JPH06265105A - Fine powder solid fuel combustion device - Google Patents

Fine powder solid fuel combustion device

Info

Publication number
JPH06265105A
JPH06265105A JP4911293A JP4911293A JPH06265105A JP H06265105 A JPH06265105 A JP H06265105A JP 4911293 A JP4911293 A JP 4911293A JP 4911293 A JP4911293 A JP 4911293A JP H06265105 A JPH06265105 A JP H06265105A
Authority
JP
Japan
Prior art keywords
mixture
solid fuel
main burner
fuel
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4911293A
Other languages
Japanese (ja)
Inventor
Kimiyo Tokuda
君代 徳田
Masaharu Oguri
正治 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Choryo Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4911293A priority Critical patent/JPH06265105A/en
Publication of JPH06265105A publication Critical patent/JPH06265105A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a stable combustion down to a low load in a boiler furnace for directly transporting fine powder coal from a mill to a main burner and igniting it there. CONSTITUTION:A part of fine powder coal mixture gas fed from a mill 08 to a main burner 02 is branched and a rich and a lean mixture gas are separated by a cyclone separator 102 and then the rich mixture gas is merged again to the left mixture gas not being branched. The lean mixture gas is taken out of an upper part of the cyclone separator 102 and supplied to an upper burner 06. An adjusting valve 105 placed at a downstream side of the branching point is adjusted to change a ratio of splitting, thereby a concentration of fuel supplied to the main burner 02 can be freely adjusted to a value which is suitable for combustion, so that it is possible to perform a stable combustion down to the low load state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ボイラ,化学工業炉等
の火炉で微粉固体燃料を使用する燃焼装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion apparatus that uses fine powder solid fuel in a furnace such as a boiler or a chemical industrial furnace.

【0002】[0002]

【従来の技術】図5は従来の微粉固体燃料燃焼装置の一
例を示す全体系統図である。この図において,(01)
は炉本体,(02)は主バーナ本体,(03)は主バー
ナ燃料ノズル,(04)は主バーナ空気ノズル,(0
5)はオーバーファイアリングエア(以下OFAと記
す)ノズル,(06)はアッパーバーナ(以下UBと記
す)燃料ノズル,(07)はアディショナルエア(以下
AAと記す)ノズル,(08)は石炭粉砕機,(09)
は固体燃料,(10)は搬送用空気,(11)は通風
機,(12)は微粉固体燃料混合気,(13)はUB燃
料混合気,(14)は燃焼用空気,(15)は微粉固体
燃料混合気輸送管,(16)はUB燃料混合気輸送管,
(17)は燃焼用空気ダクト,(18)はOFA,(1
9)はOFAダクト,(20)はAA,(21)はAA
ダクト,(22)は炉内,(23)は主バーナ火炎,
(24)は主バーナ燃焼排ガス,(25)はUB燃焼火
炎,(26)は燃焼排ガスをそれぞれ示す。
2. Description of the Related Art FIG. 5 is an overall system diagram showing an example of a conventional fine powder solid fuel combustion apparatus. In this figure, (01)
Is the furnace body, (02) is the main burner body, (03) is the main burner fuel nozzle, (04) is the main burner air nozzle, and (0
5) is an overfiring air (hereinafter referred to as OFA) nozzle, (06) is an upper burner (hereinafter referred to as UB) fuel nozzle, (07) is an additional air (hereinafter referred to as AA) nozzle, and (08) is coal crushing. Machine, (09)
Is solid fuel, (10) is carrier air, (11) is a ventilator, (12) is pulverized solid fuel mixture, (13) is UB fuel mixture, (14) is combustion air, and (15) is Fine powder solid fuel mixture transport pipe, (16) UB fuel mixture transport pipe,
(17) is an air duct for combustion, (18) is OFA, (1
9) is an OFA duct, (20) is AA, (21) is AA
Duct, (22) inside the furnace, (23) main burner flame,
(24) shows the main burner combustion exhaust gas, (25) shows the UB combustion flame, and (26) shows the combustion exhaust gas.

【0003】石炭粉砕機(08)に送り込まれて来た固
体燃料(09)は微粉化され,同時に送り込まれた搬送
用空気(10)と混合して微粉固体燃料混合気(12)
を形成,微粉固体燃料輸送管(15)を通して主バーナ
本体(02)とUB燃料ノズル(06)へ送り込まれ
る。
The solid fuel (09) sent to the coal crusher (08) is pulverized and mixed with the carrier air (10) sent at the same time, and pulverized solid fuel mixture (12) is mixed.
And is fed into the main burner body (02) and the UB fuel nozzle (06) through the fine powder solid fuel transport pipe (15).

【0004】主バーナ本体(02)には主バーナ燃料ノ
ズル(03)と主バーナ空気ノズル(04)が組込まれ
ており,主バーナ本体(02)へ送り込まれて来た微粉
固体燃料混合気(12)は主バーナ燃料ノズル(03)
から炉内(22)へ噴射される。一方,燃焼用空気(1
4)は,通風機(11)によって燃焼用空気ダクト(1
7)を通して送り込まれ,主バーナ本体(02)用,O
FA(18)およびAA(20)に分流されて,それぞ
れ主バーナ空気ノズル(04),OFAノズル(05)
およびAAノズル(07)から炉内(22)へ噴射され
る。
A main burner fuel nozzle (03) and a main burner air nozzle (04) are incorporated in the main burner body (02), and a fine powder solid fuel mixture (( 12) is the main burner fuel nozzle (03)
Is injected into the furnace (22). On the other hand, combustion air (1
4) is a combustion air duct (1
7), sent for main burner body (02), O
The main burner air nozzle (04) and OFA nozzle (05) are divided into FA (18) and AA (20), respectively.
And is injected into the furnace (22) from the AA nozzle (07).

【0005】主バーナ燃料ノズル(03)から炉内(2
2)へ噴射された微粉固体燃料混合気(12)は,図示
されてない着火源によって着火し,主バーナ火炎(2
3)を形成して燃焼を継続する。主バーナ火炎(23)
は,着火点近傍では搬送用空気(10)および主バーナ
燃料ノズル(03)の周囲から吹き込まれる燃焼用空気
(14)の一部によって供給される酸素と反応して燃焼
し,以後の燃焼ゾーンでは主バーナ空気ノズル(04)
から吹き込まれる燃焼用空気(14)中の酸素によって
燃焼が継続される。
From the main burner fuel nozzle (03) into the furnace (2
The pulverized solid fuel mixture (12) injected into 2) is ignited by an ignition source (not shown), and the main burner flame (2
3) is formed to continue combustion. Main burner flame (23)
In the vicinity of the ignition point burns by reacting with oxygen supplied by the transfer air (10) and a part of the combustion air (14) blown from around the main burner fuel nozzle (03), and in the subsequent combustion zone. Main burner air nozzle (04)
Combustion is continued by the oxygen in the combustion air (14) blown from.

【0006】従来のボイラでは,窒素酸化物(以下、N
x と記す)の発生を抑制するために,主バーナ燃料ノ
ズル(03)から吹き込まれる搬送用空気(10)と主
バーナ燃料ノズル(03)周囲および主バーナ空気ノズ
ル(04)から吹き込まれる燃焼用空気(14)との合
計は,主バーナ燃料ノズル(03)から吹き込まれる微
粉固体燃料の量論化以下にしてあり,OFAノズル(0
5)以下の炉内(22)は還元雰囲気状態となる。主バ
ーナ燃料ノズル(03)から吹き込まれた微粉固体燃料
の燃焼によって発生したNOx は,燃焼領域が還元雰囲
気であるため還元される。したがってOFA(18)投
入部直前では主バーナ燃焼排ガス(24)中のNOx
度は減少し,代ってHCN・NH3 等の中間生成物が発
生する。還元雰囲気であるからまた,主バーナ燃焼排ガ
ス(24)中には相当の可燃分が残存する。
In the conventional boiler, nitrogen oxides (hereinafter referred to as N
In order to suppress the generation of O x ), the transfer air (10) blown from the main burner fuel nozzle (03) and the combustion blown around the main burner fuel nozzle (03) and from the main burner air nozzle (04). The sum of the working air (14) and the working air (14) is less than or equal to the stoichiometric amount of the fine solid fuel injected from the main burner fuel nozzle (03).
5) The following atmosphere (22) in the furnace is in a reducing atmosphere. The NO x generated by the combustion of the fine powder solid fuel blown from the main burner fuel nozzle (03) is reduced because the combustion region is in the reducing atmosphere. Therefore, the NO x concentration in the main burner combustion exhaust gas (24) decreases immediately before the OFA (18) charging section, and instead, intermediate products such as HCN · NH 3 are generated. Because of the reducing atmosphere, considerable combustible components remain in the main burner combustion exhaust gas (24).

【0007】次に、主バーナ燃焼排ガス(24)中の可
燃分を燃焼させるために,OFAノズル(05)からO
FA(18)が炉内(22)へ吹き込まれる。OFA
(18)の投入量は,主バーナ燃料ノズル(03)から
吹き込まれる微粉固体燃料の量に対して,主バーナ本体
(02)から投入される燃焼用空気(14)および搬送
用空気(10)とOFA(18)の合計が空気比で 1.0
〜1.05となるようにする。このように,OFA(18)
投入によって主バーナ燃焼排ガス(24)の燃焼を促進
するに当り,OFA(18)投入後の空気比を 1.0〜1.
05と低く設定するのは,OFA(18)投入によって生
じる酸化反応で主バーナ燃焼排ガス(24)中の中間生
成物がNOx に転換するのを抑制するためである。
Next, in order to burn combustible components in the main burner flue gas (24), O gas is discharged from the OFA nozzle (05).
FA (18) is blown into the furnace (22). OFA
The injection amount of (18) is the combustion air (14) and the transfer air (10) injected from the main burner main body (02) with respect to the amount of the fine solid fuel injected from the main burner fuel nozzle (03). And OFA (18) are 1.0 by air ratio
It should be ~ 1.05. Thus, OFA (18)
When promoting combustion of the main burner flue gas (24) by charging, the air ratio after charging OFA (18) is 1.0 to 1.
The low value of 05 is set to prevent the intermediate product in the main burner combustion exhaust gas (24) from being converted into NO x due to the oxidation reaction caused by the addition of OFA (18).

【0008】OFA(18)投入部の上方(後流)には
UB燃料ノズル(06)が装着されている。そして,微
粉固体燃料輸送管(15)から分岐配管されたUB燃料
混合気輸送管(16)を通して送り込まれて来たUB燃
料混合気(13)は,このUB燃料ノズル(06)から
炉内(22)へ吹き込まれる。UB燃料混合気(13)
は微粉固体燃料混合気(12)から分流されたものであ
り,搬送用空気(10)と微粉固体燃料の重量比( AIR
/COAL)および微粉固体燃料の粒度分布は,ほぼ微粉固
体燃料混合気(12)のそれと同等と見做すことができ
る。UB燃料混合気(13)の吹込みによって,UB燃
料混合気(13)吹込部以降は還元雰囲気を形成し,O
FA(18)吹込みによって増加したNOx が還元さ
れ,N2 へ転換される。
A UB fuel nozzle (06) is mounted above (in the downstream of) the OFA (18) charging part. Then, the UB fuel mixture (13) sent from the pulverized solid fuel transport pipe (15) through the UB fuel mixture transport pipe (16) branched from the UB fuel nozzle (06) into the furnace ( 22). UB fuel mixture (13)
Is a shunt of the pulverized solid fuel mixture (12), and the weight ratio of the carrier air (10) to the pulverized solid fuel (AIR
/ COAL) and the particle size distribution of the pulverized solid fuel can be regarded as almost the same as that of the pulverized solid fuel mixture (12). By the injection of the UB fuel mixture (13), a reducing atmosphere is formed after the UB fuel mixture (13) injection part, and O
The NO x increased by the FA (18) injection is reduced and converted to N 2 .

【0009】UB燃料ノズル(06)の上方(後流)に
は単段または複数段(図示例では2段)のAAノズル
(07)が設けられている。OFA(18)量とUB燃
料混合気(13)中の搬送用空気(10)量との合計
は,主バーナ燃焼排ガス(24)中の残存可燃分量とU
B燃料混合気(13)中の微粉固体燃料量の和の量論比
以下であり,UB燃料混合気(13)吹込部からAA
(20)吹込部までの炉内(22)領域は,空気比を通
常0.75〜1.0 に設定して,UB燃料混合気(13)吹込
みによるNOx の増加を抑制する。しかし,AA(2
0)吹込部までは還元雰囲気であるため,主バーナ燃焼
排ガス(24)中に可燃分が残存する。この可燃分の燃
焼を完結し,クリーンな燃焼排ガス(26)を形成する
ために,AA(20)を吹込むのである。
A single stage or multiple stages (two stages in the illustrated example) of AA nozzles (07) are provided above the UB fuel nozzles (06) (in the downstream). The sum of the amount of OFA (18) and the amount of transfer air (10) in the UB fuel mixture (13) is the amount of residual combustible components in the main burner combustion exhaust gas (24) and U
It is less than or equal to the stoichiometric ratio of the sum of the fine powder solid fuel in the B fuel mixture (13), and AA from the UB fuel mixture (13) injection part
(20) In the furnace (22) region up to the injection part, the air ratio is usually set to 0.75 to 1.0 to suppress the increase of NO x due to the injection of the UB fuel mixture (13). However, AA (2
0) Since the reducing atmosphere is up to the blow-in portion, combustible components remain in the main burner combustion exhaust gas (24). The AA (20) is blown in order to complete the combustion of this combustible component and form a clean combustion exhaust gas (26).

【0010】[0010]

【発明が解決しようとする課題】主バーナ火炎(23)
の着火安定性は,主バーナ燃料ノズル(03)から炉内
(22)へ吹込まれる微粉固体燃料混合気(12)の搬
送用空気(10)と微粉固体燃料の重量比( AIR/COA
L)に大きく影響される。図6は微粉固体燃料火炎の着
火距離と AIR/COALの関係を示す図である。これは本発
明の発明者等が試験炉を用いて実施した実験の結果であ
るが,現在では一般的にも認められているデータであ
る。微粉固体燃料火炎の着火距離は AIR/COALが大きく
なるに従って大きくなる傾向を示すことが図6からわか
る。着火距離が大きいということは,火炎の着火安定性
が悪いことを意味する。
Main burner flame (23)
Ignition stability of the air-fuel ratio (AIR / COA) of the carrier air (10) of the fine solid fuel mixture (12) blown from the main burner fuel nozzle (03) into the furnace (22) and the fine solid fuel (AIR / COA
L) is greatly affected. FIG. 6 is a diagram showing the relationship between the ignition distance of the fine solid fuel flame and AIR / COAL. This is the result of an experiment conducted by the inventors of the present invention using a test furnace, but it is generally accepted data at present. It can be seen from Fig. 6 that the ignition distance of the fine solid fuel flame shows a tendency to increase as AIR / COAL increases. A large ignition distance means that the ignition stability of the flame is poor.

【0011】図6によれば,火炎の着火が安定するのに
必要な着火距離は微粉固体燃料の固定炭素/揮発分比
(燃料比)が大きくなる程,小さな AIR/COALが必要と
なる。しかし石炭粉砕においては,石炭粉砕機(08)
内に石炭と共に持ち込まれる水分を,石炭粉砕機(0
8)内で石炭を粉砕してその微粉化された石炭を空気で
搬送できるよう,乾燥することが必要である。そして石
炭粉砕量が大きい場合は,それなりに多くの搬送用空気
(10)が必要となる。したがって AIR/COALを自在に
調整することはできない。
According to FIG. 6, the smaller the fixed carbon / volatile matter ratio (fuel ratio) of the fine powdered solid fuel, the smaller the required ignition distance for stabilizing the ignition of the flame is AIR / COAL. But in coal crushing, coal crusher (08)
Moisture brought in with coal into the coal crusher (0
It is necessary to crush the coal in 8) and dry it so that the pulverized coal can be conveyed by air. When the amount of crushed coal is large, a large amount of air for transportation (10) is required. Therefore, AIR / COAL cannot be adjusted freely.

【0012】図7は一般に使用されている石炭粉砕機
(08)の石炭粉砕量(または燃焼負荷)と AIR/COAL
との関係について示したものである。この図は石炭粉砕
量が減少すると AIR/COALが大きくなる傾向を示してい
るが,これは微粉固体燃料混合気(12)が,微粉固体
燃料混合気輸送管(15)内で微粉固体燃料を沈降堆積
させることなく搬送されるためには,必要最低限の流速
を維持することが不可欠であるからである。したがって
搬送用空気(10)を一定流量以下に絞ることはでき
ず,このため低負荷における安定燃焼が困難であった。
このように石炭粉砕機(08)から主バーナ燃料ノズル
(03)へ微粉固体燃料を直送して燃焼に供するシステ
ムでは,従来は自在に上記 AIR/COALの調整ができず,
したがって広負荷範囲での安定燃焼が困難であった。
FIG. 7 shows the amount of crushed coal (or combustion load) of a commonly used coal crusher (08) and AIR / COAL.
It shows the relationship with. This figure shows that AIR / COAL tends to increase as the amount of pulverized coal decreases. This is because the fine powder solid fuel mixture (12) contains fine powder solid fuel in the transport pipe (15). This is because it is indispensable to maintain the minimum required flow rate in order to convey the material without sedimentation and deposition. Therefore, the carrier air (10) cannot be throttled below a certain flow rate, which makes stable combustion at low loads difficult.
In such a system in which the fine powdered solid fuel is directly sent from the coal pulverizer (08) to the main burner fuel nozzle (03) for combustion, the AIR / COAL adjustment cannot be freely performed in the past.
Therefore, stable combustion in a wide load range was difficult.

【0013】一方,NOx 抑制に必要な還元雰囲気を形
成するために投入されるUB燃料混合気(13)は,後
流で投入されるAA(20)によって燃焼を完結する
が,AA(20)投入部が火炉出口部近くにあるため,
AA(20)投入によって形成される酸化雰囲気内にU
B燃料混合気(13)が滞留する時間が短く,かつ周囲
の燃焼排ガス(26)温度も低目になっている。そのた
めUB燃料混合気(13)中の微粉固体燃料は,燃焼完
結時間を短縮するために可能な限り微細化する必要があ
るが,従来は主バーナ燃料ノズル(03)へ送り込まれ
る微粉固体燃料の粒径と同様なものが送り込まれていた
ので,未燃分が多く発生するという欠点があった。
On the other hand, the UB fuel mixture (13) introduced to form the reducing atmosphere necessary for NO x suppression completes combustion by the AA (20) introduced in the downstream, but the AA (20 ) Because the charging part is near the furnace outlet,
U in the oxidizing atmosphere formed by the introduction of AA (20)
The residence time of the B fuel mixture (13) is short, and the temperature of the surrounding combustion exhaust gas (26) is low. Therefore, the pulverized solid fuel in the UB fuel mixture (13) needs to be miniaturized as much as possible in order to shorten the combustion completion time. Conventionally, the pulverized solid fuel fed to the main burner fuel nozzle (03) is Since the same particle size was sent in, there was a drawback that a large amount of unburned material was generated.

【0014】[0014]

【課題を解決するための手段】本発明は,前記従来の課
題を解決するために,粉砕機によって粉砕された微粉固
体燃料を主バーナ燃料ノズルへ直接空気搬送し,炉内に
吹込んで燃焼させる装置において,上記粉砕機の出口か
ら上記主バーナ燃料ノズルに至る微粉固体燃料混合気輸
送管から分岐する濃混合気形成用混合気輸送管と,入口
が上記濃混合気形成用混合気輸送管に接続され粉体出口
が上記微粉固体燃料混合気輸送管の上記分岐点の下流に
合流するサイクロン型のセパレータと,上記分岐点およ
び上記合流点の間の上記微粉固体燃料混合気輸送管に設
けられた混合気分流調節弁と,上記主バーナ燃料ノズル
の後流に設けられたUB燃料ノズルに上記セパレータの
気体出口を接続する排気配管とを備えたことを特徴とす
る微粉固体燃料燃焼装置を提案するものである。
In order to solve the above-mentioned conventional problems, the present invention directly conveys finely divided solid fuel pulverized by a pulverizer to a main burner fuel nozzle and blows it into a furnace for combustion. In the apparatus, the mixture transport pipe for forming a rich mixture that branches from the fine powder solid fuel mixture transport pipe from the outlet of the crusher to the main burner fuel nozzle, and the inlet to the mixture transport pipe for forming a rich mixture The connected powder outlet is provided in the cyclone-type separator that joins downstream of the branch point of the fine powder solid fuel mixture transport pipe, and in the fine powder solid fuel mixture transport pipe between the branch point and the merge point. And a mixed mood flow control valve, and an exhaust pipe for connecting the gas outlet of the separator to a UB fuel nozzle provided downstream of the main burner fuel nozzle. It is intended to propose a device.

【0015】[0015]

【作用】本発明においては,粉砕機によって粉砕されて
空気搬送される微粉固体燃料の一部を分岐してサイクロ
ン型のセパレータに導き,濃・淡の微粉固体燃料混合気
に分離する。そして濃微粉固体燃料混合気はセパレータ
の粉体出口から取出し,分岐しなかった残りの微粉固体
燃料混合気に再び合流させて主バーナで燃焼させる。上
記分岐点と合流点の間に設けられた混合気分流調節弁を
調節することにより,この濃微粉固体燃料混合気の燃料
濃度を加減する。また上記セパレータで分離された淡微
粉固体燃料混合気の方は,セパレータの気体出口から取
出し,アッパーバーナで燃焼させる。
In the present invention, a part of the fine powder solid fuel pulverized by the pulverizer and conveyed by air is branched and guided to the cyclone type separator, and separated into the concentrated and light fine powder solid fuel mixture. Then, the dense pulverized solid fuel mixture is taken out from the powder outlet of the separator, rejoined to the remaining pulverized solid fuel mixture which has not branched, and burned by the main burner. By adjusting the mixed flow control valve provided between the branch point and the confluence point, the fuel concentration of the dense fine powder solid fuel mixture is adjusted. Further, the fine pulverized solid fuel mixture separated by the separator is taken out from the gas outlet of the separator and burned by the upper burner.

【0016】こうして,主バーナに供給される燃料の濃
度を燃焼に適した値に自由に調節できるので,低負荷ま
で安定燃焼させることができる。またアッパーバーナに
供給される燃料の粒子径が小さくなるので,未燃分を増
加させることなく,NOx の発生を抑制できる。
In this way, the concentration of the fuel supplied to the main burner can be freely adjusted to a value suitable for combustion, so that stable combustion can be achieved up to a low load. Further, since the particle diameter of the fuel supplied to the upper burner becomes small, the generation of NO x can be suppressed without increasing the unburned content.

【0017】[0017]

【第1実施例】図1は本発明の第1実施例を示す全体系
統図,図2は同じく主要部を示す系統図,図3は同じく
主要部を示す縦断面図である。これらの図において,前
記図5により説明した従来のものと同様の部分について
は,冗長になるのを避けるため,同一の符号を付け詳し
い説明を省く。
[First Embodiment] FIG. 1 is an overall system diagram showing a first embodiment of the present invention, FIG. 2 is a system diagram showing the same main part, and FIG. 3 is a longitudinal sectional view showing the same main part. In these figures, the same parts as those of the conventional one described with reference to FIG. 5 are designated by the same reference numerals to avoid redundancy, and detailed description thereof is omitted.

【0018】図1ないし図3中で新たに示された符号と
して,(101)は濃混合気形成用混合気輸送管,(102)は
サイクロン型セパレータ, (103)は濃混合気輸送本管,
(104) は排気配管,(105)は混合気分流調節弁,(106)
は濃微粉固体燃料混合気,(107)は淡微粉固体燃料混合
気,(108)は低 AIR/COAL混合気,(109)は排気合流管
をそれぞれ示す。
As reference numerals newly shown in FIGS. 1 to 3, (101) is a mixture transport pipe for forming a rich mixture, (102) is a cyclone type separator, and (103) is a main mixture transport conduit. ,
(104) is exhaust pipe, (105) is mixed mood flow control valve, (106)
Shows a mixture of dense fine solid fuel, (107) shows a mixture of fine fine solid fuel, (108) shows a low AIR / COAL mixture, and (109) shows an exhaust merging pipe.

【0019】本実施例においては,石炭粉砕機(08)
出口部の微粉固体燃料混合気輸送管(15)から単数ま
たは複数の濃混合気形成用混合気輸送管(101)が分岐さ
れ,それぞれサイクロン型セパレータ(102)の入口に接
続されている。そして,濃混合気形成用混合気輸送管
(101)を分岐した後の微粉固体燃料混合気輸送管(1
5)内には濃混合気分流調節弁(105)が設置される。サ
イクロン型セパレータ(102)の下部の粉体出口は,微粉
固体燃料混合気輸送管(15)の濃混合気分流調節弁
(105)設置部後流に配管によって接続され,また上部の
気体出口は,排気配管(104)によって排気合流管(109)
に配管された後,更に各UB燃料ノズル(06)に分岐
配管されている。
In this embodiment, a coal crusher (08)
From the pulverized solid fuel mixture transport pipe (15) at the outlet, a single or a plurality of concentrated mixture-forming mixture transport pipes (101) are branched and connected to the inlets of the cyclone separator (102). Then, the pulverized solid fuel mixture transport pipe (1) after branching the mixture transport pipe (101) for forming a rich mixture
A rich mixed flow control valve (105) is installed in 5). The powder outlet at the bottom of the cyclone separator (102) is connected by a pipe to the downstream of the dense mixed mood flow control valve (105) installation part of the fine powder solid fuel mixture transport pipe (15), and the gas outlet at the top is , Exhaust pipe (104) through exhaust pipe (109)
After being piped, the pipe is further branched to each UB fuel nozzle (06).

【0020】石炭粉砕機(08)によって粉砕され微粉
固体燃料混合気輸送管(15)へ空気輸送されてきた微
粉固体燃料混合気(12)は,混合気分流調節弁(105)
によって所定比率に分流されて,一方は濃混合気形成用
混合気輸送管(101)からサイクロン型セパレータ(102)
へ送り込まれ,他方は混合気分流調節弁(105)を通って
そのまま濃混合気輸送本管(103)へ送り込まれる。
The pulverized solid fuel mixture (12) pulverized by the coal pulverizer (08) and pneumatically transported to the pulverized solid fuel mixture transport pipe (15) is used as a mixed flow control valve (105).
Is divided into a predetermined ratio by one side, and one side is connected to the cyclone type separator (102) from the mixture transfer pipe (101) for forming a rich mixture.
The other mixture is sent to the rich mixture main pipe (103) as it is through the mixed mood flow control valve (105).

【0021】サイクロン型セパレータ(102)へ送り込ま
れた微粉固体燃料混合気(12)は,濃微粉固体燃料混
合気(106)と淡微粉固体燃料混合気(107)に分離され
る。そして濃微粉固体燃料混合気(106)はサイクロン型
セパレータ(102)の下部の粉体出口から濃混合気輸送本
管(103)へ送り込まれて,別途送り込まれた微粉固体燃
料混合気(12)と混合し,低 AIR/COAL混合気(108)
を形成する。低 AIR/COAL混合気(108)の AIR/COALの
値は,混合気分流調節弁(105)によって加減できる。低
AIR/COAL混合気(108)は濃混合気輸送本管(103)から
各主バーナ燃料ノズル(03)へ送り込まれ,炉内(2
2)へ吹き込まれて燃焼に供される。
The fine powder solid fuel mixture (12) sent to the cyclone type separator (102) is separated into a dense fine powder solid fuel mixture (106) and a light fine powder solid fuel mixture (107). The dense pulverized solid fuel mixture (106) is sent from the powder outlet at the bottom of the cyclone separator (102) to the concentrated mixture transportation main pipe (103), and the pulverized solid fuel mixture (12) is sent separately. Mix with low air / coal mixture (108)
To form. The AIR / COAL value of the low AIR / COAL mixture (108) can be adjusted by the mixed mood flow control valve (105). Low
The AIR / COAL mixture (108) is sent from the rich mixture transportation main pipe (103) to each main burner fuel nozzle (03), and the inside of the furnace (2
It is blown into 2) and used for combustion.

【0022】一方,サイクロン型セパレータ(102)内で
濃微粉固体燃料混合気(106)と分離された淡微粉固体燃
料混合気(107)は,上部の気体出口から排気配管(104)
を経て排気合流管(109)へ送り込まれ,UB燃料ノズル
(06)から炉内(22)へ吹き込まれて燃焼に供され
る。淡微粉固体燃料混合気(107)中の微粉固体燃料は全
体の約10%以下であり,粒径も極小微粒の微粉であ
る。
On the other hand, the light fine solid fuel mixture (107) separated from the dense fine solid fuel mixture (106) in the cyclone type separator (102) is exhausted from the upper gas outlet to the exhaust pipe (104).
It is sent to the exhaust merging pipe (109) through the UB fuel nozzle, and is blown from the UB fuel nozzle (06) into the furnace (22) for combustion. The fine solid fuel in the light fine solid fuel mixture (107) is about 10% or less of the whole, and the particle size is also extremely fine.

【0023】図8は石炭粉砕機(10)によって粉砕さ
れた微粉固体燃料の粒度分布の一例を示す図,図9は燃
焼場の酸素濃度が3%,燃焼温度が1300℃の時,炭素粒
子の径とその炭素粒子が燃焼消滅するのに要する時間と
の関係を示す図である。図8から,淡微粉固体燃料混合
気(107)中の微粉固体燃料の粒子径が10μm以下であ
ることがわかる。また図9から,その微粉固体燃料の燃
焼完結に要する時間も極く短時間であることが推定でき
る。
FIG. 8 shows an example of the particle size distribution of the pulverized solid fuel pulverized by the coal pulverizer (10), and FIG. 9 shows carbon particles when the oxygen concentration in the combustion field is 3% and the combustion temperature is 1300 ° C. FIG. 3 is a diagram showing the relationship between the diameter of the and the time required for the carbon particles to burn and disappear. It can be seen from FIG. 8 that the particle size of the fine solid fuel in the light fine solid fuel mixture (107) is 10 μm or less. Further, from FIG. 9, it can be estimated that the time required to complete the combustion of the pulverized solid fuel is extremely short.

【0024】[0024]

【第2実施例】図4は本発明の第2実施例を示す全体系
統図である。この図においても,前記と同様の部分につ
いては同一の符号を付け詳しい説明を省く。
[Second Embodiment] FIG. 4 is an overall system diagram showing a second embodiment of the present invention. In this figure as well, the same parts as those described above are designated by the same reference numerals and detailed description thereof is omitted.

【0025】本実施例が前記第1実施例と異る点は,U
B燃料ノズル(06)を主バーナ本体(02)の下方に
設け,サイクロン型セパレータ(102)の排気配管(104)
と連絡したUB燃料混合気輸送管(16)を連結して,
淡微粉固体燃料混合気(107)を炉内(22)へ投入し燃
焼に供するようにしたことである。なおこの場合,UB
燃料ノズル(06)の「UB」はアンダーバーナの略称
となる。
The difference of this embodiment from the first embodiment is that U
The B fuel nozzle (06) is provided below the main burner body (02), and the exhaust pipe (104) of the cyclone type separator (102) is provided.
Connecting the UB fuel mixture transport pipe (16) that was communicated with
That is, the fine pulverized solid fuel mixture (107) was put into the furnace (22) for combustion. In this case, UB
“UB” of the fuel nozzle (06) is an abbreviation for underburner.

【0026】この第2実施例は,例えば無煙炭のよう
に,高燃料比・低揮発分の難燃性石炭を燃料として使用
する場合に有利である。前記第1実施例のようにUB燃
料ノズル(06)が火炉出口に近いと,難燃性石炭の場
合は燃焼を完了しないままで火炉から排出される恐れが
あるが,本第2実施例の場合は,高温領域を長い滞留時
間を掛けて通ったのち火炉から排出されるので,燃焼完
結が容易である。
The second embodiment is advantageous when flame-retardant coal having a high fuel ratio and low volatility, such as anthracite, is used as a fuel. When the UB fuel nozzle (06) is close to the furnace outlet as in the first embodiment, in the case of flame-retardant coal, there is a possibility that the coal is discharged from the furnace without completing the combustion. In this case, after passing through the high temperature region for a long residence time and then discharged from the furnace, combustion is easy to complete.

【0027】本実施例におけるOFA(18)とAA
(20)は,使用燃料の燃焼性によってその配分を設定
する。すなわち,著しく難燃性の石炭の場合はOFA
(18)投入量を増加し,逆に幾らかでも難燃度の低い
石炭の場合はAA(20)投入量を増やすというような
調整を行なう。
OFA (18) and AA in this embodiment
(20) sets the distribution according to the flammability of the fuel used. That is, OFA in the case of extremely flame-retardant coal
(18) Increase the input amount, and conversely, increase the AA (20) input amount in the case of coal with a low degree of flame retardancy.

【0028】[0028]

【発明の効果】本発明によれば,石炭粉砕機から主バー
ナ燃料ノズルへ微粉固体燃料を直送して燃焼に供するシ
ステムにおいて,微粉固体燃料混合気の燃料濃度を燃焼
に適した値に自在に調節できるので,従来にない低負荷
まで安定燃焼させることができる。
According to the present invention, in a system in which a pulverized solid fuel is directly fed from a coal pulverizer to a main burner fuel nozzle for combustion, the fuel concentration of the pulverized solid fuel mixture can be freely set to a value suitable for combustion. Since it can be adjusted, stable combustion can be achieved even with a low load that has never been seen before.

【0029】また,NOx 抑制のために必要な還元雰囲
気の形成に用いるUB燃料混合気中の微粉固体燃料の粒
子径が極小となるので,未燃分が増加することなくNO
x を低減できる。
Further, since the particle size of the fine powdered solid fuel in the UB fuel mixture used for forming the reducing atmosphere necessary for suppressing NO x becomes extremely small, the unburned content does not increase and NO
x can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例を示す全体系統図で
ある。
FIG. 1 is an overall system diagram showing a first embodiment of the present invention.

【図2】図2は上記第1実施例の主要部を示す系統図で
ある。
FIG. 2 is a system diagram showing a main part of the first embodiment.

【図3】図3は上記第1実施例の主要部を示す縦断面図
である。
FIG. 3 is a longitudinal sectional view showing a main part of the first embodiment.

【図4】図4は本発明の第2実施例を示す全体系統図で
ある。
FIG. 4 is an overall system diagram showing a second embodiment of the present invention.

【図5】図5は従来の微固体燃料燃焼装置の一例を示す
全体系統図である。
FIG. 5 is an overall system diagram showing an example of a conventional fine solid fuel combustion device.

【図6】図6は微粉固体燃料火炎の着火距離と AIR/CO
ALとの関係を示す図である。
[Fig. 6] Fig. 6 shows the ignition distance and AIR / CO of the fine solid fuel flame.
It is a figure which shows the relationship with AL.

【図7】図7は石炭粉砕量(または燃焼負荷)と AIR/
COALとの関係を示す図である。
[Fig. 7] Fig. 7 shows the crushed coal amount (or combustion load) and AIR /
It is a figure which shows the relationship with COAL.

【図8】図8は石炭粉砕機によって粉砕された微粉固体
燃料の粒度分布の一例を示す図である。
FIG. 8 is a diagram showing an example of a particle size distribution of a pulverized solid fuel pulverized by a coal pulverizer.

【図9】図9は炭素粒子の径とその炭素粒子が燃焼消滅
するのに要する時間との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the diameter of carbon particles and the time required for the carbon particles to burn and disappear.

【符号の説明】[Explanation of symbols]

(01) 炉本体 (02) 主バーナ本体 (03) 主バーナ燃料ノズル (04) 主バーナ空気ノズル (05) OFAノズル (06) UB燃料ノズル (07) AAノズル (08) 石炭粉砕機 (09) 固体燃料 (10) 搬送用空気 (11) 通風機 (12) 微粉固体燃料混合気 (13) UB燃料混合気 (14) 燃焼用空気 (15) 微粉固体燃料混合気輸送管 (16) UB燃料混合気輸送管 (17) 燃焼用空気ダクト (18) OFA (19) OFAダクト (20) AA (21) AAダクト (22) 炉内 (23) 主バーナ火炎 (24) 主バーナ燃焼排ガス (25) UB燃焼火炎 (26) 燃焼排ガス (101) 濃混合気形成用混合気輸送管 (102) サイクロン型セパレータ (103) 濃混合気輸送本管 (104) 排気配管 (105) 混合気分流調節弁 (106) 濃微粉固体燃料混合気 (107) 淡微粉固体燃料混合気 (108) 低 AIR/COAL混合気 (109) 排気合流管 (01) Furnace body (02) Main burner body (03) Main burner fuel nozzle (04) Main burner air nozzle (05) OFA nozzle (06) UB fuel nozzle (07) AA nozzle (08) Coal crusher (09) Solid fuel (10) Carrier air (11) Fan (12) Fine solid fuel mixture (13) UB fuel mixture (14) Combustion air (15) Fine solid fuel mixture transport pipe (16) UB fuel mixture Air transport pipe (17) Combustion air duct (18) OFA (19) OFA duct (20) AA (21) AA duct (22) Inside furnace (23) Main burner flame (24) Main burner combustion exhaust gas (25) UB Combustion flame (26) Combustion exhaust gas (101) Air-fuel mixture transportation pipe for forming rich air-fuel mixture (102) Cyclone type separator (103) Rich air-fuel mixture main pipe (104) Exhaust pipe (105) Mixed mood Regulating valve (106) dark pulverized solid fuel mixture (107) pale pulverized solid fuel mixture (108) Low AIR / COAL mixture (109) exhaust merging pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粉砕機によって粉砕された微粉固体燃料
を主バーナ燃料ノズルへ直接空気搬送し,炉内に吹込ん
で燃焼させる装置において,上記粉砕機の出口から上記
主バーナ燃料ノズルに至る微粉固体燃料混合気輸送管か
ら分岐する濃混合気形成用混合気輸送管と,入口が上記
濃混合気形成用混合気輸送管に接続され粉体出口が上記
微粉固体燃料混合気輸送管の上記分岐点の下流に合流す
るサイクロン型のセパレータと,上記分岐点および上記
合流点の間の上記微粉固体燃料混合気輸送管に設けられ
た混合気分流調節弁と,上記主バーナ燃料ノズルの後流
に設けられたアッパーバーナ燃料ノズルに上記セパレー
タの気体出口を接続する排気配管とを備えたことを特徴
とする微粉固体燃料燃焼装置。
1. A device in which a fine solid fuel pulverized by a pulverizer is directly conveyed to a main burner fuel nozzle by air and blown into a furnace to burn the fine solid fuel from an outlet of the pulverizer to the main burner fuel nozzle. A mixture mixture forming pipe for forming a rich mixture mixture branched from the fuel mixture conveying pipe, and an inlet connected to the mixture mixture forming mixture mixture forming pipe and a powder outlet for the branch point of the fine solid fuel mixture conveying pipe. A cyclone separator that joins downstream of the fuel cell, a mixed mood flow control valve provided in the fine powder solid fuel mixture transport pipe between the branch point and the merge point, and a flow downstream of the main burner fuel nozzle. A fine powder solid fuel combustion apparatus, comprising: an upper burner fuel nozzle that is provided; and an exhaust pipe that connects the gas outlet of the separator.
JP4911293A 1993-03-10 1993-03-10 Fine powder solid fuel combustion device Withdrawn JPH06265105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4911293A JPH06265105A (en) 1993-03-10 1993-03-10 Fine powder solid fuel combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4911293A JPH06265105A (en) 1993-03-10 1993-03-10 Fine powder solid fuel combustion device

Publications (1)

Publication Number Publication Date
JPH06265105A true JPH06265105A (en) 1994-09-20

Family

ID=12821990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4911293A Withdrawn JPH06265105A (en) 1993-03-10 1993-03-10 Fine powder solid fuel combustion device

Country Status (1)

Country Link
JP (1) JPH06265105A (en)

Similar Documents

Publication Publication Date Title
US6244200B1 (en) Low NOx pulverized solid fuel combustion process and apparatus
WO2008051798A1 (en) Modifying transport air to control nox
JP3285595B2 (en) Fine solid fuel combustion equipment
JP2540636B2 (en) boiler
JPS62233611A (en) Pulverized coal burner device
JP2002243108A (en) Mixed-fuel fired device of coal and biofuel and operating method thereof
JP5271689B2 (en) Boiler equipment
EP2751484B1 (en) Combustion apparatus with indirect firing system
JP4282069B2 (en) Biomass fuel combustion apparatus and method
US20140182491A1 (en) Biomass combustion
CA2871074C (en) Method for operating a multi-gas burner and a multi-gas burner
JPH06265105A (en) Fine powder solid fuel combustion device
JPS6358007A (en) Pulverized coal firing boiler
WO2006003454A1 (en) Process for treating a carbonaceous material
JPH08121711A (en) Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
JPH07332613A (en) Method for combustion in fluidized bed for performing concurrent reduction of nitrous oxide and nitrogen oxide
JP3255651B2 (en) Pulverized coal combustion equipment
JPH02298703A (en) Pulverized coal burner
JPS58145810A (en) Combustion of coal
JPS61165510A (en) Nozzle for granular solid fuel
JPH0259361B2 (en)
JP2706349B2 (en) Pulverized solid fuel burning combustion device
JP2001065804A (en) Repowering apparatus and repowering method for boiler
JPH044486B2 (en)
JPH09178135A (en) Incinerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530