】[0010]

【作用】本発明によれば、上記レジストを除去する工程
がないので三層層間絶縁膜構造をとる必要はなく、有機
塗布ガラス膜による単層層間絶縁膜を用いた多層配線構
造を少ない工程数で形成できる。なお、有機塗布ガラス
膜中の含有水分量は1%以下とすることにより、層間絶
縁膜(有機塗布ガラス膜)の吸湿による配線の信頼度低
下を防止できる。
According to the present invention, since there is no step of removing the resist, it is not necessary to form a three-layered interlayer insulating film structure, and the number of steps for forming a multi-layered wiring structure using a single-layered interlayer insulating film made of an organic coating glass film is reduced. Can be formed with. By setting the water content in the organic coating glass film to 1% or less, it is possible to prevent the reliability of the wiring from being lowered due to the moisture absorption of the interlayer insulating film (organic coating glass film).

【0011】[0011]

【実施例】【Example】

<実施例1>本発明による半導体装置の製造方法の実施
例を図1から図6に示す。まず、半導体基板101に厚
さ0.5μmの下層配線用導電膜を形成し、公知のドラ
イエッチング技術を用いてパターニングして下層配線1
02とした(図1)。ついで、回転塗布法によって、ゲ
ル状の有機塗布ガラス膜104を形成した。この有機塗
布ガラスは有機基濃度が10重量%以上のものを用い、
含有水分量は1%以下であった。有機塗布ガラス膜10
4の膜厚は1.5μmである(図2)。次いで、スタン
パ106を、2Paの荷重で有機塗布ガラス膜104に
押しつけて(図3)、上層配線と接続孔に対応する深さ
0.5μmと1.0μmの凹面111と110を転写し
た。その後、窒素気流中で450℃で30分間熱処理
し、有機塗布ガラス膜104を硬化させた。さらに、平
行平板型ドライエッチング装置中でエッチバックを行な
い、接続孔底部の下層配線を完全に露出させた(図
4)。ついで、上層配線用導電膜として厚さ0.5μm
のアルミニウム膜114をCVD法によって形成した
(図5)。さらに化学的機械研磨法によって、有機塗布
ガラス膜104の凹面以外のアルミニウムを取り除き、
凹面中のアルミニウムを上層配線115とした(図
6)。
<Embodiment 1> An embodiment of a method for manufacturing a semiconductor device according to the present invention is shown in FIGS. First, a conductive film for lower layer wiring having a thickness of 0.5 μm is formed on the semiconductor substrate 101, and patterned by using a known dry etching technique to form the lower layer wiring 1.
02 (Fig. 1). Then, a gel-like organic coating glass film 104 was formed by spin coating. This organic coated glass has an organic group concentration of 10% by weight or more,
The water content was 1% or less. Organic coated glass film 10
The film thickness of 4 is 1.5 μm (FIG. 2). Next, the stamper 106 was pressed against the organic coating glass film 104 with a load of 2 Pa (FIG. 3), and the concave surfaces 111 and 110 having a depth of 0.5 μm and 1.0 μm corresponding to the upper layer wiring and the connection hole were transferred. Then, heat treatment was performed at 450 ° C. for 30 minutes in a nitrogen stream to cure the organic coating glass film 104. Further, etching back was performed in a parallel plate type dry etching apparatus to completely expose the lower layer wiring at the bottom of the connection hole (FIG. 4). Then, as a conductive film for upper wiring, the thickness is 0.5 μm.
Was formed by the CVD method (FIG. 5). Further, by chemical mechanical polishing, aluminum other than the concave surface of the organic coating glass film 104 is removed,
Aluminum in the concave surface was used as the upper wiring 115 (FIG. 6).

【0012】本実施例中で用いたスタンパは、スパッタ
法によって厚さ2μmのアルミニウム406を石英基板
416上に形成し、このアルミニウム406に公知のド
ライエッチング技術を用いてパターニングして凸面をも
たせたものである(図25)。このスタンパには、石英
基板416を通して裏面から確認可能なアルミニウムよ
りなる位置合わせ用マーク417が、上記と同様の方法
で形成してある。このスタンパ上の位置合わせ用マーク
417と、半導体基板上にアルミニウムにより形成され
た位置合わせ用マーク418の位置を計測しながら、両
者の位置合わせを行った。また、有機塗布ガラス膜40
4を回転塗布直後の、半導体基板401がまだ回転して
いる間に、半導体基板端部にメチルアルコールを吹き付
けることにより、半導体基板上の位置合わせ用マーク4
18付近のゲル状の有機塗布ガラス膜404を取り除
き、スタンパ上の位置合わせ用マーク417に有機塗布
ガラス膜404が接触しないようにした。
In the stamper used in this embodiment, aluminum 406 having a thickness of 2 μm is formed on a quartz substrate 416 by a sputtering method, and the aluminum 406 is patterned by a known dry etching technique to have a convex surface. (Fig. 25). On this stamper, an alignment mark 417 made of aluminum, which can be confirmed from the back surface through the quartz substrate 416, is formed by the same method as described above. The positions of the alignment mark 417 on the stamper and the alignment mark 418 formed of aluminum on the semiconductor substrate were measured while aligning them. In addition, the organic coating glass film 40
Immediately after spin coating of No. 4, while the semiconductor substrate 401 is still rotating, by spraying methyl alcohol to the end of the semiconductor substrate, the alignment mark 4 on the semiconductor substrate is obtained.
The gel-like organic coating glass film 404 near 18 was removed to prevent the organic coating glass film 404 from contacting the alignment mark 417 on the stamper.

【0013】<実施例2>本発明による半導体装置の製
造方法の実施例を図7から図17に示す。スタンパの材
質と製法、荷重、位置合わせ法は実施例1と同じであ
る。まず、半導体基板201に厚さ0.5μmの下層配
線用導電膜を形成し、公知のドライエッチング技術を用
いてパターニングして下層配線202とした(図7)。
ついで、回転塗布法によって、ゲル状の第一の有機塗布
ガラス膜204を形成した(図8)。この第一の有機塗
布ガラス膜204の厚さは1.0μmであった。この第
一の有機塗布ガラス膜204に、高さ0.5μm凸面を
もつ第一のスタンパ206を押しつけて、接続孔210
に対応する凹面を転写した(図9)。なお、スタンパの
位置あわせについては、実施例1と同様にした。80℃
で3分間、180℃で3分間、空気中で熱処理した後、
窒素気流中で450℃で30分間熱処理し、第一の有機
塗布ガラス膜204を硬化させた。さらに、平行平板型
ドライエッチング装置中でエッチバックを行ない、接続
孔底部の下層配線を完全に露出させた(図10)。つい
で、プラグ用導電膜212として厚さ0.5μmのアル
ミニウム膜をCVD法によって形成した(図11)。さ
らに化学的機械研磨法によって、接続孔210の内部以
外のアルミニウムを取り除き、プラグ213を形成した
(図12)。ついで、回転塗布法によって、ゲル状の第
二の有機塗布ガラス膜205を形成した(図13)。こ
の第二の有機塗布ガラス膜205の厚さは0.5μmで
あった。この第二の有機塗布ガラス膜205に、実施例
1と同様に位置あわせを行い高さ0.5μm凸面をもつ
第二のスタンパ207を押しつけて(図14)、上層配
線に対応する凹面211を転写した。80℃で3分間、
180℃で3分間、空気中で熱処理した後、窒素気流中
で450℃で30分間熱処理し、第二の有機塗布ガラス
膜205を硬化させた。さらに、平行平板型ドライエッ
チング装置中でエッチバック208を行ない、プラグ2
13上部を完全に露出させた(図15)。ついで、上層
配線用導電膜214として厚さ0.5μmのアルミニウ
ム膜をCVD法によって形成した(図16)。さらに化
学的機械研磨法によって、上層配線に対応する凹面21
1以外のアルミニウムを取り除き、上層配線215を形
成した(図17)。
<Embodiment 2> FIGS. 7 to 17 show an embodiment of a method of manufacturing a semiconductor device according to the present invention. The stamper material, manufacturing method, load, and alignment method are the same as in the first embodiment. First, a conductive film for lower layer wiring having a thickness of 0.5 μm was formed on a semiconductor substrate 201, and patterned by a known dry etching technique to form a lower layer wiring 202 (FIG. 7).
Then, a gel-like first organic coating glass film 204 was formed by a spin coating method (FIG. 8). The thickness of this first organic coating glass film 204 was 1.0 μm. A first stamper 206 having a convex surface of 0.5 μm in height is pressed against the first organic coated glass film 204 to form a connection hole 210.
The concave surface corresponding to was transferred (FIG. 9). The position of the stamper was the same as in Example 1. 80 ° C
After heat treatment in air for 3 minutes at 180 ° C for 3 minutes,
Heat treatment was performed at 450 ° C. for 30 minutes in a nitrogen stream to cure the first organic coated glass film 204. Further, etching back was performed in a parallel plate type dry etching apparatus to completely expose the lower layer wiring at the bottom of the connection hole (FIG. 10). Then, an aluminum film having a thickness of 0.5 μm was formed as the conductive film 212 for plugs by the CVD method (FIG. 11). Further, by chemical mechanical polishing, aluminum other than inside the connection hole 210 was removed to form a plug 213 (FIG. 12). Then, a gel-like second organic coating glass film 205 was formed by a spin coating method (FIG. 13). The thickness of the second organic coating glass film 205 was 0.5 μm. The second organic coated glass film 205 is aligned in the same manner as in Example 1 and a second stamper 207 having a convex surface of 0.5 μm in height is pressed (FIG. 14) to form a concave surface 211 corresponding to the upper layer wiring. It was transcribed. 3 minutes at 80 ℃,
After heat treatment in air at 180 ° C. for 3 minutes, heat treatment was performed at 450 ° C. for 30 minutes in a nitrogen stream to cure the second organic coating glass film 205. Further, the etch back 208 is performed in the parallel plate type dry etching apparatus to remove the plug 2
The upper part of 13 was completely exposed (FIG. 15). Then, an aluminum film having a thickness of 0.5 μm was formed as the upper layer conductive film 214 by the CVD method (FIG. 16). Further, the concave surface 21 corresponding to the upper wiring is formed by the chemical mechanical polishing method.
The aluminum other than 1 was removed, and the upper layer wiring 215 was formed (FIG. 17).

【0014】実施例1及び実施例2で用いた有機塗布ガ
ラス膜の有機基含有量は19重量%である。この有機塗
布ガラスの含有水分量は0.3%未満であり、含有水分
が配線に悪影響を及ぼすことはなかった。また、実施例
1及び実施例2では、上層配線とプラグとしてアルミニ
ウムを用いたが、CVD法によって形成した銅またはタ
ングステンを用いても同様に製造することができた。有
機塗布ガラス膜に転写する凹面のアスペクト比が小さい
場合には、スパッタ法またはバイアススパッタ法で形成
した、アルミニウム、アルミニウム合金、銅、銅合金の
いずれを用いても同様に製造することができた。また、
上層配線とプラグとしてアルミニウム、アルミニウム合
金、銅、銅合金のいずれかと他の導電性物質の積層膜で
あっても良い。有機塗布ガラス膜の凹面が導電膜によっ
て完全に埋め込まれた場合には、化学的機械研磨法の代
わりにエッチバック法を用いても上層配線を形成でき
た。なお、スタンパの凹凸面の側壁は、垂直に近くても
十分にパターンを転写できたが、順テーパになっていた
場合は更に良好に転写することができた。
The organic group content of the organic coating glass film used in Examples 1 and 2 is 19% by weight. The water content of this organic coated glass was less than 0.3%, and the water content did not adversely affect the wiring. Further, in the first and second embodiments, aluminum is used as the upper layer wiring and the plug, but copper or tungsten formed by the CVD method can also be used to manufacture the same. When the concave aspect to be transferred to the organic coating glass film has a small aspect ratio, it was possible to similarly manufacture using any of aluminum, aluminum alloy, copper, and copper alloy formed by the sputtering method or the bias sputtering method. . Also,
The upper layer wiring and the plug may be a laminated film of any one of aluminum, aluminum alloy, copper, and copper alloy and another conductive material. When the concave surface of the organic coating glass film was completely filled with the conductive film, the upper layer wiring could be formed by using the etchback method instead of the chemical mechanical polishing method. The side wall of the uneven surface of the stamper was able to transfer the pattern sufficiently even if it was nearly vertical, but when the taper was forward tapered, it could be transferred more satisfactorily.

【0015】[0015]

【発明の効果】本発明によれば、単層層間絶縁膜構造を
とり、絶縁膜の吸湿による配線の信頼度低下のない多層
配線構造を少ない工程数で形成できるため、製造コスト
の抑制に寄与する。
According to the present invention, a single-layer interlayer insulating film structure is formed, and a multilayer wiring structure in which the reliability of the wiring is not deteriorated by moisture absorption of the insulating film can be formed in a small number of steps, which contributes to the suppression of manufacturing cost. To do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示す製造工程断面図であ
る。
FIG. 1 is a sectional view of a manufacturing process showing a first embodiment of the present invention.

【図2】本発明の実施例1を示す製造工程断面図であ
る。
FIG. 2 is a cross-sectional view of a manufacturing process showing the first embodiment of the present invention.

【図3】本発明の実施例1を示す製造工程断面図であ
る。
FIG. 3 is a sectional view of a manufacturing process showing the first embodiment of the present invention.

【図4】本発明の実施例1を示す製造工程断面図であ
る。
FIG. 4 is a sectional view of a manufacturing process showing the first embodiment of the present invention.

【図5】本発明の実施例1を示す製造工程断面図であ
る。
FIG. 5 is a sectional view of a manufacturing process showing the first embodiment of the present invention.

【図6】本発明の実施例1を示す製造工程断面図であ
る。
FIG. 6 is a sectional view of a manufacturing process showing the first embodiment of the present invention.

【図7】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 7 is a sectional view of a manufacturing process showing a second embodiment of the present invention.

【図8】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 8 is a manufacturing process sectional view showing a second embodiment of the present invention.

【図9】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 9 is a sectional view of a manufacturing process showing a second embodiment of the present invention.

【図10】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 10 is a sectional view of a manufacturing process showing a second embodiment of the present invention.

【図11】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 11 is a manufacturing step sectional view showing Embodiment 2 of the present invention.

【図12】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 12 is a sectional view of a manufacturing process showing a second embodiment of the present invention.

【図13】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 13 is a manufacturing step sectional view showing Embodiment 2 of the present invention.

【図14】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 14 is a manufacturing step sectional view showing Embodiment 2 of the present invention.

【図15】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 15 is a sectional view of a manufacturing process showing a second embodiment of the present invention.

【図16】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 16 is a manufacturing step sectional view showing Embodiment 2 of the present invention.

【図17】本発明の実施例2を示す製造工程断面図であ
る。
FIG. 17 is a manufacturing step sectional view showing Embodiment 2 of the present invention.

【図18】従来の半導体装置の製造方法を示す工程断面
図である。
FIG. 18 is a process sectional view showing the method of manufacturing a conventional semiconductor device.

【図19】従来の半導体装置の製造方法を示す工程断面
図である。
FIG. 19 is a process sectional view showing the method of manufacturing a conventional semiconductor device.

【図20】従来の半導体装置の製造方法を示す工程断面
図である。
FIG. 20 is a process sectional view showing the method of manufacturing a conventional semiconductor device.

【図21】従来の半導体装置の製造方法を示す工程断面
図である。
FIG. 21 is a process sectional view showing the method of manufacturing a conventional semiconductor device.

【図22】従来の半導体装置の製造方法を示す工程断面
図である。
FIG. 22 is a process sectional view showing the method of manufacturing a conventional semiconductor device.

【図23】従来の半導体装置の製造方法を示す工程断面
図である。
FIG. 23 is a process sectional view showing the method of manufacturing a conventional semiconductor device.

【図24】従来の半導体装置の製造方法を示す工程断面
図である。
FIG. 24 is a process sectional view showing the method of manufacturing a conventional semiconductor device.

【図25】本発明の実施例1及び2で用いたスタンパを
示す断面図である。
FIG. 25 is a sectional view showing a stamper used in Examples 1 and 2 of the present invention.

【符号の説明】[Explanation of symbols]

101,201,301,401…半導体基板、10
2,202,302…下層配線、303…第一のプラズ
マ酸化膜、104,304,404…有機塗布ガラス
膜、204…第一の有機塗布ガラス膜、205…第二の
有機塗布ガラス膜、106,406…スタンパ、206
…第一のスタンパ、207…第二のスタンパ、108,
208,308…エッチバック、309…第二のプラズ
マ酸化膜、110,210,310…接続孔、111,
211…スタンパの凸部に対応する凹部、212…プラ
グ用導電膜、213…プラグ、114,214,314
…上層配線用導電膜、115,215,315…上層配
線、416…スタンパ用石英基板、417…スタンパ基
板上位置合わせマーク、418…半導体基板上位置合わ
せマーク。
101, 201, 301, 401 ... Semiconductor substrate, 10
2, 202, 302 ... Lower layer wiring, 303 ... First plasma oxide film, 104, 304, 404 ... Organic coated glass film, 204 ... First organic coated glass film, 205 ... Second organic coated glass film, 106 , 406 ... Stamper, 206
… The first stamper, 207… The second stamper, 108,
208, 308 ... Etch back, 309 ... Second plasma oxide film, 110, 210, 310 ... Connection hole, 111,
211 ... Recesses corresponding to the projections of the stamper, 212 ... Conductive film for plugs, 213 ... Plugs, 114, 214, 314
... conductive film for upper layer wiring, 115, 215, 315 ... upper layer wiring, 416 ... quartz substrate for stamper, 417 ... alignment mark on stamper substrate, 418 ... alignment mark on semiconductor substrate.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電極を有する基板上にゲル薄膜を形成する
第1の工程と、スタンパの凹凸面を前記ゲル薄膜に押し
つけて前記凹凸面を転写する第2の工程と、前記ゲル薄
膜に熱処理を加える第3の工程と、前記スタンパの凸部
が転写された領域上に金属膜を堆積する第4の工程とを
有することを特徴とする半導体装置の製造方法。
1. A first step of forming a gel thin film on a substrate having an electrode, a second step of pressing the uneven surface of a stamper against the gel thin film to transfer the uneven surface, and a heat treatment for the gel thin film. And a fourth step of depositing a metal film on a region of the stamper to which the convex portions of the stamper have been transferred, the manufacturing method of the semiconductor device.
【請求項2】請求項1記載の半導体装置の製造方法にお
いて、前記ゲル薄膜は回転塗布することにより形成され
ることを特徴とする半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the gel thin film is formed by spin coating.
【請求項3】請求項1または請求項2記載の半導体装置
の製造方法において、前記第3の工程の後に前記ゲル薄
膜の少なくとも一部をエッチングする工程を含むことを
特徴とする半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of etching at least a part of the gel thin film after the third step. Method.
【請求項4】請求項1乃至請求項3の何れかに記載の半
導体装置の製造方法において、前記ゲル薄膜の材料は有
機塗布ガラスであることを特徴とする半導体装置の製造
方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the material of the gel thin film is organic coated glass.
【請求項5】請求項4記載の半導体装置の製造方法にお
いて、前記熱処理の温度は300℃以上600℃以下で
あることを特徴とする半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein the temperature of the heat treatment is 300 ° C. or higher and 600 ° C. or lower.
【請求項6】請求項1乃至請求項5記載の半導体装置の
製造方法において、前記金属膜はアルミニウム、アルミ
ニウム合金、銅、銅合金、タングステンのうち、少なく
とも1つを含むことを特徴とする半導体装置の製造方
法。
6. The semiconductor device manufacturing method according to claim 1, wherein the metal film contains at least one of aluminum, aluminum alloy, copper, copper alloy, and tungsten. Device manufacturing method.
JP5372393A 1993-03-15 1993-03-15 Manufacture of semiconductor device Pending JPH06267943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5372393A JPH06267943A (en) 1993-03-15 1993-03-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5372393A JPH06267943A (en) 1993-03-15 1993-03-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06267943A true JPH06267943A (en) 1994-09-22

Family

ID=12950757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5372393A Pending JPH06267943A (en) 1993-03-15 1993-03-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06267943A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114381A1 (en) * 2003-06-20 2004-12-29 Matsushita Electric Industrial Co., Ltd. Method for manufacturing semiconductor device
WO2004114382A1 (en) * 2003-06-20 2004-12-29 Matsushita Electric Industrial Co. Ltd. Method for forming pattern and method for manufacturing semiconductor device
JP2007088374A (en) * 2005-09-26 2007-04-05 Dainippon Screen Mfg Co Ltd Manufacturing method of semiconductor device
JP2007217455A (en) * 2006-02-14 2007-08-30 Daicel Chem Ind Ltd Insulation film-forming material and insulation film
JP2007243192A (en) * 2006-03-10 2007-09-20 Seiko Epson Corp Method for manufacturing electronic device and embossing tool
JP2009515350A (en) * 2005-11-09 2009-04-09 コミサリヤ・ア・レネルジ・アトミク Method for forming a support on which a shaped body such as a lithography mask is mounted
JP2009543334A (en) * 2006-06-30 2009-12-03 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Nanoimprint technology with improved flexibility for alignment and feature shaping

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442436C (en) * 2003-06-20 2008-12-10 松下电器产业株式会社 Method for forming pattern and method for manufacturing semiconductor device
WO2004114381A1 (en) * 2003-06-20 2004-12-29 Matsushita Electric Industrial Co., Ltd. Method for manufacturing semiconductor device
JPWO2004114381A1 (en) * 2003-06-20 2006-08-03 松下電器産業株式会社 Manufacturing method of semiconductor device
JPWO2004114382A1 (en) * 2003-06-20 2006-08-03 松下電器産業株式会社 Pattern forming method and semiconductor device manufacturing method
US7291554B2 (en) 2003-06-20 2007-11-06 Matsushita Electric Industrial Co., Ltd. Method for forming semiconductor device
JP4789620B2 (en) * 2003-06-20 2011-10-12 パナソニック株式会社 Pattern forming method and semiconductor device manufacturing method
WO2004114382A1 (en) * 2003-06-20 2004-12-29 Matsushita Electric Industrial Co. Ltd. Method for forming pattern and method for manufacturing semiconductor device
US7563709B2 (en) 2003-06-20 2009-07-21 Panasonic Corporation Pattern formation method and method for forming semiconductor device
US7294571B2 (en) 2003-06-20 2007-11-13 Matsushita Electric Industrial Co., Ltd. Concave pattern formation method and method for forming semiconductor device
JP2007088374A (en) * 2005-09-26 2007-04-05 Dainippon Screen Mfg Co Ltd Manufacturing method of semiconductor device
JP2009515350A (en) * 2005-11-09 2009-04-09 コミサリヤ・ア・レネルジ・アトミク Method for forming a support on which a shaped body such as a lithography mask is mounted
JP2007217455A (en) * 2006-02-14 2007-08-30 Daicel Chem Ind Ltd Insulation film-forming material and insulation film
JP2007243192A (en) * 2006-03-10 2007-09-20 Seiko Epson Corp Method for manufacturing electronic device and embossing tool
JP2009543334A (en) * 2006-06-30 2009-12-03 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Nanoimprint technology with improved flexibility for alignment and feature shaping

Similar Documents

Publication Publication Date Title
US4894351A (en) Method for making a silicon IC with planar double layer metal conductors system
JP2518435B2 (en) Multilayer wiring formation method
JPH11176814A (en) Manufacture of semiconductor device
JPH06267943A (en) Manufacture of semiconductor device
JPS5968953A (en) Method of producing monolithic integrated circuit
JP3123450B2 (en) Semiconductor device and method of manufacturing the same
JPH0669351A (en) Manufacture of contact of multilayer metal interconnection structure
JPS6376351A (en) Formation of multilayer interconnection
JP2808401B2 (en) Method for manufacturing semiconductor device
JPH0330992B2 (en)
JPH08125016A (en) Manufacture of semiconductor device
JP2783898B2 (en) Method for manufacturing semiconductor device
KR100248621B1 (en) Method for manufacturing semiconductor device
JPH10214892A (en) Manufacture of semiconductor device
JP4290979B2 (en) Method for forming multilayer metal wiring of semiconductor element
JPH06244286A (en) Manufacture of semiconductor device
JPS6227745B2 (en)
JPH11274296A (en) Multilayer wiring structure and method of forming the same
JPH04326553A (en) Manufacture of semiconductor device
JP2000269328A (en) Semiconductor device and manufacture thereof
JPH07147281A (en) Manufacture of semiconductor integrated circuit device
JPH03248533A (en) Semiconductor integrated circuit device
JPH05160126A (en) Formation of multilayer wiring
JPH05304219A (en) Deposition of insulation layer in semiconductor device
JPH0322431A (en) Semiconductor integrated circuit