JPH06258014A - Scanning probe microscope and recorder and/or reproducer employing it - Google Patents

Scanning probe microscope and recorder and/or reproducer employing it

Info

Publication number
JPH06258014A
JPH06258014A JP4550493A JP4550493A JPH06258014A JP H06258014 A JPH06258014 A JP H06258014A JP 4550493 A JP4550493 A JP 4550493A JP 4550493 A JP4550493 A JP 4550493A JP H06258014 A JPH06258014 A JP H06258014A
Authority
JP
Japan
Prior art keywords
probe
sample
voltage
circuit
alternating voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4550493A
Other languages
Japanese (ja)
Inventor
清 ▲瀧▼本
Kiyoshi Takimoto
Isaaki Kawade
一佐哲 河出
Etsuro Kishi
悦朗 貴志
Kyoji Yano
亨治 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4550493A priority Critical patent/JPH06258014A/en
Publication of JPH06258014A publication Critical patent/JPH06258014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a plurality of types of observed image signal substantially concurrently by detecting current flowing between a probe and the surface of a sample when different bias voltages are applied to a plurality of different phase points. CONSTITUTION:A voltage applying circuit 14 applies an AC bias voltage between a probe 11 and the surface of a sample 12, detects 13 a current flowing therebetween, and sustains the current at a constant level by subjecting the distance therebetween to feedback control. During that interval, an imaging unit 26 images the surface profile of the sample 12 based on an output from a Z-axis drive circuit 31 in synchronism with the motion of the probe 11 in XY direction. In this regard, a timing circuit 15 outputs a timing signal at a designated phase point in synchronism with an output from the circuit 14. Signals corresponding to the surface profile of the sample 12 at respective bias voltages are sampled 2 by the circuit 31. The unit 26 then obtains different types of scanning tunnel microscopic image under different bias voltages substantially concurrently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型プローブ顕微鏡、
および、それを用いた情報記録装置および/または再生
装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a scanning probe microscope,
And an information recording apparatus and / or reproducing apparatus using the same.

【0002】[0002]

【従来の技術】近年、走査型トンネル顕微鏡(以後ST
Mと略す)が開発され[G. Binnig etal., Phys. Rev.
Lett., 49, 57(1982)]、単結晶、非晶質を問わず導体
表面の実空間像を原子オーダーの高い分解能で観察でき
るようになった。STMは金属の探針と導体表面との間
に電圧を加えて、両者間の距離を1nm程度まで近づけ
るとトンネル電流が流れることを利用している。トンネ
ル電流は両者間の距離に極めて敏感である。このトンネ
ル電流を一定に保つように両者間の距離を制御しながら
探針を導体表面上で走査させ、距離の制御信号から導体
の表面形状が構成される。この時、面内方向の分解能は
0.1nm程度に達する。最近では導体表面に吸着した
稀ガス原子あるいは有機分子の原子像あるいは分子像の
観察すら可能であることが報告されている。これらの結
果は、STMが探針先端の電子雲と試料表面の電子雲と
の相互作用に関する情報を検出しているとして解釈され
ている。
2. Description of the Related Art Recently, scanning tunneling microscopes (hereinafter referred to as ST
(Abbreviated as M) was developed [G. Binnig et al., Phys. Rev.
Lett., 49, 57 (1982)], whether it is a single crystal or an amorphous material, it has become possible to observe real-space images of conductor surfaces with high resolution in atomic order. The STM utilizes the fact that a tunnel current flows when a voltage is applied between the metal probe and the conductor surface to bring the distance between them to about 1 nm. The tunnel current is extremely sensitive to the distance between the two. The probe is scanned on the surface of the conductor while controlling the distance between the two so as to keep this tunnel current constant, and the surface shape of the conductor is constructed from the distance control signal. At this time, the resolution in the in-plane direction reaches about 0.1 nm. Recently, it has been reported that it is possible to even observe the atomic or molecular image of rare gas atoms or organic molecules adsorbed on the conductor surface. These results are interpreted as the STM detecting information regarding the interaction between the electron cloud at the tip of the probe and the electron cloud at the sample surface.

【0003】STMは、試料に電流による損傷を与えず
に低電力で観察を行なえる利点を有している。更に大気
中で動作させることができ、種々の材料に対して用いる
ことができる。このため表面観察に限らず広範な分野で
の応用が期待されている。例えば、表面の微細加工や高
密度情報記録への応用が提案されている。また更に、S
TMの技術を応用し、試料表面とプローブ先端との間の
様々なタイプの相互作用を検出することによって表面状
態を観察する顕微鏡が開発されており、これらはSTM
も含め走査型プローブ顕微鏡と総称されている。
The STM has an advantage that observation can be carried out at low power without damaging the sample by electric current. Furthermore, it can be operated in the atmosphere and can be used for various materials. Therefore, it is expected to be applied not only to surface observation but also in a wide range of fields. For example, application to surface fine processing and high density information recording has been proposed. Furthermore, S
Applying TM technology, microscopes have been developed for observing the surface condition by detecting various types of interactions between the sample surface and the probe tip.
It is also called scanning probe microscope.

【0004】[0004]

【発明が解決しようとする課題】STMによる表面観察
を行なう場合、トンネル電流を流すため試料と探針との
間にはバイアス電圧が印加される。このバイアス電圧
は、観察すべき試料の種類によって最も適当な電圧に設
定されるべきものである。しかし、試料によってはバイ
アス電圧によって観察される像が異なる場合がある。例
えば、ヒ化ガリウム結晶面のSTM像において、バイア
ス電圧によりヒ素原子のSTM像とガリウム原子のST
M像とが別々に観察されている報告がある。また、グラ
ファイト上に形成された有機分子層(アルキルシアノビ
フェニル等の液晶分子、飽和脂肪酸等)を観察する場
合、高バイアス電圧下では上層の有機分子の分子像が得
られ、低バイアス電圧下では下層のグラファイトの結晶
格子像が得られる。たとえば、バイアス1.0Vでは飽
和脂肪酸の分子像が得られる一方、バイアス0.1Vで
は基板に用いたグラファイトの格子像が得られる。しか
も、バイアス電圧を繰り返し変化させた場合でも可逆的
に係る像変化が観察される。このような現象を利用し
て、同一の試料を用い、異なるバイアス電圧で観察され
た像を比較して、有機分子の下層基板の結晶格子に対す
る吸着構造が議論されている。
When observing the surface by STM, a bias voltage is applied between the sample and the probe in order to pass a tunnel current. This bias voltage should be set to the most appropriate voltage depending on the type of sample to be observed. However, the observed image may differ depending on the bias voltage depending on the sample. For example, in an STM image of a gallium arsenide crystal plane, an STM image of an arsenic atom and an ST image of a gallium atom depending on a bias voltage.
There is a report that the M image is observed separately. When observing an organic molecular layer (liquid crystal molecules such as alkylcyanobiphenyl, saturated fatty acid, etc.) formed on graphite, a molecular image of the upper organic molecule can be obtained under a high bias voltage, and under a low bias voltage. A crystal lattice image of the lower layer graphite is obtained. For example, a bias of 1.0 V gives a saturated fatty acid molecular image, while a bias of 0.1 V gives a graphite lattice image of the substrate. Moreover, reversible image changes are observed even when the bias voltage is repeatedly changed. Utilizing such a phenomenon, images adsorbed on the crystal lattice of the lower layer substrate of organic molecules have been discussed by comparing images observed at different bias voltages using the same sample.

【0005】しかしながら、従来は、異なるバイアス電
圧でのSTM像を個別に観察しているため、観察時間中
にプローブの試料表面に対する相対位置がドリフト等に
よって変化している場合には、下層基板表面の原子に対
する基板表面上の有機分子中の原子位置の相対関係が正
確に得られなかった。
However, conventionally, since the STM images at different bias voltages are individually observed, if the relative position of the probe to the sample surface changes due to drift or the like during the observation time, the lower substrate surface The relative position of the atomic position in the organic molecule on the surface of the substrate with respect to the atom was not obtained accurately.

【0006】さらに、係る下層基板表面の結晶格子の観
察によって試料表面上でのプローブの位置を較正する方
法が提案されている。
Further, a method of calibrating the position of the probe on the surface of the sample by observing the crystal lattice on the surface of the lower substrate has been proposed.

【0007】また走査型プローブ顕微鏡の原理を応用し
た記録および/または再生装置において、記録時または
再生時のプローブの位置決めに、観察される結晶格子を
用いる方法が提案されている。しかし、この場合も下層
基板表面の結晶格子像か、記録媒体表面像のいずれかを
観察するものであって、ドリフト等がある場合には正確
な位置決めが行なわれないおそれがあった。
Further, in a recording and / or reproducing apparatus to which the principle of the scanning probe microscope is applied, a method of using an observed crystal lattice for positioning the probe at the time of recording or reproducing has been proposed. However, also in this case, either the crystal lattice image on the surface of the lower substrate or the image on the surface of the recording medium is observed, and if there is a drift or the like, accurate positioning may not be performed.

【0008】[0008]

【課題を解決するための手段】本発明は係る問題点に鑑
みてなされたものである。すなわち、本発明はバイアス
電圧として交流電圧を印加することを特徴とする。交流
電圧の周波数はSTMにおける帰還制御の遮断周波数よ
りも低く設定される。STM動作は、係る交流電圧印加
中、プローブと試料との間を流れる電流を常に一定に保
持するように、探針先端と試料表面との間の距離を帰還
制御して行なう。さらに係る帰還制御信号を前記交流電
圧の異なる位相点でそれぞれ検出して、それぞれの位相
点に対応してそれぞれ異なるバイアス電圧でのSTM像
をほぼ同時に観察することを特徴とする。
The present invention has been made in view of the above problems. That is, the present invention is characterized in that an AC voltage is applied as the bias voltage. The frequency of the AC voltage is set lower than the cutoff frequency of the feedback control in the STM. The STM operation is performed by feedback controlling the distance between the tip of the probe and the sample surface so that the current flowing between the probe and the sample is always kept constant during the application of the alternating voltage. Further, the feedback control signals are detected at different phase points of the AC voltage, and STM images at different bias voltages corresponding to the respective phase points are observed substantially at the same time.

【0009】[0009]

【作用】プローブと試料との間に印加するバイアス電圧
を交流電圧とし、プローブと試料表面との間を流れる電
流について、異なる複数の位相点での異なるバイアス電
圧の印加時に、それぞれ検出することによって、複数種
類の観察像信号をほぼ同時に得ることができる。
The bias voltage applied between the probe and the sample is an AC voltage, and the current flowing between the probe and the sample surface is detected when different bias voltages are applied at different phase points. , It is possible to obtain a plurality of types of observation image signals almost at the same time.

【0010】[0010]

【実施例】図1は、本発明の走査型トンネル顕微鏡のブ
ロック構成図である。
1 is a block diagram of a scanning tunneling microscope of the present invention.

【0011】図1において、11はプローブ(電極)、
12は観察対象である試料、13はプローブ11と試料
12表面との間に流れる電流を検出する電流検出回路、
14はプローブ11と試料12との間にバイアス電圧を
印加するための電圧印加回路で、バイアス電圧として交
流電圧を用いる。15はサンプル/ホールド回路24,
25にサンプリングするタイミングを与えるタイミング
回路である。21は電流検出回路13の検出出力を対数
変換する対数変換回路、22は対数変換された入力と参
照電流値との差信号を出力する比較器、23は指定され
た遮断周波数以下の成分を出力するローパスフィルタ
ー、24,25はそれぞれ異なるタイミング信号に基づ
いてz方向駆動回路31の出力をサンプリングし保持す
るサンプル/ホールド回路、26はxy方向制御回路3
3の出力によりプローブ11のxy軸方向の動きに同期
させて、サンプル/ホールド回路の出力信号を試料表面
の形状として画像表示する画像形成装置である。31は
フィルターの出力信号に基づいてz方向微動装置32を
駆動するために出力するz方向駆動回路、32は試料1
2表面とプローブ11との間の距離を変えるz方向微動
装置、33はxy方向駆動回路34及び画像形成装置に
出力するxy方向制御回路、34はxy方向制御回路3
3の出力信号に基づいてxy方向微動装置35を駆動す
るために出力するxy方向駆動回路、35はプローブを
試料12の表面内のxy軸方向に微動させるxy方向微
動装置である。
In FIG. 1, 11 is a probe (electrode),
12 is a sample to be observed, 13 is a current detection circuit for detecting a current flowing between the probe 11 and the surface of the sample 12,
Reference numeral 14 is a voltage application circuit for applying a bias voltage between the probe 11 and the sample 12, and uses an AC voltage as the bias voltage. 15 is a sample / hold circuit 24,
25 is a timing circuit for giving sampling timing to 25. Reference numeral 21 is a logarithmic conversion circuit for logarithmically converting the detection output of the current detection circuit 13, 22 is a comparator for outputting a difference signal between the logarithmically converted input and a reference current value, and 23 is a component having a cut-off frequency or lower. Low-pass filter, 24 and 25 are sample / hold circuits that sample and hold the output of the z-direction drive circuit 31 based on different timing signals, and 26 is an xy-direction control circuit 3.
3 is an image forming apparatus that displays the output signal of the sample / hold circuit as the shape of the sample surface in synchronization with the movement of the probe 11 in the xy-axis directions. Reference numeral 31 is a z-direction drive circuit that outputs the drive signal for driving the z-direction fine movement device 32 based on the output signal of the filter, and 32 is the sample 1
2 z direction fine movement device for changing the distance between the surface and the probe 11, 33 is an xy direction drive circuit 34 and an xy direction control circuit for outputting to the image forming apparatus, 34 is an xy direction control circuit 3
An xy-direction drive circuit that outputs to drive the xy-direction fine movement device 35 based on the output signal of 3, and 35 is an xy-direction fine movement device that finely moves the probe in the xy-axis directions within the surface of the sample 12.

【0012】次に、本実施例の動作について説明する。
試料12に対向して設けられたプローブ11は、z方向
微動装置32およびxy方向微動装置35によってx,
y,およびz軸方向に微小量動くことができる。電圧印
加回路14によってプローブ11と試料12との間にバ
イアス電圧を印加し、電流検出回路13によってプロー
ブ11と試料12との間を流れる電流を検出し、その電
流を一定に保つ様に、z方向微動装置32によりプロー
ブ11先端と試料12表面との距離を帰還制御する。係
る帰還制御を行ないながら、プローブ11を試料12表
面上でxy方向制御回路33の出力にしたがってxy方
向微動装置35により駆動する。プローブ11のxy軸
方向の動きに同期させてz方向微動装置32の制御信号
すなわちz方向駆動回路31の出力により画像形成装置
26を用いて画像化を行なうことで試料表面の形状を得
ることができる。
Next, the operation of this embodiment will be described.
The probe 11 provided so as to face the sample 12 is controlled by the z-direction fine movement device 32 and the xy-direction fine movement device 35 so that
It can move a small amount in the y- and z-axis directions. A bias voltage is applied between the probe 11 and the sample 12 by the voltage application circuit 14, and a current flowing between the probe 11 and the sample 12 is detected by the current detection circuit 13, so that the current is kept constant. The direction fine movement device 32 feedback-controls the distance between the tip of the probe 11 and the surface of the sample 12. While performing such feedback control, the probe 11 is driven on the surface of the sample 12 by the xy direction fine movement device 35 in accordance with the output of the xy direction control circuit 33. The shape of the sample surface can be obtained by performing imaging using the image forming apparatus 26 in synchronization with the movement of the probe 11 in the xy-axis directions by the control signal of the z-direction fine movement device 32, that is, the output of the z-direction drive circuit 31. it can.

【0013】電圧印加回路14は交流電圧を出力し、こ
の交流電圧をプローブ11と試料12の間にバイアス電
圧を印加する。このときプローブ11と試料12の間を
流れる電流が電流検出回路13により検出される。検出
された電流信号は対数変換回路21により対数変換され
た後、比較器22により参照電流値との差が取り出さ
れ、ローパスフィルター23によって指定された遮断周
波数以下の成分が抽出される。抽出された信号を補償す
るように、z方向駆動回路31によりz方向微動装置3
2が駆動され、プローブ11先端と試料12表面との距
離が帰還制御される。このとき、交流であるバイアス電
圧の変動による電流の変動成分がz方向微動装置の制御
信号に含まれ、プローブ11がバイアス電圧の交流周波
数でz軸方向に振動し、それぞれの時点でのバイアス電
圧の下で、設定された参照電流値が常に得られるように
プローブ11先端と試料12表面との距離が帰還制御さ
れる。
The voltage application circuit 14 outputs an alternating voltage and applies a bias voltage between the probe 11 and the sample 12 with this alternating voltage. At this time, the current flowing between the probe 11 and the sample 12 is detected by the current detection circuit 13. The detected current signal is logarithmically converted by the logarithmic conversion circuit 21, and then the difference from the reference current value is taken out by the comparator 22, and the component below the cutoff frequency designated by the low-pass filter 23 is extracted. The z-direction fine movement device 3 is controlled by the z-direction drive circuit 31 so as to compensate the extracted signal.
2 is driven, and the distance between the tip of the probe 11 and the surface of the sample 12 is feedback-controlled. At this time, the fluctuation component of the current due to the fluctuation of the bias voltage which is an alternating current is included in the control signal of the z direction fine movement device, the probe 11 vibrates in the z axis direction at the alternating frequency of the bias voltage, and the bias voltage at each time The feedback control of the distance between the tip of the probe 11 and the surface of the sample 12 is performed so that the set reference current value is always obtained.

【0014】同時にz方向駆動回路31の出力が試料表
面形状を画像化するための信号として用いられる。タイ
ミング回路15により電圧印加回路14の出力に同期し
て指定された一定の位相点でタイミング信号を出力する
(図2)。このタイミング信号にしたがってバイアス電
圧の異なる位相点におけるz方向駆動回路31の出力、
すなわち、各タイミングでのそれぞれのバイアス電圧に
おける試料表面形状に相当する信号がサンプル/ホール
ド回路24、および25によってサンプリングされ、画
像形成装置26によって異なるバイアス電圧の下での種
類の異なる各々のSTM像が得られる。
At the same time, the output of the z-direction drive circuit 31 is used as a signal for imaging the surface shape of the sample. The timing circuit 15 outputs a timing signal at a fixed phase point designated in synchronization with the output of the voltage application circuit 14 (FIG. 2). According to this timing signal, the output of the z-direction drive circuit 31 at the phase points with different bias voltages,
That is, a signal corresponding to the sample surface shape at each bias voltage at each timing is sampled by the sample / hold circuits 24 and 25, and the STM images of different types under the different bias voltages by the image forming device 26. Is obtained.

【0015】ローパスフィルター23の遮断周波数は、
プローブ11の走査周波数と必要な分解能から求められ
る観察試料の表面形状の空間周波数とをカバーするよう
に設定するのが好ましい。一方、バイアス電圧の交流周
波数にプローブ11の動きを追従させるためには、バイ
アス電圧の周波数がローパスフィルター23の遮断周波
数より低く設定されている必要がある。かつまた、バイ
アス電圧の周波数は、少なくとも前記観察試料の表面形
状の前記空間周波数程度を有し、必要な分解能内で異な
るバイアス電圧値をとる必要がある。したがって、例え
ばプローブを10Hzで走査し、走査線1本当たり50
0画素で観察像を得るためには、バイアス電圧の周波数
を5kHz程度に設定すればよく、このため前記ローパ
スフィルターの遮断周波数は5kHzをカバーするよう
に、例えば10kHz程度あるいはそれ以上に設定する
のが好ましい。
The cutoff frequency of the low-pass filter 23 is
It is preferable to set so as to cover the scanning frequency of the probe 11 and the spatial frequency of the surface shape of the observation sample obtained from the necessary resolution. On the other hand, in order to cause the movement of the probe 11 to follow the AC frequency of the bias voltage, the frequency of the bias voltage needs to be set lower than the cutoff frequency of the low pass filter 23. Moreover, the frequency of the bias voltage needs to have at least the spatial frequency of the surface shape of the observation sample, and take different bias voltage values within the required resolution. Thus, for example, the probe is scanned at 10 Hz and 50
In order to obtain an observation image with 0 pixels, the frequency of the bias voltage may be set to about 5 kHz. Therefore, the cutoff frequency of the low-pass filter is set to, for example, about 10 kHz or more so as to cover 5 kHz. Is preferred.

【0016】なお、サンプリングが行なわれるバイアス
電圧の位相点は、2点に限定されるものではなく、3点
以上でもよい。また、図1に示したように、サンプリン
グを行なう位相点の数だけサンプル/ホールド回路を設
けても良く、あるいはサンプル/ホールド回路がタイミ
ング回路15のタイミング信号にしたがってバイアス電
圧の複数の位相点それぞれでのz方向駆動回路31の出
力信号をサンプリングし、出力するものであっても良
い。
The phase points of the bias voltage for sampling are not limited to two points, but may be three or more points. Further, as shown in FIG. 1, as many sample / hold circuits as the number of phase points to be sampled may be provided, or the sample / hold circuits may respectively provide a plurality of phase points of the bias voltage according to the timing signal of the timing circuit 15. The output signal of the z-direction drive circuit 31 may be sampled and output.

【0017】係る方法によって、STMによる試料表面
の観察を行なうことにより、同一試料に対し異なる2以
上のバイアス電圧での2種類以上のSTM像がほぼ同時
に得られる。更に下層基板表面と基板表面上の有機分子
とを異なるバイアス電圧で観察する場合などに、観察時
間中にプローブの試料表面に対する相対位置がドリフト
等によって変化しても、必要な分解能以下の領域内で異
なるバイアス電圧それぞれに対する観察像を構成するた
めの信号を検出することができるので、下層基板表面の
原子と表面上の有機分子中の原子との相対位置のずれは
分解能程度あるいはそれ以下に抑えられる。
By observing the sample surface by STM by such a method, two or more kinds of STM images at different bias voltages of two or more can be obtained almost simultaneously for the same sample. Furthermore, when observing the underlying substrate surface and organic molecules on the substrate surface at different bias voltages, even if the relative position of the probe to the sample surface changes during the observation time due to drift, etc. Since it is possible to detect the signals that make up the observed image for each of the different bias voltages, the relative position deviation between the atoms on the lower substrate surface and the atoms in the organic molecules on the surface can be suppressed to about the resolution or less. To be

【0018】ドリフト等によって像に歪が生じても、下
層基板表面の結晶格子が既知であれば、観察された下層
基板表面の結晶格子を既知の格子に変換する操作と同じ
操作を下層基板上の試料に対する観察像に施すことによ
って、歪のない観察像を再構成することができる。
Even if the image is distorted due to drift or the like, if the crystal lattice on the surface of the lower substrate is known, the same operation as the operation of converting the observed crystal lattice on the surface of the lower substrate into the known lattice is performed on the lower substrate. It is possible to reconstruct an observation image without distortion by applying it to the observation image of the sample.

【0019】また走査型プローブ顕微鏡の原理を応用し
た記録および/または再生装置において、記録時または
再生時のプローブの位置決めに記録媒体の下層基板表面
の結晶格子を用いる場合にも、下層基板表面の結晶格子
と記録媒体表面像との両方を同時に観察しながら、記録
媒体の状態を検出して記録または再生操作が行なえるた
め、ドリフト等がある場合にも正確な位置決めを行なう
ことができる。また、結晶格子以外にも下層基板表面を
あらかじめSTM観察できるように改質して、その既知
の改質形状を観察することで位置決めを行なうこともで
きる。
Further, in the recording and / or reproducing apparatus applying the principle of the scanning probe microscope, even when the crystal lattice of the lower substrate surface of the recording medium is used for positioning the probe at the time of recording or reproducing, Since the state of the recording medium can be detected and the recording or reproducing operation can be performed while observing both the crystal lattice and the image of the surface of the recording medium at the same time, accurate positioning can be performed even when there is a drift or the like. In addition to the crystal lattice, the lower layer substrate surface may be modified in advance so that it can be observed by STM, and the known modified shape may be observed for positioning.

【0020】[0020]

【発明の効果】本発明によってSTMによる試料表面の
観察を行なう際、同一試料に対して異なる2以上のバイ
アス電圧での2種類以上のSTM像がほぼ同時に得るこ
とが可能になった。更に下層基板表面と該基板表面上の
試料とを異なるバイアス電圧で観察する場合にも、観察
時間中にプローブの試料表面に対する相対位置のドリフ
ト等による変化の有無によらずに、下層基板表面の原子
と該表面上の試料中の原子との相対位置を正確に得るこ
とが可能になった。
According to the present invention, when observing a sample surface by STM, it is possible to obtain two or more kinds of STM images at the same sample at different bias voltages of two or more. Further, even when the lower substrate surface and the sample on the substrate surface are observed with different bias voltages, the lower substrate surface of the lower substrate surface is irrespective of whether there is a change in the relative position of the probe with respect to the sample surface during the observation time. It has become possible to accurately obtain the relative positions of the atoms and the atoms in the sample on the surface.

【0021】また走査型プローブ顕微鏡の原理を応用し
た記録および/または再生装置において、記録時または
再生時のプローブの位置決めに記録媒体の下層基板を用
いる場合にも、下層基板表面を観察しながら記録媒体の
状態を検出できるため、ドリフト等の有無によらずに正
確な位置決めを行なうことが可能になった。
Further, in the recording and / or reproducing apparatus applying the principle of the scanning probe microscope, even when the lower layer substrate of the recording medium is used for positioning the probe at the time of recording or reproducing, recording is performed while observing the surface of the lower layer substrate. Since the state of the medium can be detected, accurate positioning can be performed regardless of the presence or absence of drift or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例におけるSTMの構成を示
すブロック図。
FIG. 1 is a block diagram showing the configuration of an STM according to a first embodiment of the present invention.

【図2】(a):本発明の第1実施例におけるSTM動
作時のバイアス電圧波形を示す図。 (b)(c):z方向駆動回路の出力信号検出のタイミ
ング信号を示す図。
FIG. 2A is a diagram showing a bias voltage waveform during an STM operation in the first embodiment of the present invention. (B) (c): The figure which shows the timing signal of the output signal detection of a z direction drive circuit.

【符号の説明】[Explanation of symbols]

11 プローブ 12 試料 13 電流検出回路 14 電圧印加回路 15 タイミング回路 21 対数変換回路 22 比較器 23 ローパスフィルター 24,25 サンプル/ホールド回路 26 画像形成装置 31 z方向駆動回路 32 z方向微動装置 33 xy方向制御回路 34 xy方向駆動回路 35 xy方向微動装置 11 probe 12 sample 13 current detection circuit 14 voltage application circuit 15 timing circuit 21 logarithmic conversion circuit 22 comparator 23 low-pass filter 24, 25 sample / hold circuit 26 image forming device 31 z-direction drive circuit 32 z-direction fine movement device 33 xy-direction control Circuit 34 xy direction drive circuit 35 xy direction fine movement device

フロントページの続き (72)発明者 矢野 亨治 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内Front page continuation (72) Inventor Yoji Yano 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 プローブと、該プローブを試料表面に沿
って移動させる移動手段と、前記プローブと前記試料と
の間に電圧を印加して前記プローブと前記試料表面との
間を流れる電流を検出し、該電流を一定に保持するよう
に前記プローブと前記試料表面との間の距離を帰還制御
する制御手段を有する走査型プローブ顕微鏡において、 前記制御手段が、 前記プローブと前記試料との間に交流電圧を印加する電
圧印加手段と、 前記交流電圧の異なる複数の位相点でのそれぞれの信号
を検出する検出手段とを有し、 前記交流電圧が前記制御手段の追従しうる周波数の交流
電圧であることを特徴とする走査型プローブ顕微鏡。
1. A probe, a moving means for moving the probe along a sample surface, and a voltage applied between the probe and the sample to detect a current flowing between the probe and the sample surface. Then, in the scanning probe microscope having a control means for feedback-controlling the distance between the probe and the sample surface so as to keep the current constant, the control means is provided between the probe and the sample. It has a voltage applying means for applying an alternating voltage and a detecting means for detecting respective signals at a plurality of different phase points of the alternating voltage, and the alternating voltage is an alternating voltage with a frequency that the control means can follow. A scanning probe microscope characterized in that
【請求項2】 前記検出手段が、前記プローブと前記試
料表面との間を流れる電流を一定に保持するように前記
プローブと前記試料表面との間の距離を微小量変化させ
る微動手段を制御する制御信号を検出する検出手段であ
ることを特徴とする請求項1記載の走査型プローブ顕微
鏡。
2. The detection means controls a fine movement means for minutely changing the distance between the probe and the sample surface so as to keep the current flowing between the probe and the sample surface constant. The scanning probe microscope according to claim 1, wherein the scanning probe microscope is a detection unit that detects a control signal.
【請求項3】 プローブを介して記録媒体に情報の記録
および/または記録媒体から情報の再生を行なう装置に
おいて、 前記プローブと前記記録媒体との間に電圧を印加して前
記プローブと前記記録媒体表面との間を流れる電流を検
出し、該電流を一定に保持するように前記プローブと前
記記録媒体表面との間の距離を制御する制御手段を有
し、 前記制御手段が、 前記プローブと前記媒体との間に交流電圧を印加する電
圧印加手段と、 前記交流電圧の異なる複数の位相点でのそれぞれの信号
を検出する検出手段とを有し、 前記交流電圧が前記制御手段の追従しうる周波数の交流
電圧であることを特徴とする記録装置および/または再
生装置。
3. An apparatus for recording information on a recording medium and / or reproducing information from the recording medium via a probe, wherein a voltage is applied between the probe and the recording medium to provide the probe and the recording medium. Detecting a current flowing between the surface and the surface, and having a control means for controlling the distance between the probe and the recording medium surface so as to keep the current constant, the control means, the probe and the It has a voltage applying means for applying an alternating voltage to the medium, and a detecting means for detecting respective signals at a plurality of different phase points of the alternating voltage, and the alternating voltage can follow the control means. A recording device and / or a reproducing device characterized by being an alternating voltage of a frequency.
【請求項4】 前記検出手段が、前記プローブと前記記
録媒体表面との間を流れる電流を一定に保持するように
前記プローブと前記記録媒体表面との間の距離を微小量
変化させる微動手段を制御する制御信号を検出する検出
手段であることを特徴とする請求項3記載の記録装置お
よび/または再生装置。
4. The fine movement means for changing the distance between the probe and the surface of the recording medium by a small amount so that the detection means maintains a constant current flowing between the probe and the surface of the recording medium. 4. The recording device and / or the reproducing device according to claim 3, wherein the recording device and / or the reproducing device are detection means for detecting a control signal for controlling.
JP4550493A 1993-03-05 1993-03-05 Scanning probe microscope and recorder and/or reproducer employing it Pending JPH06258014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4550493A JPH06258014A (en) 1993-03-05 1993-03-05 Scanning probe microscope and recorder and/or reproducer employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4550493A JPH06258014A (en) 1993-03-05 1993-03-05 Scanning probe microscope and recorder and/or reproducer employing it

Publications (1)

Publication Number Publication Date
JPH06258014A true JPH06258014A (en) 1994-09-16

Family

ID=12721243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4550493A Pending JPH06258014A (en) 1993-03-05 1993-03-05 Scanning probe microscope and recorder and/or reproducer employing it

Country Status (1)

Country Link
JP (1) JPH06258014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481529A (en) * 1993-02-17 1996-01-02 Canon Kabushiki Kaisha Scanning probe microscope for observing a sample surface while applying an AC bias voltage between the sample and a probe
US5567872A (en) * 1994-03-08 1996-10-22 Canon Kabushiki Kaisha Scanning atomic force microscope
CN104865410A (en) * 2015-05-04 2015-08-26 华中科技大学 Conductor surface potential measuring instrument based on static controlled twist pendulum
CN111830290A (en) * 2020-07-28 2020-10-27 广州大学 Scanning electrochemical microscope system and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481529A (en) * 1993-02-17 1996-01-02 Canon Kabushiki Kaisha Scanning probe microscope for observing a sample surface while applying an AC bias voltage between the sample and a probe
US5567872A (en) * 1994-03-08 1996-10-22 Canon Kabushiki Kaisha Scanning atomic force microscope
CN104865410A (en) * 2015-05-04 2015-08-26 华中科技大学 Conductor surface potential measuring instrument based on static controlled twist pendulum
CN111830290A (en) * 2020-07-28 2020-10-27 广州大学 Scanning electrochemical microscope system and control method thereof

Similar Documents

Publication Publication Date Title
EP0347739B1 (en) Scanning tunneling microscope and surface topographic observation method
EP0513790B1 (en) Information processing apparatus
US5204531A (en) Method of adjusting the size of the area scanned by a scanning probe
JP2966189B2 (en) Scanning probe microscope
US5414690A (en) Moving apparatus, a moving method and an information detection and/or input apparatus using the same
JPH07318568A (en) Scanning probe microscope
US5432771A (en) Information recording/reproducing apparatus for performing recording/reproduction of information by using probe
EP0408009B1 (en) Scanning tunneling spectroscope and a spectroscopic information detection method
JP2880182B2 (en) Surface microscope
JPH06258014A (en) Scanning probe microscope and recorder and/or reproducer employing it
Li et al. Switching spectroscopic measurement of surface potentials on ferroelectric surfaces via an open-loop Kelvin probe force microscopy method
JP3207994B2 (en) Scanning probe microscope and information recording / reproducing apparatus using the same
JP3029504B2 (en) Scanning tunnel microscope and information recording / reproducing device
JP3103217B2 (en) Scanning probe microscope and method for observing a sample using the same
US5581364A (en) Method for recording and/or reproducing image signals and an apparatus therefor utilizing two dimensional scanning of a recording medium by a probe
JPH0712508A (en) Scanning-type probe microscope, recording device, reproducing device, and recording/reproducing device
JP3121619B2 (en) Image processing method for scanning tunneling microscope
JPH05340712A (en) Real-time display device for scanning probe microscope
JP3217493B2 (en) Information recording / reproducing device
JP3085960B2 (en) Scanning tunneling potential spectroscopy microscope and scanning tunneling potential spectroscopy information detection method
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JP3004823B2 (en) Information processing device
JPH05109130A (en) Information processor
JPH08166392A (en) Scanning probe microscope
JPH09171027A (en) Scanning probe microscope